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Last 5 years has seen huge advancements 
in ability to detect and quantify methane 
“super-emitters” at high spatial resolution 
from airborne and satellite platforms.

A task for now and the future: impact of 
super-emitters on regional and global 
emission budgets.

Need high-frequency observations with 
broad spatial coverage (observing 
completeness).

First satellite super-emitter observation from 
space: Aliso Canyon blowout, EO-1, 2015

Thompson et al., 2016

Jacob et al., 2022
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We flew AVIRIS-NG and Global Airborne Observatory (GAO) – similar 
instrument design - over several basins across U.S fr.om 2019-2021 Sensitive to point sources 

above 10 kg/h

Each basin mapped at least 4 
times to assess intermittency 

of emissions

Mix of emission sources: oil, 
gas, coal, waste, manure

San Joaquin 
Valley

Summer 2020, Fall 2020, 
Fall 2021

Permian Fall 2019, Summer 2020, 
Summer 2021, Fall 2021

Uinta Summer 2020

Denver-Julesburg Summer 2021, Fall 2021

Pennsylvania 
Marcellus Spring 2021



We consistently found power-law emission distributions across basins and sectors.

Corroborates previous findings 
from independent campaigns:

Even among super-emitter 
populations, disproportionate 

contribution from largest 
sources.

Emissions calculated following Integrated 
Methane Enhancement (IME) approach and 

HRRR 10-m winds (following Duren et al., 2019)



We perform simultaneous TROPOMI regional CH4 flux inversions over flight 
domains to contextualize super-emitters against regional CH4 totals.

PA Marcellus flux inversion

Points: airborne 
detections

CH4 flux (kg/h)

Available prior inventories out-of-date or lack 
spatial/temporal resolution:

Instead, opt for Tikhonov Regularization approach 
to estimate CH4 fluxes from TROPOMI XCH4
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Inversions validated with simultaneous aircraft 
mass-balance flights (Denver, Permian) and tower-

based inversions (Permian, Unita)



Comparison between TROPOMI flux inversions and aircraft results show 
that super-emitters make up 13-60% of budget across basins.

These super-emitters generally only make up 1% of infrastructure in a basin.



In some basins, we have statistics going back several months to 
years. This allows us to look at the timescales that emissions persist.

Two modes that contribute equally 
to total budget:

(1) “Short-lived” – we see a source 
1-2 times, never again

(2) “Long-lived” – sources pop up 
multiple times across years 

When thinking about mitigation 
potential – need a sampling 

strategy that captures temporal 
intermittency of emitters.
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Conclusions

• GAO and AVIRIS-NG flew multiple basins across the U.S. during 2019-2021, 
covering oil&gas, coal, waste, and livestock sectors.

• Through comparison with TROPOMI flux inversions, we find super-emitters generally 
make up 20-60% of emissions in a basin but are a small fraction of infrastructure. 
Potential for mitigation. 

• Revisit to these basins after months to years shows that sources generally pertain to 
two equally contributing categories: long-lived and short-lived. Need for sampling 
strategies that can cover both types of events.

• Replicating these types of analyses from space will require platforms or fusion efforts 
that can achieve sufficient detection limits, spatial completeness, and temporal 
revisit.


