leen

# Quantifying localized carbon dioxide emissions from space: the CO2Image demonstrator

**Julia Marshall**<sup>1</sup>, David Krutz<sup>1</sup>, Friedemann Reum<sup>1</sup>, Dietrich Feist<sup>1</sup>, Klaus-Dirk Gottschaldt<sup>1</sup>, Bastian Kern<sup>1</sup>, Patrick Jöckel<sup>1</sup>, Andreas Baumgartner<sup>1</sup>, Claas Koehler<sup>1</sup>, Günter Lichtenberg<sup>1</sup>, Sander Slijkhuis<sup>1</sup>, Carsten Paproth<sup>1</sup>, Ilse Sebastian<sup>1</sup>, Johan Strandgren<sup>2</sup>, Jonas Wilzewski<sup>3</sup>, Leon Scheidweiler<sup>4</sup>, Christian Frankenberg<sup>5</sup>, André Butz<sup>4</sup>, Anke Roiger<sup>1</sup>

Knowledge for Tomorrow



## **CO2Image targets this problem with a high-resolution approach**

• Gaussian plumes simulated for the city of Indianapolis, at the resolution of CO2Image and CO2M (from Strandgren et al., AMT, 2020)



## Higher spatial resolution $\rightarrow$ quantification of smaller point sources

- A higher sensitivity (down to 1 MtCO<sub>2</sub>/year) means that a higher proportion of point sources would be quantifiable based on remote sensing measurements:
  - A sensitivity threshold of > 10 MtCO<sub>2</sub>/year could resolve 24% of emissions from coal-fired powerplants worldwide
  - A sensitivity threshold of > 1 MtCO<sub>2</sub>/year could resolve 88% of emission from coal-fired powerplants worldwide





## An example for power plants near Cologne



**Niederaußem** Total emissions: 29 Mt CO<sub>2</sub>/year



## An example for power plants near Cologne

Emissions are divided over multiple stacks.







## An example for power plants near Cologne

What CO2Image will see:



What CO2M will see:



**Measurements in target mode** 



•

- Orbit altitude: 575 km
  - $\rightarrow$  Inclination = 97.6618°
  - $\rightarrow$  Orbital period T = 1.60033 h
  - $\rightarrow$  Orbits per day = 14.9969
  - $\rightarrow$  Velocity = 7.57304 km/s

- Agility = ± 25° - along track - across track
- Integration time = 89 ms
- ≈ 5 targets per branch
  between 60°S & 60°N
  → time for repositioning

**Benefits** of fine (< 50 m) ground resolution:

- Enhanced concentration contrast
- Plume sampling by multiple ground pixels (plume detection via NO<sub>2</sub> is not required)
- Plume shape analysis for constraining turbulent dispersion

#### Drawbacks:

One  $\sim$ 50 km x 50 km scene

can be chosen from each of

these pink boxes

- Dense coverage on larger scales is not possible
- Operation restricted to "target mode", focusing on a few 50 km x 50 km scenes per orbit

Thus: conceived of as a "magnifying glass" to **complement measurements from CO2M** and other survey missions.



# **COSIS Instrument description**

| Mass                    | 90 kg                                    |
|-------------------------|------------------------------------------|
| Swath                   | 50 km                                    |
| Spatial resolution      | 50 m x 50 m                              |
| Spectral range          | 1982-2092 nm                             |
| FWHM (2.5 pix)          | 1.29 nm                                  |
| Resolving power         | 1600                                     |
| Aperture diameter       | 15.0 cm                                  |
| f number                | 2.4                                      |
| Optical efficiency (η)  | 0.48                                     |
| Integration time        | 70 ms                                    |
| Detector pixel area     | 900 μm²                                  |
| Quantum efficiency (Qe) | 0.8 e⁻ photon⁻¹                          |
| Dark current            | 1.6 fA pix <sup>-1</sup> s <sup>-1</sup> |
| Readout noise           | 100 e <sup>-</sup>                       |
| Quantization noise      | 40 e⁻                                    |







950 mm

- Measurement in SWIR-2 channel
- Spectral resolution optimized to maximize signal while minimizing correlations with surface spectral reflectance (see Wilzewski et al., AMT, 2020)
- Fast optics, large telescope, forward motion compensation



## **Overpass time**

- A mid-morning overpass time of 10:30 is planned
- The morning is advantageous in terms of:
  - Less cloud cover
  - (slightly) lower mean winds
  - Sufficient light



Marshall et al., in prep.

## **Overpass time**

- A mid-morning overpass time of 10:30 is planned
- The morning is advantageous in terms of:
  - Less cloud cover
  - (slightly) lower mean winds
  - Sufficient light
  - Less turbulence  $\rightarrow$  larger signals

True for turbulent scenes on the scale of 10s of meters – at the kilometer scale this is less critical!

![](_page_9_Figure_9.jpeg)

![](_page_9_Picture_10.jpeg)

## Conclusions

- CO2Image will provide high-resolution measurements of XCO<sub>2</sub> to quantify emissions from point sources > 1 MtCO<sub>2</sub>/yr, and detect smaller sources (> 0.3 MtCO<sub>2</sub>/yr)
- Complementary to global survey missions such as CO2M
- Public mission providing public, transparent data
- Planned launch in 2026
- (we can also measure methane)

![](_page_10_Picture_7.jpeg)

![](_page_10_Picture_8.jpeg)

![](_page_10_Picture_9.jpeg)