Characterization of TANSO-FTS-2 onboard GOSAT-2 and the Level-1 algorithm updates

July 12, 2022, IWGGMS18 Junko Kasuya, Hiroshi Suto, Kei Shiomi, Mayumi Shigetoh, Akihiko Kuze Japan Aerospace Exploration Agency

JAXA Advanced Research: CO2 Retrieval

GOSAT-2 FTS-2 Overview

LIZEZE LEGOSAT-Z

History of Level-1 Algorithm Updates

- SWIR: The time dependent radiation conversion coefficients degradation factor was introduced in 2019, and parameters have been updated based on the vicarious calibration.
- TIR: Calibration models and parameters are updated based on match-up with other satellites (AIRS & IASI). In particular, the angle-dependent difference of the pointing mirror is minimized.

 Version No.
 101.101
 102.102
 200.200
 210.210
 220.220

Radiance Calibration

- On June 2022, JPL JAXA NIES collaborated on the RRV vicarious calibration
- Comparison of GOSAT-2 FTS-2 and the forward calculation using the surface albedo to verify the accuracy of SWIR parameters.

FTS-2 observation Spectrum

Conclusion

☐ GOSAT-2 FTS-2 has

- Polarized SWIR 3 bands (P+S) + TIR 2 bands
- Flexible Pointing
- -> Solve partial column density in large cities
- □ Level-1 products are verified on all bands with vicarious calibrations and match-up.
- **□** JAXA will continue to update Level-1 algorithm.
- ☐ For more information, see our papers.

Atmos. Meas. Tech., 14, 2013–2039, 2021 https://doi.org/10.5194/amt-14-2013-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

Thermal and near-infrared sensor for carbon observation Fourier transform spectrometer-2 (TANSO-FTS-2) on the Greenhouse gases Observing SATellite-2 (GOSAT-2) during its first year in orbit

Hiroshi Suto¹, Fumic Kataoka², Nobuhiro Kikuchi¹, Robert O. Knuteson³, Andre Butz⁴, Markus Haun⁴, Henry Buijs⁵, Kei Shiomi¹, Hiroko Imai¹, and Akihiko Kuze¹

¹Japan Aerospace Exploration Agency, Tsukuba-city, Ibaraki, 305-8505, Japan

²Remote Sensing Technology Center of Japan, Tsukuba-city, Ibaraki, 305-8505, Japan

³Space Science and Engineering Center, University of Wisconsin-Madison, Madison, WI 53706, USA

⁴Institut für Umweltphysik, Universität Heidelberg, 69120 Heidelberg, Germany

⁵FTS Consulting, Quebec, G3E 1H7, Canada

https://doi.org/10.5194/amt-2022-129 Preprint. Discussion started: 3 May 2022 © Author(s) 2022. CC BY 4.0 License.

Updated spectral radiance calibration on TIR bands for the TANSO-FTS-2 onboard GOSAT-2

Hiroshi Suto¹, Fumie Kataoka², Robert O. Knuteson³, Kei Shiomi¹, Nobuhiro Kikuchi¹, Akihiko Kuze¹

Japan Aerospace Exploration Agency, Tsukuba-city, Ibaraki, 305-8505, Japan
 Remote Sensing Technology Center of Japan, Tsukuba-city, Ibaraki, 305-8505, Japan
 Juniversity of Wisconsin-Madison, Madison, WI, 53706, USA

Atmos. Meas. Tech., 14, 2013–2039, 2021 https://doi.org/10.5194/amt-14-2013-2021 Atmos. Meas. Tech., Under review https://doi.org/10.5194/amt-14-2013-2021

6