Monitoring facility-scale CO₂ emission changes from space

Ray Nassar1^{*}, Omid Moeini¹, Jon-Paul Mastrogiacomo², Christopher W. O'Dell³, Robert R. Nelson⁴, Matthäus Kiel⁴, Greg Osterman⁴

> ¹Environment & Climate Change Canada, Toronto, Ontario, Canada ²University of Toronto, Toronto, Ontario, Canada ³Colorado State University, Fort Collins, Colorado, USA ⁴Jet Propulsion Laboratory, Pasadena, California, USA

> > *<u>ray.nassar@ec.gc.ca</u>

IWGGMS - 2022 July 12-14

AGU PUBLICATIONS

Geophysical Research Letters

RESEARCH LETTER

10.1002/2017GL074702

Key Points:

- The combustion of coal for electricity generation accounts for more than 40% of global anthropogenic CO₂ emissions
- Orbiting Carbon Observatory 2 observations can be used to quantify CO₂ emissions from individual coal power plants, in selected cases
- This work suggests that a future constellation of CO₂ imaging satellites could monitor fossil fuel power plant CO₂ emissions to support climate policy

Supporting Information:

Supporting Information S1

Correspondence to: R. Nassar, ray.nassar@canada.ca

Quantifying CO₂ Emissions From Individual Power Plants From Space

Ray Nassar¹ (10), Timothy G. Hill² (10), Chris A. McLinden³ (10), Debra Wunch⁴ (10), Dylan B. A. Jones⁴ (10), and David Crisp⁵ (10)

¹Climate Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada, ²Department of Physics, University of Waterloo, Waterloo, Ontario, Canada, ³Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada, ⁴Department of Physics, University of Toronto, Toronto, Ontario, Canada, ⁵Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

Abstract In order to bette emissions are needed at all sp

Orbiting Carbon Observatory show that in some cases, CO_2 individual middle- to large-siz estimates for U.S. power plan of the approach to internatior of future CO_2 imaging satellite plants to support the implem

Remote Sensing of Environment 264 (2021) 112579

Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Advances in quantifying power plant CO₂ emissions with OCO-2

Ray Nassar^{a,*}, Jon-Paul Mastrogiacomo^b, William Bateman-Hemphill^b, Callum McCracken^b, Cameron G. MacDonald^{b,1}, Tim Hill^b, Christopher W. O'Dell^c, Matthäus Kiel^d, David Crisp^d

^a Climate Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada

^b University of Waterloo, Waterloo, Ontario, Canada

^c Colorado State University, Fort Collins, CO, USA

^d Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA, USA

2017 and 2021 papers demonstrated method with OCO-2

Overview of Method and Equations

- Identify background and enhancement in OCO-2 XCO₂
- Fit observed OCO-2 XCO₂ enhancements to 2D Gaussian plume model
- Optimize wind direction by iterating fit with small adjustments to wind direction to maximize correlation coefficient (R)
- Determine emission estimates, varying some parameters yielding an ensemble of estimates for quantifying uncertainties

$$V(x,y) = \frac{F}{\sqrt{2\pi}\sigma_y(x)u} e^{-\frac{1}{2}\left(\frac{y}{\sigma_y(x)}\right)^2}$$

