The GOSAT-GW greenhouse gases observing mission: Updates

Hiroshi Tanimoto National Institute for Environmental Studies, Japan

with

Tsuneo Matsunaga, Takafumi Sugita, Hisashi Yashiro, Tamaki Fujinawa, Yu Someya, Yukio Yoshida, Isamu Morino, Hirofumi Ohyama, Astrid Müller, Matthias Frey, Satoshi Inomata, Hyunkwang Lim, Hao Xu, Yosuke Yamashita, Kohei Ikeda, Tazu Saeki, Makoto Saito, Nobuko Saigusa, Yugo Kanaya, Takashi Sekiya, Prabir Patra, Masayuki Takigawa, Yongjoo Choi, Masahiro Yamaguchi, Jagat Bisht, Yasko Kasai, Tomohiro Sato, Ayano Nakamura, Thi Ngoc Trieu Tran

from

EDGAR

National Institute for Environmental Studies (NIES) Japan Agency for Marine-Earth Science and Technology (JAMSTEC) National Institute of Information and Communications Technology (NICT)

GOSAT, GOSAT-2, and ...

Figures: Courtesy of JAXA

	GOSAT	GOSAT-2	GOSAT-GW
	GOSAT	GOSAT-2	GOSAT-GW
Launch / lifetime	2009 / 5 years	2018 / 5 years	FY2023 / 7 years
Satellite mass / power	1.75 t / 3770 W	1.8 t / 5000 W	2.9 t / 5200 W
Orbit	666 km, 3 days, 13:00, descending	613 km, 6 days, 13:00, descending	666 km, 3 days, 13:30, ascending
Spectrometer	FTS	FTS-2	TANSO-3 (Grating)
Major targets	CO ₂ , CH ₄	CO ₂ , CH ₄ , CO	CO ₂ , CH ₄ , NO ₂
Spectral bands	0.7 / 1.6 / 2 μm + TIR	0.7 / 1.6 / 2 μm + TIR	0.45/0.7/1.6 μm
Spectral Resolution (Sampling interval)	0.2 cm ⁻¹ , (≈ 0.01 nm @ 0.7 μm, ≈ 0.05 nm @ 1.6 μm)		< 0.5 nm @ 0.45 μm, <0.05 nm @ 0.7 μm, < 0.2 nm @ 1.6 μm
Swath	Discrete, 1 – 9 points	Discrete, 5 points	Selectable, 911 km (Wide Mode) or 90 km (Focus Mode)
Footprint size, nadir	10.5 km	9.7 km	Selectable, 10 km (Wide Mode) or 1–3 km (Focus Mode)
Pointing	\pm 20 / \pm 35 deg (AT/CT)	\pm 40 / \pm 35 deg (AT/CT)	\pm 40 / \pm 34.4 deg (AT/CT) for Focus Mode
Other instruments	CAI (Cloud and Aerosol Imager)	CAI-2 (Cloud and Aerosol Imager 2)	AMSR3 (Advanced Microwave Scanning Radiometer 3)

GOSAT-GW Mission Requirements (by the Ministry of Environ.)

- Monitoring of whole atmosphere global-mean concentrations of GHGs
- Verification of national (or country-specific) anthropogenic emissions inventory of GHGs
- Detection of GHGs emissions from large emission sources, such as megacities, power plants (>6.5 Mt CO2/yr), and permafrost

Ohyama et al., Remote Sens. Environ. Fujinawa et al., Geophys. Res. Lett.

Global Stocktake = "Science" x "Paris Agreement"

- Global Stocktake (GST) in 2023 and 2028 (and ...)
 - New challenge for Earth Science/Environmental Science communities
 - R&D from multiple aspects are needed and can add value
- Visualization of Decarbonizing Process
- Answering to "Do we succeed in GHG emission reduction, and to what extent?"
 - => Contributing to enhanced reliability on NDCs, which are decided by policymakers
 - Trends and variability of emissions
 - Improving accuracy of bottom-up "national" emission estimates
 - Improving transparency by independent top-down estimates
- Country/State/City sectors: validation of current NDC, decision of next NDC
- Private sectors: incentive to reduce GHG emissions
 - Advancing atmospheric chemistry approach to quantify emissions
 - Better connecting inventories, observations, and modeling
 - Synergetic use of GHGs and air pollutants
 - Opportunities to engage society -- public & private sectors

GOSAT-GW two observation modes

Wide Mode

- Swath \approx 900 km
- Footprint ≈ 10 km
- No AT/CT Pointing
- Default observation

Focus Mode

- Swath ≈ 90 km
- Footprint ≈ 1 3 km
- AT/CT Pointing
- Upon requests

GOSAT-GW two observation modes

- 3-day global coverage (repeating)
- 911 km wide swath mode (10 km resolution)
- 90 km focus pointing mode (1-3 km resolution)
- CO₂ & CH₄ + NO₂

Simulated GOSAT-GW data in April 2018 (XCH₄)

But... real world is not that ideal nor smooth!!

