¹ National CO₂ budgets (2015-2020) inferred from atmospheric CO₂ observations in support of the Global Stocktake

B. Byrne¹, D. F. Baker², S. Basu^{3,4}, M. Bertolacci⁵, K. W. Bowman^{1,6}, D. Carroll^{7,1}, A. Chatterjee¹, F. Chevallier⁸, P. Ciais⁸, N. Cressie^{5,1}, D. Crisp¹, S. Crowell⁹, F. Deng¹⁰, Z. Deng¹¹, N. M. Deutscher¹², M. K. Dubey¹³, S. Feng¹⁴, O. E. García¹⁵, D. W. T. Griffith¹², B. Herkommer¹⁶, L. Hu^{17,18}, A. R. Jacobson^{17,18}, R. Janardanan¹⁹, S. Jeong²⁰, M. S. Johnson²¹, D. B. A. Jones¹⁰, R. Kivi²², J. Liu^{1,23}, Z. Liu²⁴, S. Maksyutov¹⁹, J. B. Miller¹⁷, S. M. Miller²⁵, I. Morino¹⁹, J. Notholt²⁶, T. Oda^{27,28}, C. W. O'Dell², Y.-S. Oh²⁹, H. Ohyama¹⁹, P. K. Patra³⁰, H. Peiro⁹, C. Petri²⁶, S. Philip³¹, D. F. Pollard³², B. Poulter³, M. Remaud⁸, A. Schuh², M. K. Sha³³, K. Shiomi³⁴, K. Strong¹⁰, C. Sweeney¹⁷, Y. Té³⁵, H. Tian^{36,37}, V. A. Velazco^{12,38}, M. Vrekoussis^{39,26}, T. Warneke²⁶, J. R. Worden¹, D. Wunch¹⁰, Y. Yao³⁶, J. Yun²⁰, A. Zammit-Mangion⁵, and N. Zeng^{28,4}

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA; ²Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA; ³NASA Goddard Space Flight Center, Global Modeling and Assimilation Office, Greenbelt, MD, USA: ⁴Earth System Science Interdisciplinary Center, College Park, MD, USA: ⁵School of Mathematics and Applied Statistics, University of Wollongong, Australia; ⁶Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, CA, USA; ⁷Moss Landing Marine Laboratories, San José State University, Moss Landing, CA, USA; ⁸Laboratoire des Sciences du Climat et de L'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; ⁹University of Oklahoma, Norman, OK, USA; ¹⁰Department of Physics, University of Toronto, Toronto, Ontario, Canada; ¹¹Department of Earth System Science, Tsinghua University, Beijing, China; ¹²Centre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia; ¹³Earth System Observation, Los Alamos National Laboratory, NM, USA; ¹⁴Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA; ¹⁵Izaña Atmospheric Research Center (IARC), State Meteorological Agency of Spain (AEMet), Tenerife, Spain; ¹⁶Institut for Meteorology and Climate Research (IMK-ASF), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany; ¹⁷NOAA Global Monitoring Laboratory, Boulder, CO, USA; ¹⁸Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA; ¹⁹Satellite Observation Center, Earth System Division, National Institute for Environmental Studies, Tsukuba, Japan; ²⁰Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, Republic of Korea; ²¹NASA Ames Research Center, Moffett Field, CA, USA; ²²Space and Earth Observation Centre, Finnish Meteorological Institute, Sodankylä, Finland; ²³Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA; ²⁴Laboratory of Numerical Modeling for Atmospheric Sciences & Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China; ²⁵Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, United States of America; ²⁶Institute of Environmental Physics, University of Bremen, Bremen, Germany; ²⁷Earth from Space Institute, Universities Space Research Association, Columbia, MD, USA; ²⁸Department of Atmospheric and Oceanic Science, University of Maryland, USA; ²⁹Global Atmosphere Watch Team, Climate Research Department, National Institute of Meteorological Sciences, Republic of Korea; ³⁰Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, 236-0001, Japan; ³¹Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India; ³²National Institute of Water & Atmospheric Research Ltd (NIWA), Lauder, New Zealand; ³³Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium; ³⁴Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan; ³⁵Laboratoire d'Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères (LERMA-IPSL), Sorbonne Université, CNRS, Observatoire de Paris, PSL Université, 75005 Paris, France. ; ³⁶International Center for Climate and Global Change Research, College of Forestry, Wildlife and Environment, Auburn University, Auburn, AL 36849, USA; ³⁷Schiller Institute for Integrated Science and Society, and Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA 02467, USA; ³⁸Deutscher Wetterdienst (DWD), Hohenpeissenberg, Germany; ³⁹Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus

©2022 California Institute of Technology. Government sponsorship acknowledged

Goals

2

• Contribute to Global Stocktake (GST) Activities of the Paris Agreement

- GST to monitor Paris agreement implementation (e.g., emissions and removals of CO₂)
- GST to evaluate the collective progress made in achieving goals.
- Goal of the pilot dataset: Start a conversation.
 - Provide a pilot product of emissions and removals of CO₂
 - Illustrate the type of dataset we can provide.
 - Identify current limits of our approach and where research is needed.
 - Inform development of Monitoring and Verification System

• Long term goal:

 Provide countries with precise and accurate carbon budgets to track AFOLU (Agriculture, Forestry and Other Land Use) and unmanaged lands. Complement bottom-up datasets.

What is in our dataset?

