

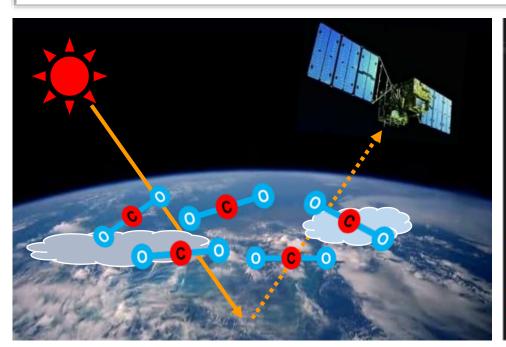
Hyperspectral Remote Sensing of Greenhouse Gases Using Satellite-based Spatial Heterodyne Interferometry

Shichao Wu, Hailiang Shi, Yuquan Liu, Wei Xiong, Haiyan Luo

GMI Team Anhui Institute of Optical and Fine Mechanics

Report Outline

- 1. Super-Resolution Spatial Heterodyne Spectroscopy
- 2. Satellite-Based Detection and Validation of Greenhouse Gas Sources and Sinks
- 3. Advances in Satellite Detection of Greenhouse Gas Point Sources
- 4. Key Achievements and Future Prospects

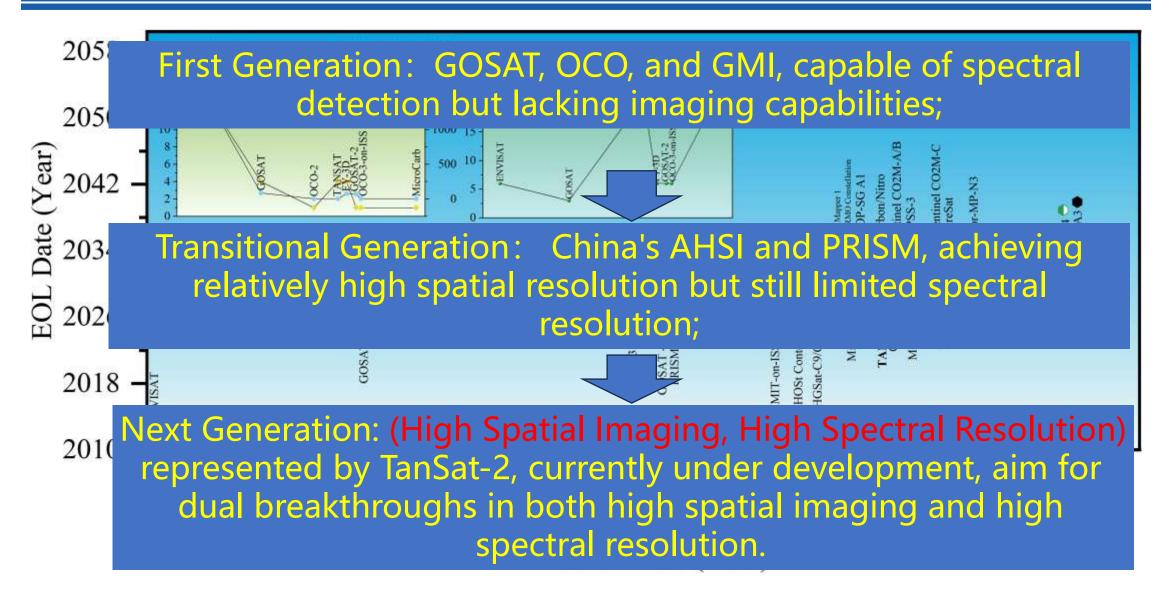

Requirements for Satellite Remote Sensing of Greenhouse Gases

Critical needs

China's actions to jointly address global climate change - dual-carbon target.

