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Motivation and overview

. The seasonal cycle of natural CO; fluxes is changing

- This Is driven by changes to other processes such as surface
temperatures

. For example, Park et al. (2019) find that the timing of peak
photosynthesis In nhorthern regions is coming earlier

. We extended the WOMBATVI flux-inversion framework (Zammit-
Mangion et al., 2022) to address this problem

. The new system Is called WOMBATV2

Note: WOMBAT stands for WOIllongong Methodology for Bayesian Assimilation of Trace-gases



WOMBAT Vv2 flux model

- We model fluxes using the decomposition

flux = intercept + trend + seasonality + residual/IAV

. Mathematmay/ \

X(s, 1) = fy(s) + B (s)t+ Z (Br1(S) + P 4(8)D)cos(27kt/365. 25)

k=1

Flux at location s S oo
and time ¢ + Z (B4 1(S) + Bs 1 (s)1)sin(27kt/365. 25) + e(s t)

k=1

['s and € are unknown and
estimated as part of the inversion
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These fluxes are from SiB4, not posterior estimates. Fluxes shown are monthly, the underlying
Inventory is hourly. Climatology uses K = 3 harmonics. Rows have different scales.



Time-varying phase and amplitude

. The seasonal component of flux can be written as

k=] Seasonal
cycle
amplitude

Seasonal
cycle phase

where

e pis tan-t [ LS PsAS)
A ﬁz,k(S) + ﬁg,k(S)t

. This means that we estimate a time-varying phase and amplitude




Detalls

Flux inversion

Fossil ODIAC + TIMES

SyStem detalIS: Biofuels Yevich and Logan (2003)
. Covers the 6-year period from January 2015 to | Blosphere SB4
December 2020 . Ocean Landschutzer et al. (2016)
E Fires GFED4

. Uses a fully-Bayesian hierarchical framework with :
UﬂCertaiﬂty quaﬂtification Fossil fuel, fire, and biofuel

fluxes assumed known

. Scaling factors for 12 land and 11 ocean regions (based g
on the TRANSCOM regions) Transport

Model GEOS-Chem 12.3.2

Observations: T
Grid 2x2.5 (lat x lon)
. Orbiting Cal’bOﬂ ObservatOry—Z (OCO—Z) retrievals Of M ...... t .............................. MERRAZ .......................................................................
column-average CO; concentration (land retrievals B
only)

. |In situ and flask measurements of CO> concentrations



Estimated phase shift in nhet ecosystem exchange (NEE)
seasonal cycle from January 2015 to December 2020
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Northeast Eurasia: fluxes

Posterior median shifting earlier in the year Posterior IQR

(low uncertainty) v
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Tropical South
America: high
uncertainty
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Note: values are for k =1 component (period of 12 months). Colour
scales are truncated to maximum values. IQR = interquartile range



Estimated amplitude change of net ecosystem exchange (NEE)
seasonal cycle from January 2015 to December 2020

. . Amplitude .
Posterior median Increasing almost Posterior IQR

everywhere

Tropical South

America: high
uncertainty, again
AAnee 1(8) [kgCO./m®/year] Posterior IQR of AAxee 1(s) [kgCO./m*/year]
<-0.25 -0.15 -0.05 0.05 0.15 >0.25 0.01 0.02 0.03 0.04 >0.05

Note: values are for k =1 component (period of 12 months). Colour
scales are truncated to maximum values. IQR = interquartile range



Summary

. We bullt a flux-inversion system that can estimate changes to
seasonal cycles of natural fluxes

. Demonstrates the feasibility of doing this using data on
atmospheric CO; concentrations

. Results demonstrate global changes in CO» flux natural cycles,
INncluding increasing amplitude of cycle almost everywhere
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