©2022 California Institute of Technology. Government sponsorship acknowledged How does the ability to recover CO₂ flux anomalies scale with observational coverage?

Brendan Byrne^{*1}, Junjie Liu^{1,2}, Ray Nassar³, Meemong Lee¹, Kevin W. Bowman^{1,4}, John Worden¹, Nicholas Parazoo¹, Anthony Girmenia⁵, and Liyin He²

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA; ²Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA; ³Climate Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada; ⁴Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, CA, USA; ⁵Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada. *email: brendan.k.byrne@jpl.nasa.gov

- interannual variations in NEE from FLUXCOM.
- models giving the prior uncertainty.

$$RMS_{exp} = \left(\frac{1}{52} \sum_{week=1}^{52} \left(NEE_{exp} - NEE_{truth}\right)^2\right)^{1/2}$$

