

Analysis of Biases in XCO₂ measured by a pulsed multiwavelength airborne lidar during the 2017 ASCENDS/ABoVE Campaign

James B. Abshire, Jianping Mao, Haris Riris, Randy Kawa, Xiaoli Sun, Joshua Digangi

Introduction

- Pulsed IPDA lidar measurements of XCO₂ over long flight lines
- Lidar measurements of XCO₂ in Arctic, for first time
- Measurements made in diverse set of atmospheric & surface conditions
- Analysis of XCO₂ measurements showed:
 - Gradients in XCO₂: North-south, East-west & Locally
 - Local features in XCO₂, including one caused by wildfires
 - Vertically resolved aerosol scattering profiles

Spiral-down maneuvers allowed assessment of measurement "bias"

Campaign Ground tracks

CO₂ Sounder Lidar & other campaign instruments

Other science instruments on 2017 campaign

- Picarro (Randy Kawa) in situ CO2 and WV
- **AVOCET** (Josh DiGangi/LaRC) in situ CO2, CH4, CO
- DLH (Glenn Diskin/LaRC) in situ WV
- ACES (Mike Obland/LaRC) IPDA lidar to measure XCO2 using line near 1571 nm. Uses modulated CW lasers at 3 wavelengths

- Direct Detection IPDA lidar emits 10 kHz train of laser pulses
- Measures column CO₂ absorption using 1572.33 nm line.
- Laser pulses stepped in 30 wavelengths across line; ~300 scans/sec
- Time resolved receiver, HgCdTe APD detector
- Measures backscatter profile, range & samples of CO₂ line shape
- XCO₂ Retrievals (Sun et al, AMT 2021):
 - Line shape samples, range to scattering surface
 - Atmospheric state (DC-8 measurements or GEOS-5)
 - CO₂ Spectroscopy: HITRAN 2008, Lamouroux 2010 line mixing

2017 ASCENDS Airborne Campaign 37 Spiral locations selected for comparison of Lidar XCO2 vs in situ XCO2

Bias = Lidar – in situ in upper 2 km of each spiral

For each spiral, used 3 different approaches to correct for lidar receiver's spectral non-uniformity:

- Linear
- Nonlinear (quadratic)
- Shifted BPF

Notation for each spiral:

- Bold lowest bias
- Red: highest bias

Hight MonthDay	Spiral		2022 Spiral Analysis (Lidar-Avocet)			- 3
		Spiral #	Ave	aftap 21-kn	alts.	
			Ave Alt Linear	Ave Alt Nonlinear	Ave alt BPF shifted 30 pm	
720	Cas 1	1				. K
720	Cas2	2				
720	Edw	3	0.89	0.19	0.55	
		4				
721	Cas1	5	0.85	0.19	0.35	
721	Part1	6	1.01	-0.08	0.54	
721	cas2	7				
721	Part2	8				
721	Cas3	9				
		10				
727	Grandisland	11				
727	Minott	12				
727	LoonRiv	13				
		14				
731	inun/i.	15	0.83	0.01	0.12	
731	NormW	16	1.83	0.38	1.42	
731	FortSimp	17	0.52	0.07	0.05	
731	Yellowk	18	1.25	0.33	0.82	
731	Inunisk2	19	0.26	-0.54	-0.18	
731	Deadhor	20	0.48	-0.26	0.01	
		21				
802	Inuviki.	22	0.85	0.05	0.12	
802	Kugluktuk	23				
802	LambridgeB	24				
802	lnuvák2	5				
DOC	0-4-1	ж	0.00	0.10	0.70	
805	Bether	- 21	0.68	-0.35	0.20	
BOE	Nome EAMana	76	0.45	-0.85	0.07	
805	SC Marys	29	-0.22	-115	0.76	
805	Fairback:	30	0.70	-4.21	-0.24	
603	ran tanas	- 11	020	-0.75	-0.24	
806	Rettles		1.60	0.79	1 13	
806	Kotzehe	34				
806	Unabableet		0.85	-0.73	0.44	
806	McGrath	36			0.00	
806	FortYuk	37	0.33	-0.51	-0.11	
		38				
808	Northway	39	1.79	0.37	0.84	
808	WhiteHorse	40	1.30	0.49	0.84	
808	Mosestake	41	0.07	-0.88	-0.36	
808	Wildhorse	42	1.37	0.12	0.88	
808	Winnemucca	43	0.90	-0.28	0.35	
808	Edwards	44	0.30	-0.28	-0.10	
			Man diff	Man	Mam diff	
			for	for	for	
For campaign	Count		campaien	campairm	campaign	
# of spirals	37		0.78	-0.15	0.31	
			Std Dev of	Std Dev of	Std Dev of	
			Means	Means	Means	

Sample Airborne Measurements made in 2017 July 20 Spiral over Edwards CA: CO₂ & XCO₂ Retrievals

Picarro (in situ) CO2 measurements at aircraft made during spiral

<- Side view

Top view->

In situ at Aircraft

412

7/12/2022

IWGGMS-18 - NASA Goddard CO2 Sounder Lidar

Lidar XCO₂ vs *in situ* XCO₂ in Spirals (for Aug 5, 2017 flight in Alaska)

7/12/2022

XCO2 ppm

XCO2 ppm

IWGGMS-18 - NASA Goddard CO2 Sounder Lidar

XCO2 ppm

XCO2 ppm

Lidar receiver has spectral bandpass filter to reject sunlight

- An ideal filter has exactly same transmission at all laser wavelengths
- Ours used in 2017 had a few % variability
- This slightly distorted the lidar measured CO₂ line shape & caused bias in retrieval

Our present Line fitting Retrieval allows either:

- 1. Correcting for linear slope
- 2. Correcting for quadratic shape
- 3. Shift filter in wavelength (done manually) & use linear correction

Improved approaches are practical for the future

Gradand Lidar XCO₂ vs in situ XCO₂ vs Spiral # in Campaign

Bias Statistics for Campaign (ppm) Linear Nonlinear Shifted BPF

Mean diff	Mean diff	Mean diff	
for	for	for	
campaign	campaign	campaign	
0.78	-0.15	0.31	
Std Dev of	Std Dev of	Std Dev of	
Means	Means	Means	
0.50	0.44	0.50	

- The + & changes in bias (ie bias excursions) are well correlated for different line-fitting wavelength corrections
 => Deviations driven by factors not related to wavelength correction approach
- Linear fit correction has largest + excursions
- Distributions appear roughly gaussian

Summary

- The ASCENDS/ABoVE airborne campaign had 8 flights in July and August 2017.
 - 47 spiral-down maneuvers: California, NWT Canada, Arctic Ocean, Alaska, transit flights
- Performed analysis of "Bias" $[XCO_2 (lidar) (XCO_2 (in situ)]$ in 37 of these spirals.
- "Bias" values & statistics depended on correction for non-uniform spectral transmission in lidar receiver.
 - Using a quadratic line fit correction: lowest average bias for campaign.
 - Mean value of bias for campaign: -0.15 ppm, std. dev for campaign: 0.44 ppm
- Approaches to further reduce bias in updates to CO₂ Sounder lidar & in space version:
 - Better synchronize & check time stamps on in-situ & aircraft data sets
 - Any time offsets in 3 different data streams used cause data shifts -> "Bias"
 - Change receiver's optical bandpass filter to one with flatter top (less wavelength variability)
 - Sample outgoing laser energy through receiver's optical filter (processing normalizes variability)

Questions or comments: – Please email: james.b.abshire@nasa.gov