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Goals

• Contribute to Global Stocktake (GST) Activities of the Paris Agreement 
• GST to monitor Paris agreement implementation (e.g., emissions and removals of CO2)
• GST to evaluate the collective progress made in achieving goals.

• Goal of the pilot dataset: Start a conversation.
• Provide a pilot product of emissions and removals of CO2

• Illustrate the type of dataset we can provide. 
• Identify current limits of our approach and where research is needed.
• Inform development of Monitoring and Verification System

• Long term goal: 
• Provide countries with precise and accurate carbon budgets to track AFOLU (Agriculture, 

Forestry and Other Land Use) and unmanaged lands. Complement bottom-up datasets.
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3 What is in our dataset?

• Quantities provided:
• Net carbon exchange (net surface-atmosphere CO2 flux)
• Change in terrestrial carbon stocks (ΔCloss).
• Fossil fuel emissions and lateral C fluxes
• And their uncertainties!

• Spatiotemporal scale:
• Annual net fluxes over (2015-2020)
• Country totals and as 1o x 1o degree.
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v10 OCO-2 Model Intercomparison Project (MIP)
• 12 flux inversion models follow protocol with common data assimilated and fossil fuel emission inventory. 

Each group free to choose prior NBE and ocean fluxes

Includes four MIP experiments that use different datasets:
• In situ (IS)
• Land nadir + land glint (LNLG)
• Land nadir + land glint + in situ (LNLGIS) 
• Land nadir + land glint + ocean glint + in situ (LNLGOGIS)

In situ CO2 measurements OCO-2 land XCO2 retrievals OCO-2 ocean XCO2 retrievals
Data coverage over 2015-2020

Methods - CO2 flux inversions



Methods - CO2 flux inversions

NCE fluxes Aggregated 
to Country Totals

Net Carbon Exchange (NCE) for 2015–2020

Each modeling group estimates the Net Carbon Exchange (NCE) = Fossil Fuel + Net Biosphere Exchange

• Estimates provided on a 1º x 1º grid.

• We aggregate to country totals.

• Take model median as best estimate.

• Uncertainty is estimated as the 
standard deviation across model 
estimates.



6

FF: CO2 emissions from fossil fuels and cement production.
(ODIAC w/ fractional uncertainties of Andres et al. (2014))

Fcrop trade: lateral flux of carbon due to farming 
(Deng et al. 2022, assume std = 30%).

Fwood trade: lateral flux of carbon due to wood harvesting. 
(Deng et al. 2022, assume std = 30%).

Frivers export: lateral flux of carbon due to rivers. 
(mean of Deng et al. 2022 and DLEM, Uncertainty = absolute difference)

Andres et al. (2014), Tellus B, https://doi.org/10.3402/tellusb.v66.23616

Deng et al. (2022), ESSD, https://doi.org/10.5194/essd-14-1639-2022

Carbon fluxes for a given land region

• Land carbon stock loss (ΔCloss) estimated by combining top-down NCE with other carbon flux datasets.

• Calculate:

ΔCloss = NCE − FF − Fcrop trade − Fwood trade − Frivers export

Methods – carbon stock loss (ΔCloss)

https://doi.org/10.3402/tellusb.v66.23616
https://doi.org/10.5194/essd-14-1639-2022


Frivers export Fcrop trade+ Fwood trade

Example 2015–2020 Carbon Budgets for Four Countries

• Recall: 
• Figure below shows how each component contributes to the NCE for a few specific countries, constrained by 

atmospheric CO2 measurements.
• Increasing land carbon stocks decrease NCE relative to FF emissions for USA, but the opposite occurs for 

Indonesia.

FF + Fcrop trade + Fwood trade + Frivers export+ ΔCloss = NCE

Results – carbon stock loss (ΔCloss)



Example Carbon Budget Time 
Series for Four Countries

● Provide annual net fluxes for six 
years covering 2015 through 2020.

● Interannual variations in NCE are 
driven primarily ΔCloss due to 
climate variability and trends in FF.

● Droughts reduce carbon uptake by 
the ecosystem. Variability 
associated with El Niño in the 
tropics is a strong driver of 
variability in ΔCloss.

NCE

FF and Lateral 
Fluxes

Carbon Stock 
Loss (DCloss)

Results – carbon stock loss (ΔCloss)



Lots of Obs in pipeline
• Data-dense GeoCarb, CO2M and GOSAT-GW
• Regional expansions of in situ measurements.

Keys to future success:

• Increased ground-based and aircraft-based CO2 measurements in poorly sampled regions will identify 
retrieval biases and improve confidence. Some regions show substantial differences between OCO-2 and in 
situ inversions that are not well understood. Need more independent CO2 data in tropics.

• Uncertainty quantification should incorporate Bayesian uncertainties. Spread between flux inversion 
ensemble members largely captures systematic errors (model transport, inversion set-up) but not Bayesian 
component.

• Refine inversions systems. Including adding missing processes (e.g., atmospheric CO2 production).

Lessons learned and path forward
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Where to access the data:10
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