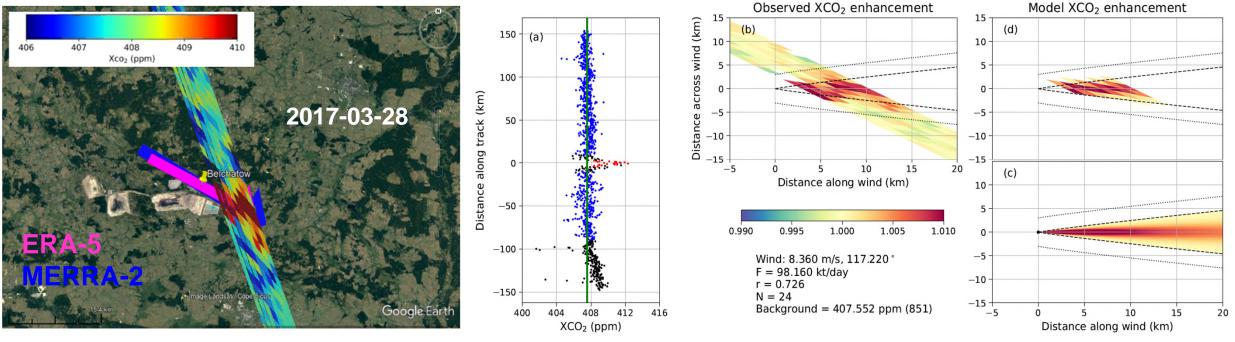
. 2

$$\sigma_{y}(x) = a \cdot \left(\frac{x}{x_{o}}\right)^{0.894}$$

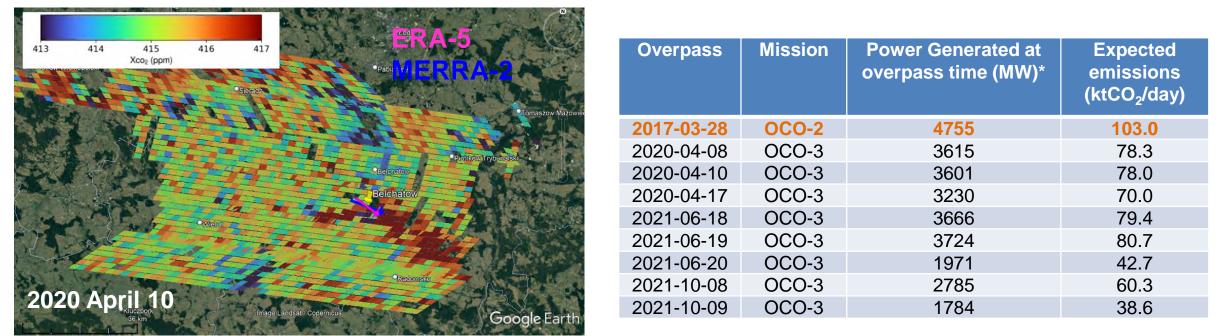
V is the CO₂ vertical column (g/m²) downwind of the point source *x* is along wind distance (m) ($x_o = 1000$ m is a characteristic length) *y* is across wind distance (m) *F* is emission rate (g/s) *u* is the wind speed (m/s) σ_y is the standard deviation in the wide direction (measure of the plume width) (m) *a* is the atmospheric stability parameter

$$\varepsilon = \sqrt{\varepsilon_w^2 + \varepsilon_b^2 + \varepsilon_e^2 + \varepsilon_r^2}$$

Wind Background Enhancement Rise

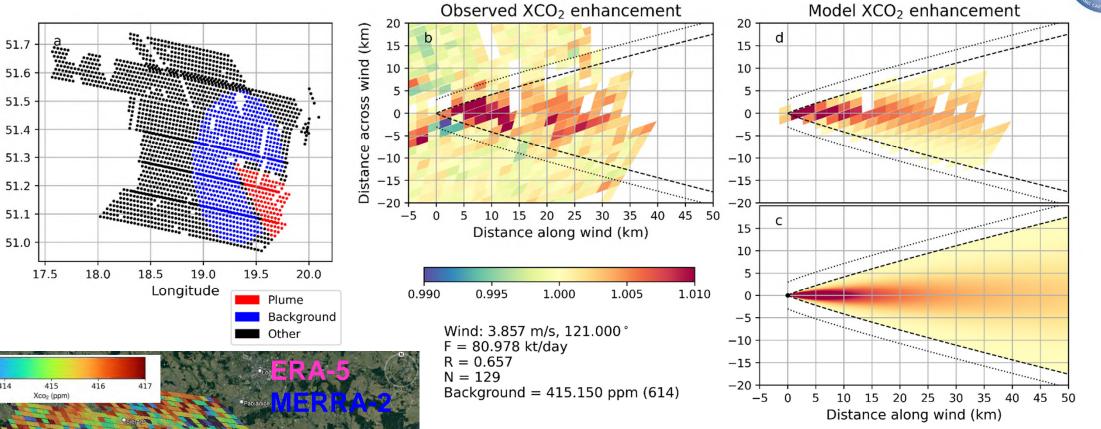

Bełchatów Power Plant

- Largest fossil fuel power plant in Europe
- 5th largest in the world (5102 MW)
- Reported emissions for 2017 are 37.6 MtCO₂, average of 103.0 ktCO₂/day

