Towards informing sector characteristics of urban CO₂ emissions using co-emitted trace gases

Dien Wu¹, Junjie Liu²,¹, Paul O. Wennberg¹,³, Joshua L. Laughner², Paul I. Palmer²,⁴, Robert R. Nelson², John C. Lin⁵, Eric A. Kort⁶, Annmarie Eldering²

Objectives and research questions

Inform urban emission characteristics by studying "observed" emission ratios from space (new ingredients: *urban land cover *TROPOMI data *Lagrangian model with non-linear chem param)

- 1. How can TROPOMI XCO and tNO₂ observations be combined with OCO-3 SAMs?
 - !!! Met condition; AK; Biosphere; Chemical transformation; Emission patterns
- How does emission ratios (of CO:CO₂, NO_x:CO₂) vary across different parts of a city?

Toolbox upgrade

- (X-)STILT to interpret satellite obs (Wu et al., GMD, 2018)
- Localized background values and a SIF-based NEE representation (SMUrF, Wu et al., GMD, 2020)
 - to address spatial variability in biogenic contributions
- 120 m urban land cover data from WUDAPT
- A simplified parameterization of non-linear NO_x chem (STILT-NO_x Wu et al., in prep)
 - E.g., d[NO_x] due to chem. rely on [NO_x] from last time step
- A chemical inversion (Miyazaki et al., ACP, 2012) coupled with STILT-NO_x considering the non-linearity between ENO_x vs. tNO₂ (Wu et al., in prep)

Model experiments of tNO₂ for power plants and cities

- Modeled error component assessments (not shown)
 - Wind (~25% in m s⁻¹ \rightarrow 50% in ppb) > chem > inter-parcel mixing
- 4 US power plants (NO_x top emitters in 2020)
- 2 cities (80+ overpasses for Phoenix and 10+ for Baotou)

New Madrid PP

EDGARv5 GFS0.25°

ENO_x inversion (EnKF) with a Lagrangian model

Correct spatial distributions of ENO_x (co-located with ECO₂ in EDGARv5)

Posterior ENO_x are biased low by ~27% w.o. accounting for NO_x chem transformation (yellow bars)

- Optimized ENO_x with improved spatial distribution & magnitude
 - o real-time prior for ECO₂ OR for constraining ER of NO_x:CO₂

Combustion efficiency within a city

- City-scale ER_{CO}
- industry-centered cities (15+ ppb ppm⁻¹) >> megacities with mixed sector signals (< 10 ppb ppm⁻¹)
- Industry-related ER_{co} (red bars) via WUDAPT + XSTILT

 Shanghai (~18.8 ppb ppm⁻¹) >> Los Angeles (~7.8 ppb ppm⁻¹) (Wu et al., ACPD)

Summary

- STILT-NO_x agrees with TROPOMI for selected PPs using EPA ENO_x, except for cases in winter or with low tNO₂, where met & chem become complex (e.g., Intermountain PP in Utah).
- The overall modeled error for modeling tNO₂ is predominated by wind error.
- A difference in overpass times between TROPOMI and OCO-3 of > 3 hours \rightarrow significant shift in urban plumes.

Ongoing...

To improve the spatial distribution & magnitude of emission ratios between ENO_x and ECO₂ for informing sectorspecific signals from space