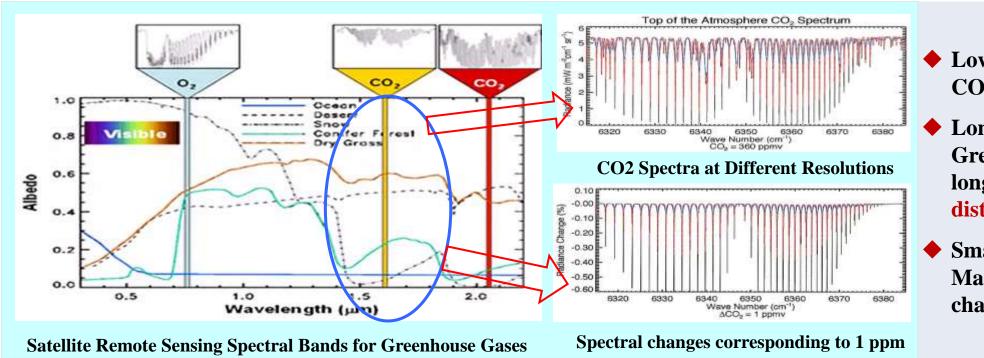
Critical pathways

Satellite remote sensing underpins global carbon source-sink dynamics and climate studies.



Tianyang Lei, et al., Nature, 2023

- > Regional Emissions: Cities cover less than 3% of the Earth's land surface but emit roughly 44% of global CO2 emissions, making their role crucial for estimating anthropogenic emissions.
- > Hotspot Emissions: Power plants and refineries are major emitters and key to CO2 reduction efforts.



Requirements for Satellite Remote Sensing of Greenhouse Gases

Requirements for Satellite Remote Sensing of Greenhouse Gases

- **♦** Low Concentration: CO2 ~430 ppm
- ◆ Long Lifespan: Greenhouse gases are long-lived and evenly distributed.
- ◆ Small Variation:
 Max concentration
 change ~20 ppm.

Hyperspectral

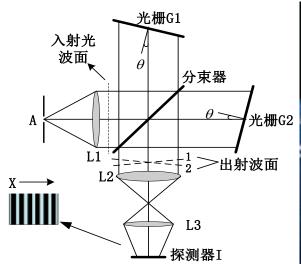
10 pm Spectral Resolution

High SNR

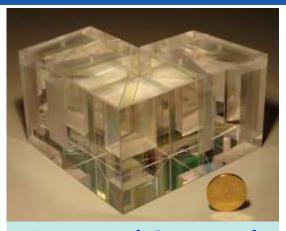
SNR > 300 under typical conditions ($\rho = 0.3$)

Multi-Element

Monitoring capability for major greenhouse gases like CO2, CH4


High Stability

Long lifespan with precise radiometric calibration


Satellite remote sensing requires high stability, high SNR, and hyperspectral capabilities.

Super-Resolution Heterodyne Interferometric Spectroscopy

Integrated Cemented Interferometer (SHS)

- > SHS Advantages::
 - → High integration density, compact size
 - → Lightweight, low power consumption
- > Requirements:
 - **→** Miniaturization
 - **→** Modularization
 - **→** Standardization

XHyperspectral:

Grating diffraction combined with heterodyne interference enables hyperspectral resolution;

****High Sensitivity:**

Expanded field of view with luminous flux 2 orders of magnitude higher than traditional grating solutions.

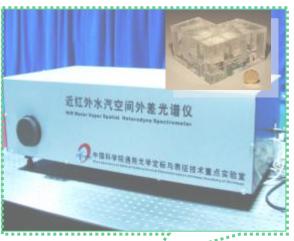
****Multi-Element Capability:**

Supports multi-channel combinations for arbitrary, narrow wavelength ranges.

XStability:

Monolithic cemented structure with no moving parts.

XFunctionality:

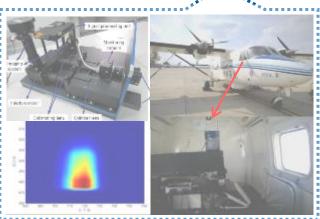

Configurable as imaging/non-imaging systems.