Hence, we need science (and scientific community efforts) to play in!

- retrieval algorithm
- ground data-processing system
- product validation
- model development

Retrieval algorithm and L2 product - GHGs

GOSAT Retrieval Algorithm (GORAL)		
Main targets	XCO ₂ , XCH ₄	
Other variables	XH ₂ O, SIF, AOT, ALH, albedo,	
Retrieval technique	Full Physics (XCO ₂ , XCH ₄ ,) Proxy (XCH ₄)	
A priori	JRA-3Q (Japanese reanalysis) NICAM (for GHGs and aerosols)	
Cloud screening	Reflectance test Surface pressure retrieval	

TANSO-3 L2 GHG product

Stored items	All the retrieval results from GORAL and ancillary parameters
File format	HDF5
File unit	file/day (Wide mode) file/scene (Focus mode)

3-P15: Yu Someya, Design of the retrieval algorithm and level 2 product for greenhouse gases from GOSAT-GW

Retrieval alg	orithm and L2 product -	NO ₂ Database	
GO	SAT-GW Retrieval Algorithm	Defined method	NO Process
Main targets	NO ₂ (total + tropospheric column)	NC Re	fr snow/ice or flectance < xx Reflectance > xx
Other variables	Effective cloud fraction, Aerosol optical parameters	QDOAS	
Retrieval technique	DOAS (optical density fitting)		
A priori	JRA-3Q (Japanese reanalysis) CHASER with bias correction (for gas species, such as NO ₂ , O ₃ , and aerosol optical parameters)	Cloud retrieval Good Radii ISZA VZA R C F ex CF- cx Cloud screen	nce IUT AA, CCP,
Cloud screening	Cloud fraction derived from O ₂ –O ₂ absorption @ 477 nm	Aerosol screening. Clean Polluted Chemical transport model	
	TANSO-3 L2 NO ₂ product	Aerosol AME UJT (SZA, VZA, RAA, (SZA, VZA, RAA,	UJT Cloud AMF UJT IA, (SZA, VZA, RAA, AOD,
Stored items	Total + tropospheric NO ₂ vertical column densities [molecules cm ⁻²] and ancillary parameters	albedo, ADD etc) albedo etc	albedo, (CP etc.)
File format	HDF5	separation	
File unit	file/day (wide mode) file/scene (Focus mode)		

Team: Tamaki Fujinawa, Yosuke Yamashita, Tomohiro Sato, Thi Ngoc Trieu Tran, Takashi Sekiya, Hyunkwang Lim, Takafumi Sugita

Ground data-processing system (G3DPS, incl. GHGs)

NO2 Data Processing System (GNDPS)

Team: Takafumi Sugita, Takashi Sekiya, Yousuke Yamashita, Tomohiro Sato, Yasko Kasai, Ayano Nakamura, Thi Ngoc Trieu Tran

Validation plan for GHGs and NO₂

- Primary approach is ground-based column obs., complemented by additional obs. (e.g., airplane, ship, satellite, etc.)
- Besides above, campaign-based measurements will be made as needed
- Separate validation exercises are now being planned for the wide- and focus-modes

Platform	CO ₂ /CH ₄	NO ₂
Ground-based	TCCON COCOON	Pandora MAX-DOAS
Airplane	CONTRAIL IAGOS-CORE	IAGOS
Satellite	GOSAT, GOSAT-2 OCO-2, OCO-3 TROPOMI	OMI TROPOMI GEMS

Team: Hirofumi Ohyama, Satoshi Inomata, Isamu Morino, Matthias Frey, Astrid Müller, Hao Xu, Yugo Kanaya, Yongjoo Choi

Validation of GHGs and NO₂ in urban area

	CO ₂ /CH ₄		NO ₂
	TCCON	EM27/SUN	Pandora
Hokkaido	ONGOING		ONGOING
Tsukuba	ONGOING	ONGOING	ONGOING
Central Tokyo		IN PREP.	IN PREP.
Suburban Tokyo			ONGOING
Yokosuka		IN PREP.	ONGOING
Nagoya			ONGOING
Kobe			ONGOING
Kyushu	ONGOING		ONGOING

5-P03: Matthias M. Frey, Urban Greenhouse Gas Emission Monitoring in Seoul and Tokyo

Campaign-based GHG measurements in urban area

Tokyo(-Seoul) campaign, 14-25 Feb 2022 (w/ Hayoung Park)

Objective: Monitoring changes of CO_2 and CH_4 in the urban atmosphere: now and in future;

Test for the long-term validation of GOSAT-GW (**especially focusmode**) in central Tokyo.

Timeline of Development and Data Release

NIES ground-based, ship and aircraft GHG monitoring

NIES Center for Global Environmental Research (CGER) monitoring platforms

4-1. Astrid Müller, Commercial ship and aircraft-based evaluation of satellite derived XCO2 and XCH4 over oceans - updates and prospective

How can we best use these obs. capabilities for the GOSAT-GW validation? 15