3

- Quantities provided:
 - Net carbon exchange (net surface-atmosphere CO₂ flux)
 - Change in terrestrial carbon stocks (ΔC_{loss}).
 - Fossil fuel emissions and lateral C fluxes
 - And their uncertainties!
- Spatiotemporal scale:
 - Annual net fluxes over (2015-2020)
 - Country totals and as 1° x 1° degree.

¹ Methods - CO₂ flux inversions

v10 OCO-2 Model Intercomparison Project (MIP)

12 flux inversion models follow protocol with common data assimilated and fossil fuel emission inventory.
Each group free to choose prior NBE and ocean fluxes

Includes four MIP experiments that use different datasets:

- In situ (IS)
- Land nadir + land glint (LNLG)
- Land nadir + land glint + in situ (LNLGIS)
- Land nadir + land glint + ocean glint + in situ (LNLGOGIS)

Data coverage over 2015-2020

Methods - CO₂ flux inversions

Each modeling group estimates the Net Carbon Exchange (NCE) = Fossil Fuel + Net Biosphere Exchange

- Estimates provided on a 1º x 1º grid.
- We aggregate to country totals.
- Take model median as best estimate.
- Uncertainty is estimated as the standard deviation across model estimates.

NCE fluxes Aggregated to Country Totals

Net Carbon Exchange (NCE) for 2015–2020

- ⁶ Methods carbon stock loss (ΔC_{loss})
- Land carbon stock loss (ΔC_{loss}) estimated by combining top-down NCE with other carbon flux datasets.
- Calculate:

 $\Delta C_{loss} = NCE - FF - F_{crop\,trade} - F_{wood\,trade} - F_{rivers\,export}$

FF: CO₂ emissions from fossil fuels and cement production. (ODIAC w/ fractional uncertainties of Andres et al. (2014))

F_{crop trade}: lateral flux of carbon due to farming (Deng et al. 2022, assume std = 30%).

Fwood trade: lateral flux of carbon due to wood harvesting. (Deng et al. 2022, assume std = 30%).

F_{rivers export}: lateral flux of carbon due to rivers. (mean of Deng et al. 2022 and DLEM, Uncertainty = absolute difference)

Andres et al. (2014), Tellus B, <u>https://doi.org/10.3402/tellusb.v66.23616</u> Deng et al. (2022), ESSD, <u>https://doi.org/10.5194/essd-14-1639-2022</u>

Carbon fluxes for a given land region

Results – carbon stock loss (ΔC_{loss})

Example 2015–2020 Carbon Budgets for Four Countries

- Recall: $FF + F_{crop trade} + F_{wood trade} + F_{rivers export} + \Delta C_{loss} = NCE$
- Figure below shows how each component contributes to the NCE for a few specific countries, constrained by atmospheric CO₂ measurements.
- Increasing land carbon stocks decrease NCE relative to FF emissions for USA, but the opposite occurs for Indonesia.

Results – carbon stock loss (ΔC_{loss})

Example Carbon Budget Time Series for Four Countries

- Provide annual net fluxes for six years covering 2015 through 2020.
- Interannual variations in NCE are driven primarily ΔC_{loss} due to climate variability and trends in FF.
- Droughts reduce carbon uptake by the ecosystem. Variability associated with El Niño in the tropics is a strong driver of variability in ΔC_{loss}.

Lessons learned and path forward

Lots of Obs in pipeline

- Data-dense GeoCarb, CO2M and GOSAT-GW
- Regional expansions of in situ measurements.

Keys to future success:

- Increased ground-based and aircraft-based CO₂ measurements in poorly sampled regions will identify retrieval biases and improve confidence. Some regions show substantial differences between OCO-2 and in situ inversions that are not well understood. Need more independent CO₂ data in tropics.
- Uncertainty quantification should incorporate Bayesian uncertainties. Spread between flux inversion ensemble members largely captures systematic errors (model transport, inversion set-up) but not Bayesian component.
- **Refine inversions systems.** Including adding missing processes (e.g., atmospheric CO₂ production).

Acknowledgments

The research carried out at the Jet Propulsion Laboratory, California Institute of Technology, was under a contract with the National Aeronautics and Space Administration.

Where to access the data:

Byrne, B., Baker, D. F., Basu, S., Bertolacci, M., Bowman, K. W., Carroll, D., Chatterjee, A., Chevallier, F., Ciais, P., Cressie, N., Crisp, D., Crowell, S., Deng, F., Deng, Z., Deutscher, N. M., Dubey, M. K., Feng, S., Garc.a, O. E., Herkommer, B., Hu, L., Jacobson, A. R., Janardanan, R., Jeong, S., Johnson, M. S., Jones, D. B. A., Kivi, R., Liu, J., Liu, Z., Maksyutov, S., Miller, J. B., Miller, S. M., Morino, I., Notholt, J., Oda, T., O'Dell, C. W., Oh, Y.-S., Ohyama, H., Patra, P. K., Peiro, H., Petri, C., Philip, S., Pollard, D. F., Poulter, B., Remaud, M., Schuh, A., Sha, M. K., Shiomi, K., Strong, K., Sweeney, C., T., Y., Tian, H., Velazco, V. A., Vrekoussis, M., Warneke, T., Worden, J. R., Wunch, D., Yao, Y., Yun, J., Zammit-Mangion, A., and Zeng, N.: Pilot top-down CO2 Budget constrained by the v10 OCO-2 MIP Version 1, Committee on Earth Observing Satellites, https://doi.org/10.48588/npf6-sw92, Version 1.0, 2022.