Q. Wang, et al., Measurement, 2024

Super-Resolution Heterodyne Interferometric Spectroscopy

2006 2009

2010/Proof-of-Concept Prototype



2024

2023/3km

-2021~2018/10.3km

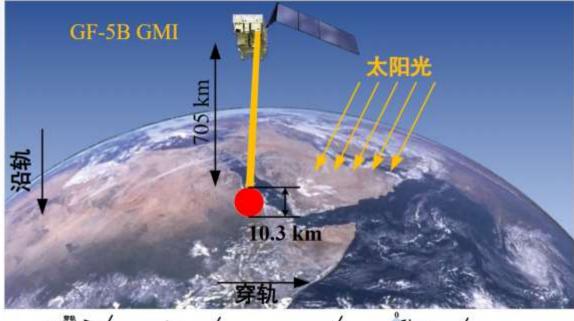
2015

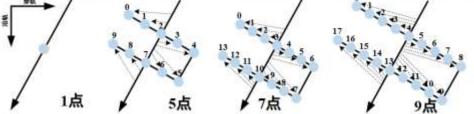
Report Outline

- 1. Super-Resolution Spatial Heterodyne Spectroscopy
- 2. Satellite-Based Detection and Validation of Greenhouse Gas Sources and Sinks
- 3. Advances in Satellite Detection of Greenhouse Gas Point Sources
- 4. Key Achievements and Future Prospects

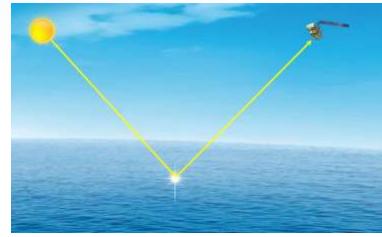
The major greenhouse gas monitoring instrument (GMI), a core payload for atmospheric CO₂ and CH₄ detection, is deployed on both the GF-5 (01) satellite (launched on 9 May 2018) and the GF-5B (02) satellite (launched on 7 September 2021).

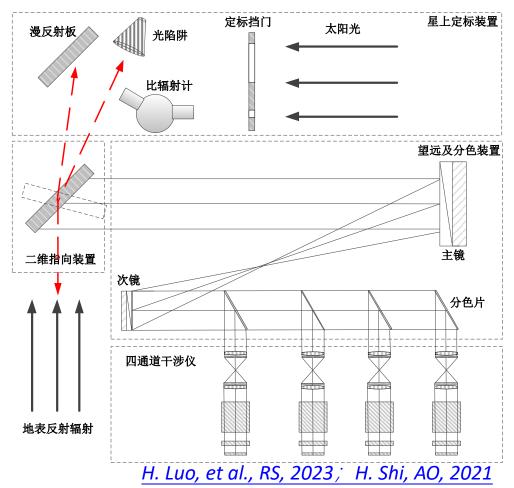
- **Optical Head**
- **Information Processing Unit**
- **Drive Control Box**
- Temperature Control Box





In practical operation, the onboard GMI instrument supports multiple observation modes:


Nadir Mode: Primarily for measuring absorption from Earth's surface-reflected radiation


Glint mode: Uses direct sunlight reflection to enhance signal intensity.

Optical Principle Schematic

An onboard calibration device ensures long-term spectral and radiometric accuracy.

Technical Parameters

	O ₂	CO2	CH ₄	CO2		
Spectral Range (μm)	0.759- 0.769	1.568-1.583	1.642-1.658	2.043-2.058		
Spectral Resolution	0.6cm ⁻¹	0.27cm ⁻¹	0.27cm ⁻¹	0.27cm ⁻¹		
Spectral Calibration Accuracy	0.1cm ⁻¹	0.05cm ⁻¹	0.05cm ⁻¹	0.05cm ⁻¹		
SNR)	300	300	250	250		
Radiometric Calibration Accuracy	Absolute (incl. Dolp): 5% Relative: 2%					
FOV)	IFOV: 14.6mrad (10.3km@705km)					
Swath Width	860km (打点)					
Operating Modes	Nadir observation; Glint observation; Calibration; Standby.					
Quantization Level	14bits					

This positions GMI as one of China's most systematically operational instruments for greenhouse gas monitoring.

GMI

Satellite-Based Detection and Validation of Greenhouse Gas Sources and Sinks

Current Status: Conducted a detailed analysis of internationally prevalent inversion algorithms.

Limitations: Each algorithm excels differently in spectral line modeling and aerosol handling.

Measures: Based on specific features, designed a statistical-physical hybrid inversion method for GMI.

DOAS Version: DOAS, WFM-DOAS, BESD-DOAS...

