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INTRODUCTION NORTHERN HIGH LATITUDE CH4 EMISSIONS

Methane (CH,) Is a second most powerful Monthly total CH. emissions over 45°N>, 2018 NHL CH . .
anthropogenic greenhouse gas after carbon 12 { === Prior 4 CMISsIons have
dioxide.  ererior InvSURF clear seaspnal cycle with
11 — Posterior INVWFMD maximum In summer and
Northern high latitude (NHL) is a source of CHy, e minimum in winter, driven by
and rapid changes in its climate due to global = biospheric fluxes.
warming may increase CH,; emissions T 9- . .
L 2 * Inversion using surface data
significantly. 2 o
0 shows the largest emissions,
In NHL, surface CH4 concentrations are mostly 7 iIncreased from the prior.
measured in rural areas — limited information 3 | . ad TROPOMI
on anthropogenic source signals. 5 ° nversions using
| | Ny data show reduction of
Satellite data has a good spatial coverage, emissions from prior, except
providing a great potential to help understand y z z z Y A for anthropogenic source In
NHL CH. budgets more in detall. Time [month] August.
TROPOMI data Is yet new to be used Iin the
atmospheric inversions. 10| |z Fostorion ImdgPER. || Fostorton magre.
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We will examine the potential of TROPOMI to

estimate spatial and temporal distribution of
NHL CH, fluxes.
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L Russia. _
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o e ) e m postori * Over Fennoscandia, islands in North Sea o
\__ Prior Emissions - * c:ﬁ;‘:’:ﬁ ons / . 0 ¢
Schematic figure of CTE-CH,4 oduie h L and Kara S.ea’ an.d n Kazakh.Stan’ g
TROPOMI inversions show higher | =
* Main tool emissions. / | 10
— CTE-CH.!" atmospheric inverse model . Note: we did not find significant e
— Fluxes are optimized at 1° x 1° x 3-day spatial differences between WFMD .. p ¥ ~20
resolution over NHL and OPER inversion for annual totals. . -
Differences in total CH. fluxes between inversions using WFMD retrievals (InvWFMD)
_ _ _ and surface data (InvSURF) (left) and WFMD vs OPER (right), averaged over 2018.
* Assimilated observations
— SURF: High precision surface (tropospheric)
CH,observations from ground-based stations
— WFMD*: Total column-averaged dry air mole
fraction of CH4 (XCH,) retrieval from Sentinel- » Tropospheric CH, is overestimated during early summer and winter, and underestimated
5P TROPOMI, WEM-DOAS v1.2 retrieval®®! during late summer to autumn when TROPOMI data is assimilated.

— OPER*: XCH, retrieval from TROPOMI, « XCH, anomalies compared to TCCON/GGG2020 data also show overestimation in the

operational v1.0 data®” | TROPOMI inversions during spring and early summer, and underestimation during
*Data are preprocessed by taking 1° x 1° x dally averages autumn.

*See also IWGGMS presentation by Lindqvist et al. _ _ o _
* In both cases, TROPOMI inversions show later summer minima than the observations

e Prior fluxes and surface inversion.
_ AnthropogeniC' EDGAR v6.0 inventory[lo] Sodankyléi tall tower, daily mean Sodankyla TCCON, monthly quantiles

— Biospheric (wetlands + soil sinks): LPX-Bern | ) o 5 moven <5 wwsun
v1.4 ecosystem model®

— Biomass burning: GFED v4.2 inventory®! oool| I |

— Termites & other microbial sources: Saunois A (l;] I
et al. (2020)" ool W] T AN i

— Geological sources: Etiope et al. (2019)!! '

— Ocean: Weber et al. (2019)"!
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