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107 - n ISRF squecze 10 02 ® Retrieved ISRF changes smoothly over the flight, starting from its nominal lab calibration and then gradually narrowing on one side of the detector (left figure).
' 1600 1620 1 540 . 1660 1680 17-000 ® Explanation: gradual defocusing of instrument caused by temperature gradients developing across optical bench (e.g. cooling from porthole glass)
Wavelength [nm] ® Since squeezing the lab ISRF does not fully account for the defocus-induced change, the cross track bias pattern evolves in time (middle panel, derived using small area approx.)
% . . . . L ® Nco2,NcHa retrieved using OE algorithm assuming non-scattering atmosphere ® An improved stripe estimate is created via a PLS regression of the SSA derived stripes against the ISRF squeeze factors, to improve the noise (squeeze factors are more precise)
MethaneAlIR s the airhorne precursor to MethaneSAT, an upcoming sateliite mission ® Detector QE rolloff above 1654nm limits the CH4 window (can be extended for MethaneSAT) and disentangle the stripe biases from other features (regularization artifacts, plumes etc).
commissioned to target methane emissions from the Oil and Gas (O&G) sector ® A priori profiles based on GEOS-5, with CO2/CH calculated using GGG2020
®Here we present retrieved total column averaged dry air methane mixing ratios (XCHg) ® A priori CHa/CO2 covariances tuned s.t. averaging kernels are ~1 near surface
retrieved using the CO- proxy method, the primary approach used for the satellite mission
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