USA FP Version: V3.7...V8.1 + Adjusted BESD-DOAS

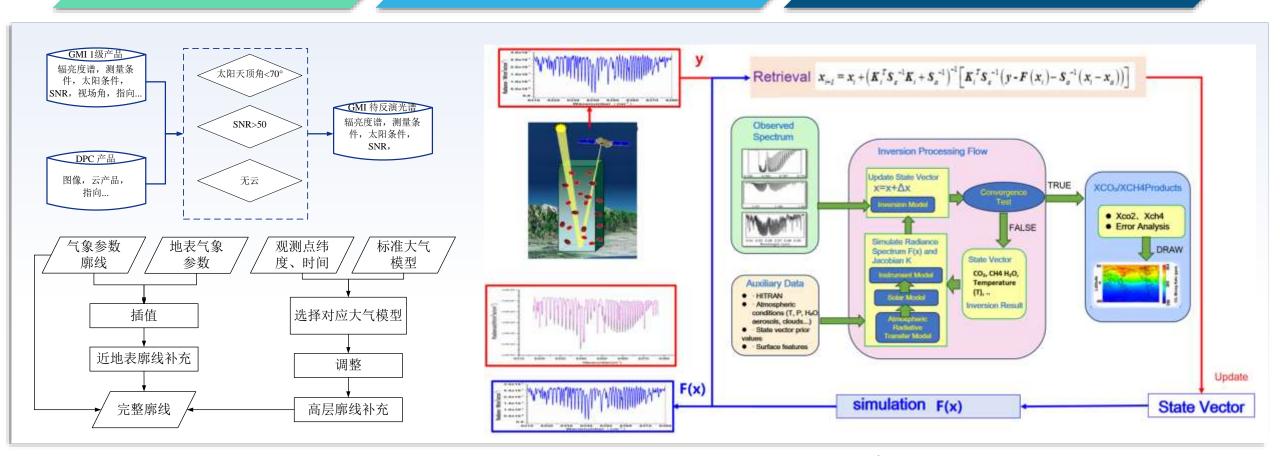
Japan PPDF Version: PPDF-D, PPDF-S + Adjusted FP

1

Combined Version: PCA + PPDF Series, PCA + Adjusted FP

- Statistical inversion and three-band spectral synergy for CO2/CH4, surface reflectance, and aerosol optical thickness, reducing scattering effects;
- > Enhance regional statistical data for ph ysical inversion;
- Path length correction;
- Aerosol inversion in high-value areas;
- > Surface inversion in urban clusters.

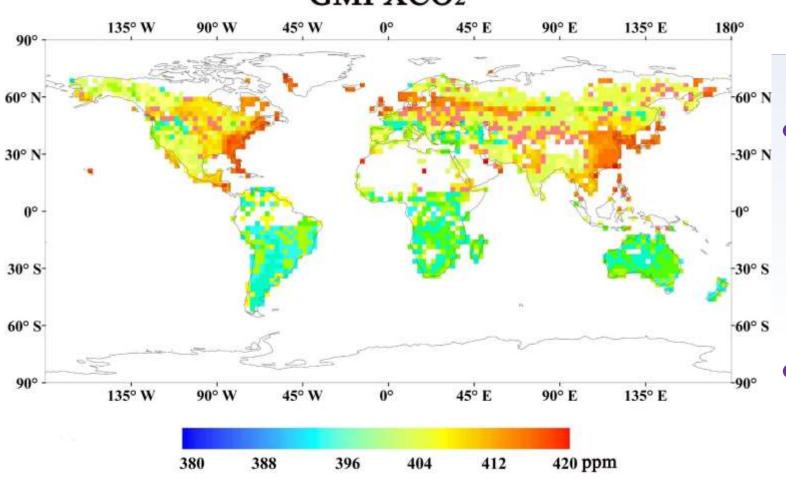
This significantly enhances retrieval accuracy within China.



