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INTRODUCTION
● Methane (CH4) is a second most powerful 

anthropogenic greenhouse gas after carbon 
dioxide.

● Northern high latitude (NHL) is a source of CH4, 
and rapid changes in its climate due to global 
warming may increase CH4 emissions 
significantly.

● In NHL, surface CH4 concentrations are mostly 
measured in rural areas – limited information 
on anthropogenic source signals.

● Satellite data has a good spatial coverage, 
providing a great potential to help understand 
NHL CH4 budgets more in detail.

● TROPOMI data is yet new to be used in the 
atmospheric inversions. 

● We will examine the potential of TROPOMI to 
estimate spatial and temporal distribution of 
NHL CH4 fluxes.

MODELLING

NORTHERN HIGH LATITUDE CH4 EMISSIONS

MODEL EVALUATION

Monthly total CH4 emissions over 45°N>, 2018
● NHL CH4 emissions have 

clear seasonal cycle with 
maximum in summer and 
minimum in winter, driven by 
biospheric fluxes.

● Inversion using surface data 
shows the largest emissions, 
increased from the prior.

● Inversions using TROPOMI 
data show reduction of 
emissions from prior, except 
for anthropogenic source in 
August.

Spatial differences between the inversions

● The low emissions found in TROPOMI 
inversions are mostly due to differences in 
central Europe, southern Canada and 
Russia. 

● Over Fennoscandia, islands in North Sea 
and Kara Sea, and in Kazakhstan, 
TROPOMI inversions show higher 
emissions. 

● Note: we did not find significant            
spatial differences between WFMD          
and OPER inversion for annual totals.

● Tropospheric CH4 is overestimated during early summer and winter, and underestimated 
during late summer to autumn when TROPOMI data is assimilated.

● XCH4 anomalies compared to TCCON/GGG2020 data also show overestimation in the 
TROPOMI inversions during spring and early summer, and underestimation during 
autumn. 

● In both cases, TROPOMI inversions show later summer minima than the observations 
and surface inversion.
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Differences in total CH4 fluxes between inversions using WFMD retrievals (InvWFMD) 
and surface data (InvSURF) (left) and WFMD vs OPER (right), averaged over 2018.
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● Main tool
– CTE-CH4

[7] atmospheric inverse model
– Fluxes are optimized at 1° × 1° × 3-day
   resolution over NHL

● Assimilated observations
– SURF: High precision surface (tropospheric)
   CH4 observations from ground-based stations
– WFMD*: Total column-averaged dry air mole 
   fraction of CH4 (XCH4) retrieval from Sentinel-
   5P TROPOMI, WFM-DOAS v1.2 retrieval[5,6]

– OPER*: XCH4 retrieval from TROPOMI, 
   operational v1.0 data[2]

*Data are preprocessed by taking 1° × 1° × daily averages
*See also IWGGMS presentation by Lindqvist et al.

● Prior fluxes
– Anthropogenic: EDGAR v6.0 inventory[10]

– Biospheric (wetlands + soil sinks): LPX-Bern 
   v1.4 ecosystem model[3]

– Biomass burning: GFED v4.2 inventory[8]

– Termites & other microbial sources: Saunois 
   et al. (2020)[4]

– Geological sources: Etiope et al. (2019)[1]

– Ocean: Weber et al. (2019)[9]
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