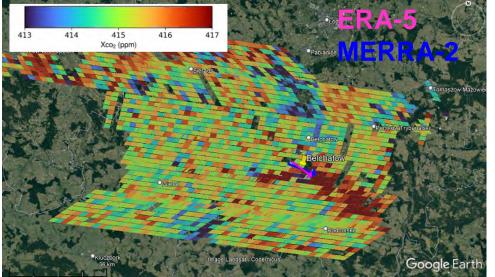


- Wind rotation of -2.0° applied, gives very good model-data correlation (R = 0.726)
- Estimate 98.2 ± 12.1 ktCO₂/day with ±9.6 ktCO₂/day due to wind speed uncertainty

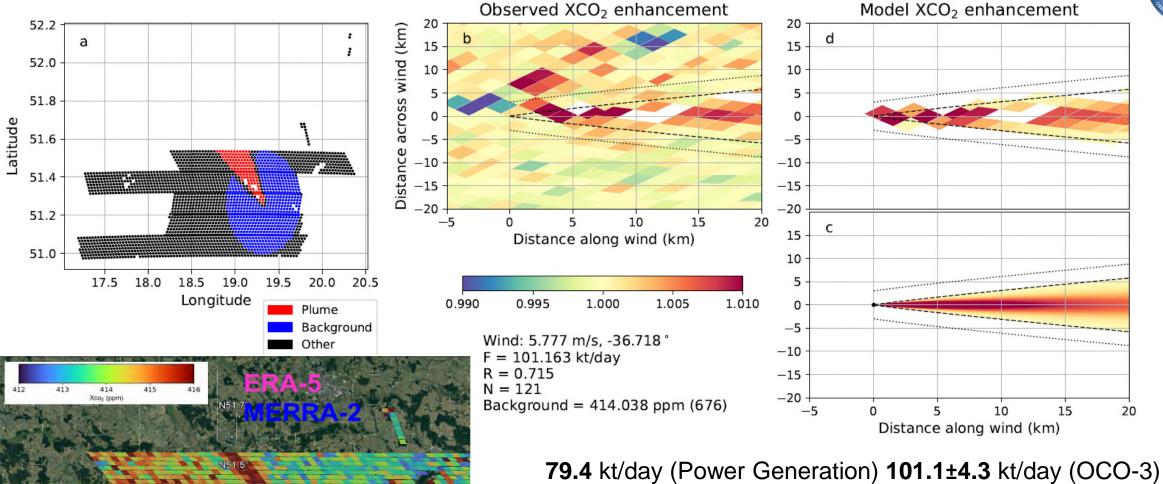
Quantifying CO₂ Emission Changes at Bełchatów



- Multiple OCO-3 v10 Snapshot Area Maps (SAMs) of Belchatów power plant in 2020-2021 now available
- We can compare our emissions estimates derived from OCO-2/OCO-3 to those expected based on hourly power generation available from the European Network of Transmission System Operators for Electricity Transparency Framework



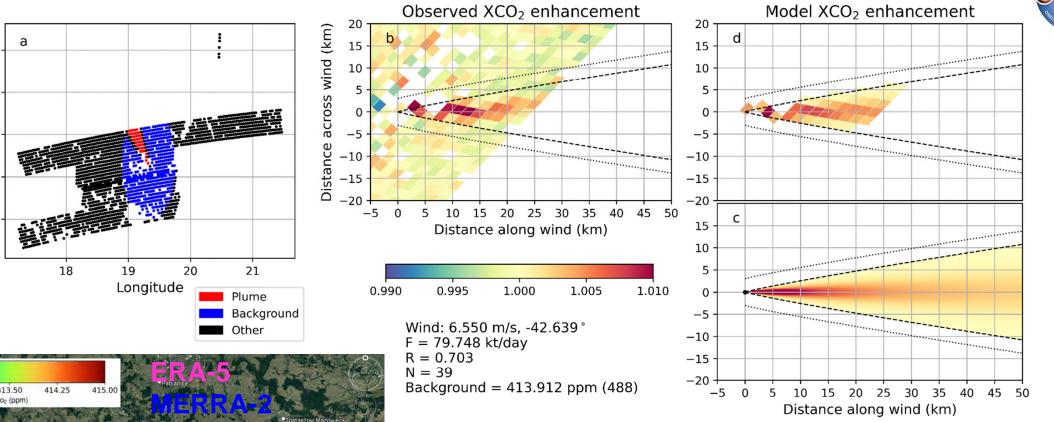
OCO-3 v10 Bełchatów 2020-04-10


OCO-3 background is average of footprints taken within a specified radius from the source, excluding a sector corresponding to the plume and a narrow buffer zone.