□ Greenhouse Gas Concentration Data Product Production Process

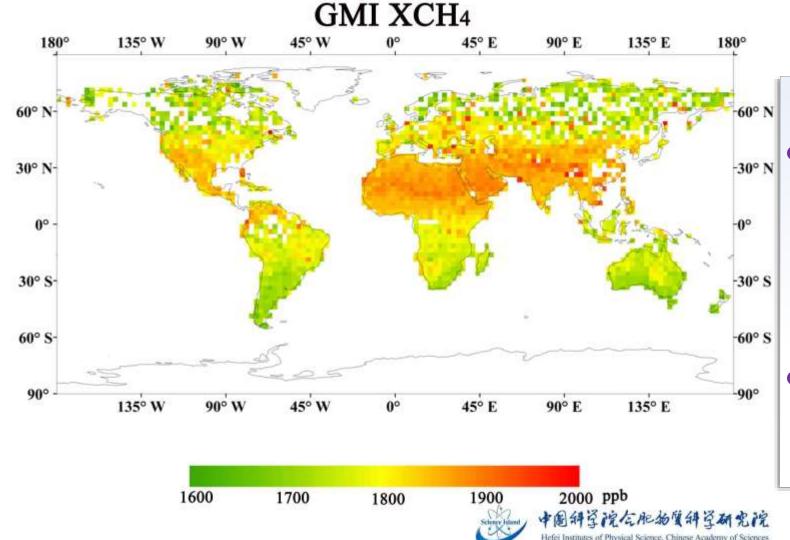
Data Filtering

Spectral Calibration


Concentration retrieval

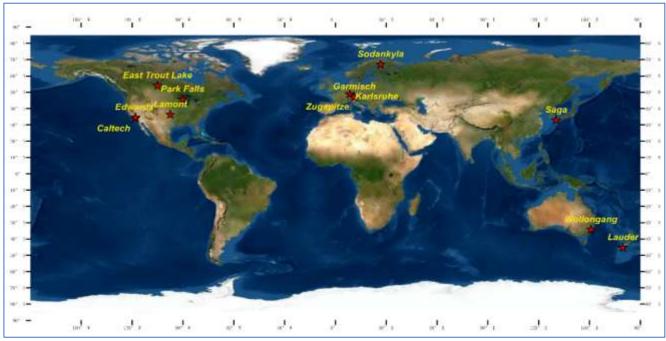
This integrated process yields standardized quantitative products for CO₂/CH₄ concentrations.

GMI XCO₂



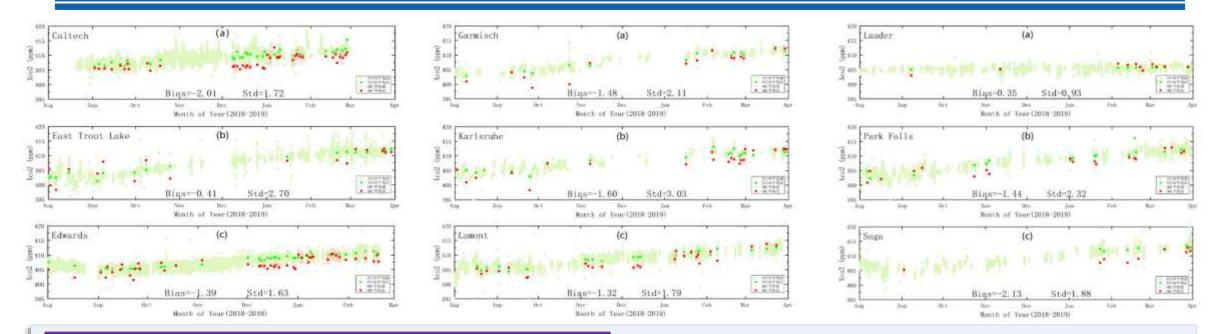
Hyperspectral Observation Satellite GMI Inversion Results

- Spring GMI CO2 measurements cover land areas within 70° latitude, showing distinct CO2 differences between hemispheres. Northern Hemisphere CO2 is higher due to vegetation in summer.
- The overall CO2 distribution trend from GMI is consistent with results from the GOSAT satellite.



