

OCO-3 Version 11 Snapshot Area Mapping (SAM) Mode Observations

Robert R. Nelson^{1*}, Abhishek Chatterjee¹, Vivienne Payne¹, Matthäus Kiel¹, Brendan Fisher¹, Thomas Kurosu¹, Chris O'Dell², Andrew Schuh², and the entire OCO-3 project team

- 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- 2 Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
- * Email: robert.nelson@jpl.nasa.gov

IWGGMS-21, 10 June 2025

ACOS Version 11 (v11)

- OCO-3 data record has recently been reprocessed using the latest version (v11) of the Atmospheric Carbon Observations from Space (ACOS) dry-air mole-fraction of carbon dioxide (XCO₂) retrieval
- Major changes in v11 include:
 - Updated to the Copernicus Digital Elevation Model (DEM)
 - Switched from GEOS FP-IT to GEOS-IT for meteorology and aerosol priors
 - New ocean surface treatment (scaled Cox-Munk)
 - ABSCO updates (v5.2) and geolocation improvements
- OCO-3's Snapshot Area Mapping (SAM) mode:
 ~80 x 80 km² in ~2 min.

Utilization of SAMs within the scientific community continues to grow

Methodology

- Compared OCO-3 v10 to v11 SAMs (only XCO₂ fields analyzed)
 - Looked at ~16000 SAMs/Targets from 6 Aug. 2019 12 Nov. 2023 (storage)
 - Final XCO₂ quality flag applied
 - Final bias correction applied

Conclusions

- Most SAMs appear similar in v11 versus v10
- For some SAMs, v11 represents a clear improvement over v10
- Some XCO₂ artifacts remain, which will hopefully be addressed in a future version!

- Fewer topography-induced errors
 - v10 DEM errors were causing the retrieved surface pressure to differ from the prior ("dp"), which propagated into BC XCO₂

Fewer topography-induced errors enables a more accurate background XCO₂ estimate for urban CO₂ emission estimates

 Some power plant XCO₂ plumes are easier to identify because the background XCO₂ has fewer DEM-driven artifacts

 Some urban XCO₂ plumes are easier to identify in v11 due to improved coverage and fewer artifacts

Site-Average Plots

All OCO-3 SAMs for a given site averaged onto a 0.25°x0.25° lat-lon grid

Los Angeles (Number of SAMs = 98)

- Higher XCO₂ values are seen in the LA basin
- XCO₂ patterns visually match ODIAC CO₂ emissions
 - e.g., the Ports of Los Angeles/Long Beach, Los Angeles International Airport

Los Angeles (Number of SAMs = 98)

 The artifacts in dpfrac (similar to dp) are smaller in v11, a result of using a more accurate DEM

Artifacts Remain

• The OCO-3 v11 XCO₂ enhancement (left) is large (~1–3.5 ppm) relative to a high-res model (right) in the Nile River Valley, suggesting a potential albedo-induced bias

OCO-3 SAM of Sohag, Egypt on 8 Feb. 2021

Simulated XCO₂ from the Ocean Land Atmosphere Model (OLAM) for 4 Feb. 2020 (from Andrew Schuh) 13 jpl.nasa.gov

Conclusions

- Most SAMs appear similar in v11 versus v10
- For some SAMs, v11 represents a clear improvement over v10
 - DEM improvement leads to fewer topography-induced XCO₂ errors
 - Sometimes smoother-looking XCO₂ fields, which aid in estimating urban backgrounds and identifying point source plumes
- Some XCO₂ artifacts remain, which will hopefully be addressed in a future version!

Low latency

 External users are quickly informed of SAMs being collected

Custom search

- Sub-setting tools to filter and/or select a region with multiple SAMs
- Download subsetted .nc4 files!

OCO-3 SAMs

Marker colors denote the type of site

Site Name or Target ID	Site Type
start typing target trame or ID, if you did not select a region on the τ	9
Start Date	End Date
MMDDYYYY	MMODYYYY
SZA	+/- degrees
₱ of Soundings	
Spatial Region	
use map to select an area, if you did not fill out the "Site Name" field	

Quick-look plots

- XCO₂ (Raw)
- XCO₂ (BC+QF)
- O₂ A-Band Radiance
- SIF
- dp
- TROPOMI NO₂, CO
 - Geostationary imagery (GOES, Himawari)

Add your site!

- We can support your ground/airborne campaigns or sites of interest!
- "Request a SAM"

Thank You!

GES DISC OCO-3 v11 Lite XCO₂ files:

