Comparison of IASI CH₄ retrievals based on ASIMUT and RTTOV

Charles Robert, Sophie Vandenbussche, Justin Erwin, Jonas Debosscher, Ann Carine Vandaele, and Martine De Mazière

• IASI CH₄ ASIMUT & RTTOV • IWGGMS-18 • 12.07.2021 •

Overview

- Methane in the thermal infrared with IASI
- An overview of ASIMUT & RTTOV
- Comparison of RTM simulations
- Comparing ASIMUT and RTTOV retrievals
 - Temperature retrieval
 - CH₄ Line-Mixing
 - RTM
- Very Preliminary comparison with in-situ data

Retrieval of methane in the TIR

Retrieval of methane in the TIR

RTM

				ASIMUT	RTTOV
RTM		RTM		Full line-by-line (LBL) optical depth (OD) can be computed « in stream »	Coefficient files pre-computed using LBLRTM v12.2
		Spectroscopic data base		HITRAN 2020 but large flexibility	LBLRTMv12.2/AER 3.2
		H ₂ O Continuum		MTCKD 3.4	MTCKD 2.5.2
		Fixed species considered		Flexible	O2, NO, NO2, HNO3, OCS, N2, CCL4, CFC-11, CFC-12, CFC-14, NH3, OH, HF, HCl, HBr, HI, CIO, H2CO, HOCl, HCN, CH3Cl, H2O2, C2H2, C2H6
		LUT		Can be generated for LBL species and for cross-section species, but not for continuum User specified (P,T) grid	Coefficient files for visible and infrared. ->Temperature, H2O and O3 profiles sampled from the ECMWF reanalysis fields (Chevallier et al., 2006), -> For variable trace gas profiles: Copernicus Atmosphere Model reanalysis fields were used
		Spectral sampling step		Defined by the user	Variable with RTM layering (LBLRTM strategy)
		Layering		Defined by the user	Based on 101 levels, but can be provided by the user
		CH4 Line-Mixing		Yes (based on Tran et al., 2006)	Based on AER line-coupling (different approach)
Inversion		Retrieval Method		OEM	OEM
		Retrieved parameters	Surface	T _{surf} e(s) and albedo can be fitted	T _{surf}
			T profile	Presently fixed, upcoming retrieved T profile	Can be retrieved
			Species	Flexible	T, H ₂ O, O ₃ , CO ₂ , CH ₄ , N ₂ O, CO, SO ₂
			species	Flexible	H ₂ O, N ₂ O, CO, CH ₄

Radiative Transfer and Inverse Models | ASIMUT & RTTOV

Comparison of RTMs for atmospheres (AFGL)

Comparison Study Introduction

Impact of RTM impact of state vector \rightarrow T retrieval impact of regularization impact of spectroscopy

→ ASIMUT, RTTOV

→ Tikhonovvs pure OEM

 \rightarrow CH₄ line-mixing

Data

- ~700 Clear-sky IASI Observations (METOP-A) near Hawaii (January 2016)
- PCC-based radiances (lower noise) ٠

Retrieval set-up

- Temperature and H₂O from EUMETSAT (IASI L2) ۲
- Extended spectral domain with useful information on CH₄, surface, perturbing species, avoiding too strong contribution of H₂O
- Species considered in ASIMUT retrieval the state vector : CH₄, N₂O, H₂O, HDO, CF₄, HNO₃, O₃ CO_2
- Species considered in RTTOV retrieval the state vector: CH_4 , N_2O , H_2O (and T in some case)

Retrieval versions RTTOV ASIMUT

Comparison RTTOV

Mean Spectral Residuals

IASI CH₄ ASIMUT & RTTOV
 IWGGMS-18
 12.07.2021

Comparison RTTOV

\rightarrow Testing the impact of adding the temperature profile to the state vector

IASI CH₄ ASIMUT & RTTOV
 IWGGMS-18
 12.07.2021

Comparison ASIMUT

Mean Spectral Residuals

ASIMUT

IASI CH₄ ASIMUT & RTTOV • IWGGMS-18 • 12.07.2021 •

Comparison ASIMUT

\rightarrow Testing the impact of adding Line-Mixing effects to methane

IASI CH₄ ASIMUT & RTTOV
 IWGGMS-18
 12.07.2021

 \rightarrow Testing the impact of RTM

Mean Spectral Residuals

 Version
 χ²
 DOFs

 RTTOV
 1.01
 1.9

 CH₄ LM
 0.371
 2.1

IASI CH₄ ASIMUT & RTTOV • IWGGMS-18 • 12.07.2021

IASI CH₄ ASIMUT & RTTOV
 IWGGMS-18
 12.07.2021

Median CH₄ profiles over Hawaii (01/2016)

RTTOV (Tret)

ASIMUT

Median CH₄ profiles over Hawaii (01/2016)

Median CH₄ profiles HIPPO campaign (High Latitudes)

ASIMUT CH4LM

Unfortunately, the wrong a priori (Mauna Loa) was selected for ASIMUT

Median CH₄ profiles HIPPO campaign (20110830)

Median CH₄ profiles HIPPO campaign (High Latitudes)

ASIMUT CH4LM

Unfortunately, the wrong a priori (Mauna Loa) was selected for ASIMUT

Median CH₄ profiles HIPPO campaign (20110830)

Median CH₄ profiles HIPPO campaign (Tropics)

Conclusions

RTM simulations with ASIMUT and RTTOV

- Different RTMs simulations show spectral residuals larger than the instrumental errors for well-defined atmospheres
 - RTTOV is fast and user-friendly
 - Asimut is more flexible in terms of spectroscopy and retrieved species

Temperature retrieval in the state vector

- No appreciable change to spectral residuals
- Small change in mean CH₄ column (0.2%) but larger variability (1.7%)

CH₄ Line mixing

- Taking the CH4 line-mixing into account reduces the spectral residuals, especially in the Q-branch
- Significant increase of mean CH_4 column (1.1%) but small variability (0.1%) -> a constant shift

ASIMUT vs RTTOV

- Generally good agreement between both retrievals
- ASIMUT CH₄ columns are larger than RTTOV by 0.5% with a 1-σ spread of 2.5% (which might be improved by proper post-processing)
- Very preliminary comparison with in-situ measurements seem promising

iasi.aeronomie.be

charles. robert@aeronomie.be

This work has been supported by PRODEX Project Proposal: HIRS

IASI CH₄ ASIMUT & RTTOV • IWGGMS-18 • 12.07.2021