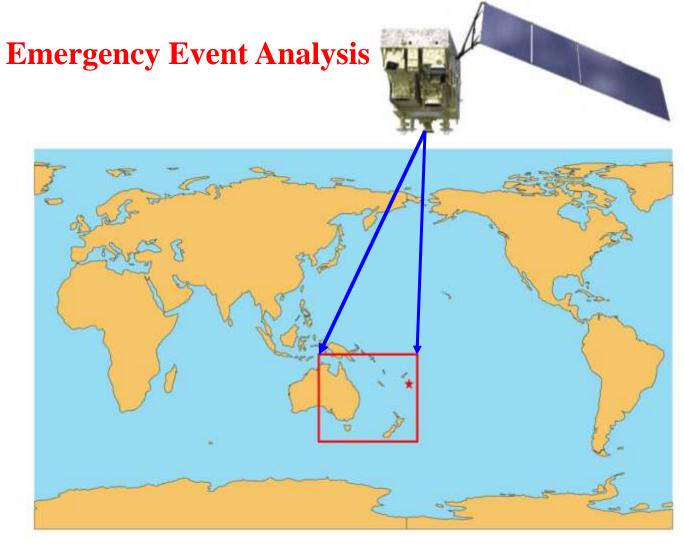
Hyperspectral Observation Satellite GMI Inversion Results

- In autumn, GMI global atmospheric CH4 measurements show a clear latitude-dependent pattern, with higher CH4 concentrations in low latitudes compared to high latitudes.
- The overall CH4 distribution trend from GMI is consistent with GOSAT satellite results.

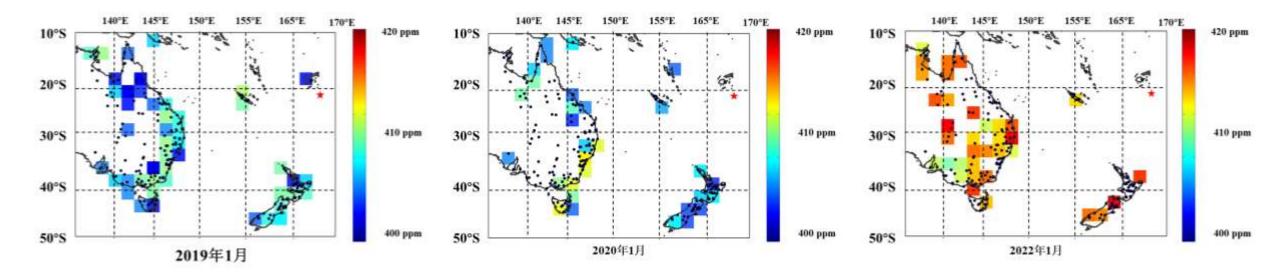


- Accuracy Validation of GMI CO2 with TCCON;
- > Nine TCCON sites covering major global regions are used for comparison;
- > Data is matched within ±5° latitude/longitude and a 1-hour time window for consistency.

站点名称	纬度/°	经度/°	
Caltech	34.14	-118.13	
East Trout Lake	54.35	-104.99	
Edwards	34.96	-117.88	
Garmisch	47.48	11.06	
Karlsruhe	49.1	8.44	
Lamont	36.6	-97.49	
Lauder	-45.04	169.68	
Park Falls	45.94	-90.27	
Saga	33.24	130.29	

