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Steady Improvement in X5, Retrievals
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* Natural Carbon Sink has Offset more than 50% of Anthropogenic
Emissions so far;

* How much progress have been made in understanding
the terrestrial biosphere carbon cycle with remote
sensing CO, observations?

 What are the challenges and opportunities ahead ?
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Hemispheric Flux Estimation

NH ExtraTrop. Land, Biosphere only
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e ~1GtC difference in NH Extra
Trop and Tropical fluxes
between flask and GOSAT
inversions;

Uncertainty is more than 1.0
GtC;

NH Ext Land
(a) 2015, 2016, 2017, 2018 (from left to right) Annual Flux (PgC per yr)
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Difference between IS and OCO-2 v9 is ~0.5 GtC over tropics;
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Uncertainty becomes smaller from V7 to V9;
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AC includes lateral C
transport;

Difference between IS and
LNLGIS is less than 0.5GtC in
NH Ext land, ~0.5 GtC in
tropical latitude bands;




Regional Flux Estimation

The flux estimation over Europe becomes more consistent with 1S-based

(a) 2015, 2016, 2017, 2018 (from left to right) Annual Flux (PgC per yr) North Ameri . . . . .
inversions from v7 to v9 OCO-MIP inversions, different from results based on
early GOSAT retrievals. North Asia shows weaker sink based on satellite XCO2.
R - Statistically different flux estimates over small countries over the tropics and
i high latitudes in V9 OCO-MIP inversions.
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Evaluation against Independent Observations
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From V7 to V9 inversions, the posterior CO2 biases become much 1

smaller over NH mid to high latitudes; CO, bias (ppm)

: . ] , LNLGOGIS 8 LNLG
From v9 to v10 inversions, the posterior CO2 biases are comparable LNLGIS m IS Byrne et al., 2022

between IS and LNLG experiments. 0G




Interannual Variability
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Impact of Extreme Climate Events
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* |n combination with data from other sources, satellite XCO2 are used to quantify carbon (gCm “day)
flux anomaly due to the impact of extreme events over small region; Byrne et al., 2021




Remaining Carbon Budget Depends on Changes of Natural
Carbon Sink with Climate as well as Anthropogenic Emissions

FAQ 5.4: What are Carbon Budgets?
The term carbon budget is used in several ways. Most often the term refers to the total net amount of carbon dioxide
(CO,) that can still be emitted by human activities while limiting global warming to a specified level.

» Remaining carbon budget
GtCQ, in line with keeping
global warming to or2°C

* More fraction of emitted CO, remains in the atmosphere with high cumulative CO,

emissions;
* Understanding spatiotemporal distributions of the natural carbon sources and sinks and its

changes with climate are as important as monitoring anthropogenic emissions to achieve
climate goals.



Increasing Independent observations
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Regions with no independent observations collocate with large flux differences between LNLG-based and IS-based
results.



Continue Improving Atmosphere Transport and Flux Inversion Infrastructure

Atmosphere Transport Model

Terrestrial biosphere carbon flux
(GtC/year)

concentration
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