78.0 kt/day (Power Generation) **81.0±8.3** kt/day (OCO-3) with wind uncertainty of 8.2 kt/day

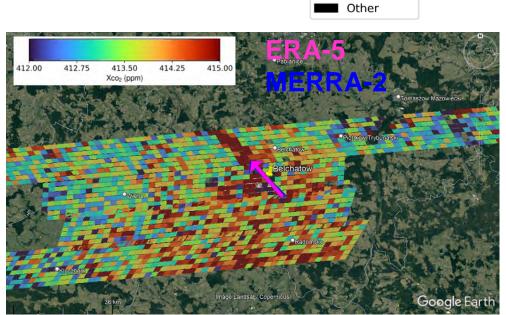
_atitude

OCO-3 v10 Bełchatów 2021-06-18



E18.1 E18.3 E18.5 E18.7 E18.9 E19.1 E19.3 E19.5

with wind uncertainty 4.0 kt/day


Strong symmetric plume, moderate wind speed, good correlation. Asymmetric background may be source of discrepancy.

OCO-3 v10 Bełchatów 2021-06-19

80.7 kt/day (Power Generation) **79.8±3.0** kt/day (OCO-3). Background uncertainty of 2.7 kt/day is largest source.

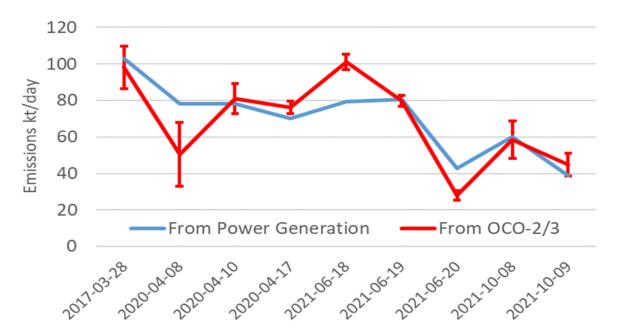
Moderate wind speed, reasonable background, symmetric plume, good correlation and excellent agreement.

51.8

51.6

51.4

51.2


51.0

Latitude

Quantifying CO₂ Emission Changes at Bełchatów

Overpass	Mission	Power Generated at overpass time (MW)*	Expected emissions (ktCO ₂ /day)	OCO mission emission estimate (ktCO ₂ /day)	Expected & observed % change	Correlation	Footprints in plume (background)
2017-03-28	OCO-2	4755	103.0	98.2 ± 11.7	Baseline	0.726	24 (851)
2020-04-08	OCO-3	3615	78.3	50.5 ± 17.6	-24 / -49 %	0.636	240 (466)
2020-04-10	OCO-3	3601	78.0	81.0 ± 8.3	-24 / -18 %	0.657	129 (614)
2020-04-17	OCO-3	3230	70.0	76.3 ± 3.4	-32 / -22 %	0.332	91 (476)
2021-06-18	OCO-3	3666	79.4	101.1 ± 4.3	-23 / +3 %	0.715	121 (676)
2021-06-19	OCO-3	3724	80.7	79.8 ± 3.0	-22 / -19 %	0.703	39 (488)
2021-06-20	OCO-3	1971	42.7	28.0 ± 2.6	-59 / -71 %	0.544	81 (549)
2021-10-08	OCO-3	2785	60.3	58.5 ± 10.3	-41 / -40 %	0.471	115 (529)
2021-10-09	OCO-3	1784	38.6	44.7 ± 6.3	-62 / -54 %	0.280	141 (426)

*Hourly power generation at facility unit level from entsoe

Estimated CO₂ emissions are consistent with trend expected from reported power generation for ~7 of 9 points in timeseries, demonstrating the ability to quantify short-term emission changes to support policy.

- NASA's OCO-2 and OCO-3 have enabled quantification of CO₂ emissions from large and medium-sized power plants in select cases, but narrow swath and limited coverage are key limitations.
- Despite these limitations, we have demonstrated the ability to quantify emission reductions of a few percent from a large power plant
- Our findings suggest a role for space-based monitoring of facility-scale CO₂ emission reductions in support of the Paris Agreement and capabilities for this application will continue to improve as the constellation of satellites expands with CO2M, GOSAT-GW, GeoCarb and other imaging missions