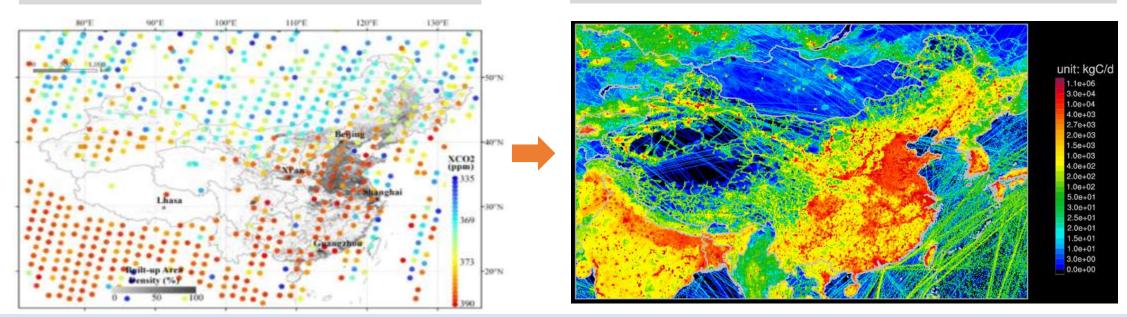

Sites		(GMI SWIR XCO ₂)-(g-b FTS XCO ₂)			(GMI SWIR XCO ₂)-(g-b FTS XCO ₂)	
	Lat				g-b FTS XCO₂	
		Number of data	Average (ppm)	$_1\sigma$ (ppm)	Average (%)	₁ σ (%)
Caltech	34.14	136	-1.71	1.91	-0.42	0.47
Edwards	34.96	167	-1.21	1.94	-0.29	0.48
Lamont	36.6	102	-1.15	2.32	-0.28	0.57
Park Falls	45.94	33	-0.92	2.41	-0.23	0.59
Garmisch	47.48	39	-0.82	2.44	-0.20	0.60
Karlsruhe	49.1	56	-1.00	3.03	-0.24	0.74
East Trout Lake	54.35	25	-0.84	3.42	-0.21	0.84
Lauder	-45.04	15	0.26	0.90	0.06	0.22
Total		583	-1.21	2.26	-0.30	0.55

GMI (red) and TCCON (green) results show a consistent increasing trend. High-latitude sites have errors up to ~3 ppm, while low-latitude sites are around 1 ppm. The combined validation of 9 sites gives an XCO2 bias of -1.21 ppm and accuracy of ~2 ppm.

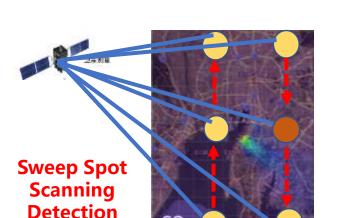


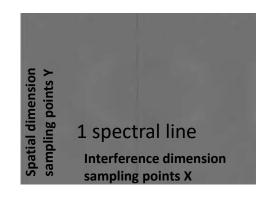
- In January 2019 and 2020, CO2 concentrations over the southern hemisphere's land were stable, with a 2 ppm fluctuation, consistent with ground-based observations.
- In January 2022, CO2 levels near Tonga increased by 3 ppm due to volcanic emissions.

Report Outline

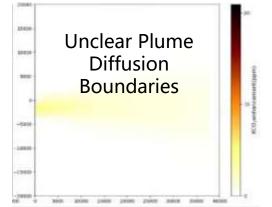

- 1. Super-Resolution Spatial Heterodyne Spectroscopy
- 2. Satellite-Based Detection and Validation of Greenhouse Gas Sources and Sinks
- 3. Advances in Satellite Detection of Greenhouse Gas Point Sources
- 4. Key Achievements and Future Prospects

Satellite-based "Point Source" Greenhouse Gas Detection Technology / Medium Orbit

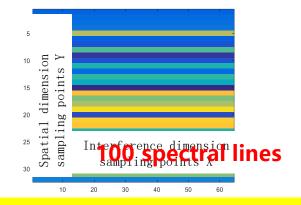

Imaging Detection (Urban/Point Sources)

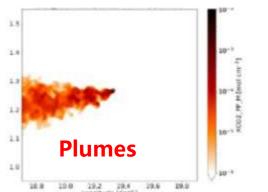

- Existing technologies focus on non-imaging large-scale detection (global greenhouse gas dynamics);
- Next-generation technologies prioritize imaging regional-scale detection (urban/point-source emissions);
- Urgent need: Development and data processing for high-resolution imaging carbon satellites.

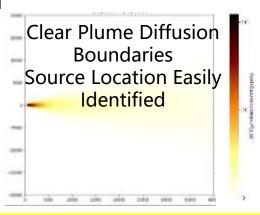
Satellite-based "Point Source" Greenhouse Gas Detection Technology / Medium Orbit



GF-5 Satellite : Greenhouse Gas Monitoring Payload

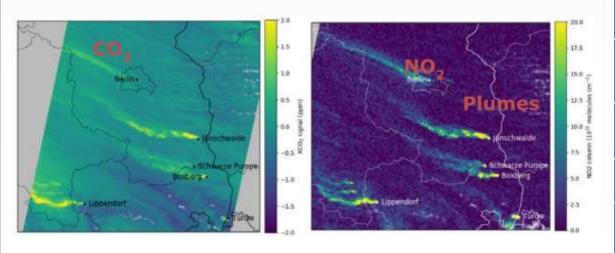

No Plumes


High-Resolution Support for Hotspot Carbon Emission Calculation



Staring Compensation Imaging Hotspot

TanSat-2 Satellite: High-Resolution Hotspot Monitoring Payload

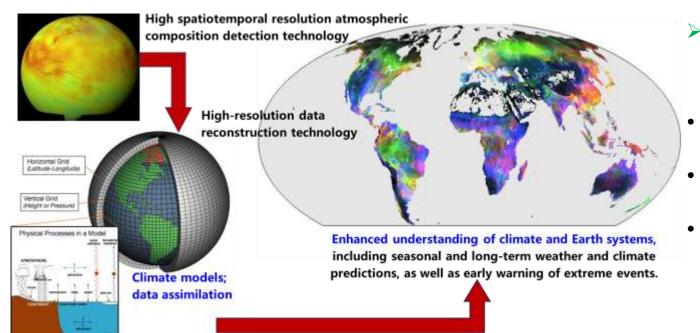

Achieve a spatial resolution of 0.5 km or higher, improving detection and increasing data volume by two orders of magnitude.

Satellite-based "Point Source" Greenhouse Gas Detection Technology / Medium Orbit

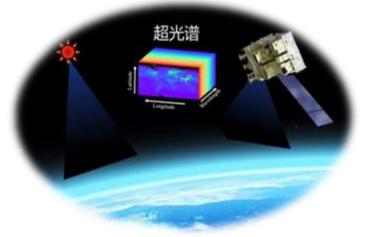
□ Tansat-2 Application Efficacy:

- High-resolution monitoring of CO₂, CH₄
 greenhouse gases and NO₂ pollutants in hotspot areas.
- Supports hotspot plume modeling for emission source identification and analysis.

Parameter	Specification		
Spectral Range	1565-1585 nm (CO₂), 1635-1655 nm (CH₄)		
Spectral Resolution	0.15 nm (CO₂), 0.15 nm (CH₄)		
SNR	CO2:400 @ 7.85×1019 photons/sec/m2/Sr/μm CH4:250 @ 7.85×1019 photons/sec/m2/Sr/μm		
Spatial Coverage	50 km (at apogee)		
Spatial Resolution	Regional: 1 km; Hotspots: 0.5 km		
Spectral Calibration Accuracy	<i>CO</i> 2:0.06 cm ⁻¹ ; <i>CH</i> 4:0.06 cm ⁻¹		
Radiometric Calibration Accuracy	Absolute: ≤4%; Relative: ≤2.5%		
AD Quantization	14-bit		
2D Pointing Mirror	Range: ±12° cross-track, ±4° along-track Accuracy: <2 arcsec		



Report Outline


- 1. Super-Resolution Spatial Heterodyne Spectroscopy
- 2. Satellite-Based Detection and Validation of Greenhouse Gas Sources and Sinks
- 3. Advances in Satellite Detection of Greenhouse Gas Point Sources
- 4. Key Achievements and Future Prospects

Related Achievements and Future Prospects

- Our research goes beyond payload-level innovations to encompass the full chain of carbon monitoring and climate system simulations:
- Enhanced characterization of atmospheric processes through high temporal and spatial resolution observations;
- Improved data product quality via high-precision calibration and data inversion technologies;
- Enhanced predictive capabilities for extreme events and longterm trends through the integration of climate models and data assimilation systems.
- > This comprehensive approach aims to provide critical support for regional carbon budgeting, urban carbon verification, and international carbon certification. To summarize:
- We have constructed an internationally advanced SHS interferometric space remote sensing system;
- Realized global inversion and ground verification for CO₂ and CH₄;
- Promoted point-source-level imaging observation technologies toward satellite deployment;
- Established an initial "observation—inversion—verification—integration" technological chain.
- ➤ Looking forward, we will continue advancing high-resolution payload development and deepening synergistic research with climate modeling systems to serve China's "dual carbon" goals and global climate governance.

Tel: 19966549855

Mail: wusc@aiofm.ac.cn