Predicting the Distribution of Three Vulnerable Japanese Plants: Rosa hirtula, Kirengeshoma palmata, and Salicornia europaea

Erin Conlisk, Forestry and Forest Products Research Institute, Tanaka Lab November 18, 2009

Outline

- Introduce previous work
- Methods
 - Three focal species: *Rosa hirtula*, *Kirengeshoma palmata*, and *Salicornia europaea*
 - Modeling
 - Species locality data
 - Environmental data
 - Difficulties of modeling vulnerable species
- Validation results
- Future shifts with climate change

Previous Work

Models and observations suggest:

- Changes in critical behaviors (*e.g.* flowering time, migration time, etc)
- Species are moving polewards, to higher elevations, and often moving to coastal regions
- Natural and human barriers to species migration complicate adaptation
- Considerable retractions and extinctions are likely

Vulnerable Species

<u>Rosa hirtula</u>

- Needs direct sunlight, well-drained soils
- Prefers locations where minimum annual temperature is above -20°C
- Grows to 2 meters
- Vulnerable to fungus and aphids
- Spiny fruits are used as a medicated liquor

Vulnerable Species

Kirengeshoma palmata

- Hydrangeaceae family
- Prefers typical woodland conditions: moist, humus-rich soil, partial-shade
- Prefers locations where minimum annual temperature is greater than -15°C
- Grows to 2 meters
- Seeds viable for up to 300 days, germinating at temperatures above 12°C

Endangered Species

<u>Salicornia europaea</u>

- Amaranthaceae family
- Throughout Northern Hemisphere
- Salt-tolerant, C4 succulent
- Highly edible
- 20-30 cm tall
- Needs water-logged soil and direct sun
- Increased germination with increased temperature up to 32°C

Species Distribution Model

<u>Model:</u>

- Setting: Grid overlaying relevent region; grid cells are possible plant locations
- Goal: Probability(species present) = Function(environmental variables)
- Estimation Method: Maxent
 - For comparison of this and other methods see Elith et al. 2006

Dependent Variable Data:

Input data: localities where species is present (from presence-only or presence-absence dataset)

Independent Variable Data:

- Climate (precipitation and temperature seasonality and extremes)
- Soil, topography, land use, geology
- No biotic interactions

Model: Maximum Entropy

Software package 3.2.19 (Phillips et al. 2006) from: http://www.cs.princeton.edu/~schapire/maxent/

- Uses presence-only data
- Maximizes entropy subject to constraints provided by the data, thereby creating the most "even" distribution of Prob[presence] values consistent with the data
- Let X's denote the environmental variables and λ 's denote parameters, the resulting functional form is:

Prob[presence] = $cexp[-(\lambda_1X_1 + \lambda_2X_2 + \dots + \lambda_kX_k)].$

Dependent Variable Data: Species Presence

	PRDB presence PRDB absence	Hara-Kanai presence 🛆	
K. palmata	13 presences, 7280 absences	19 presences, 94 pseudo-absences	
S. europaea	8 presences, 7475 absences	15 presences, 94 pseudo-absences	1. Set
R. hirtula	10 presences, 7473 absences	14 presences, 97 pseudo-absences	
			Salicornia europaea

- ÷

Dependent Variable Data: Species Presence

Independent Variable Data: Mean Temperature

Current

Future

Independent Variables: Worldclim + Nonclimate Variables

Bioclim 1 Mean Annual Temperature **Bioclim 2** Mean Diurnal Temperature Range **Bioclim 3** Isothermality Bioclim 4 **Temperature Seasonality Maximum Temperature Bioclim 5 Bioclim 6 Minimum Temperature** Bioclim 7 **Temperature Range Bioclim 8** Mean Temperature of Wettest Quarter **Bioclim 9** Mean Temperature of Driest Quarter **Bioclim 10** Mean Temperature of Warmest Quarter Bioclim 11 Mean Temperature of Coldest Quarter Bioclim 12 **Annual Precipitation** Bioclim 13 **Precipitation of Wettest Month** Bioclim 14 **Precipitation of Driest Month** Bioclim 15 **Precipitation Seasonality Precipitation of Wettest Quarter** Bioclim 16 **Precipitation of Driest Quarter** Bioclim 17 **Precipitation of Warmest Quarter** Bioclim 18 **Bioclim 19 Precipitation of Coldest Quarter USGS Geology** Japanese Ministry of the Environment Geology **FAO Soil Type** Japanese Ministry of the Environment Soil Type **Topography (Higa, personal communication) University of Maryland Land Use**

Worldclim variables from: http://www.worldclim.org/

Validation of Models in Current Climate

Goodness of Fit: How well does the model fit the data?

- Random: AUC = 0.5. Perfect: AUC = 1
- Reserve a fraction of the data for model validation
- Use each dataset to validate the other's estimated model

Stability: Do predictions change when dataset is altered?

- Bootstrap subsamples, compute AUC for each
- Compute AUC standard deviation over subsamples

Predicted distributions for *Rosa hirtula* under the current climate

Model validation for Rosa hirtula

AUC values and bootstrapped standard deviations

	PRDB data used for validation	Hara-Kanai data used for validation
Using predictor estimated	0.9917	0.9293
from PRDB data	(0.0003)	(0.0026)
Using predictor estimated	0.9789	0.9870
from Hara-Kanai data	(0.0012)	(0.0009)

Important Variables for Rosa hirtula

	PRDB Estimate		Hara and Kanai Estimate			
Variable	Ave Import	Std Dev Import	Ave Rank	Ave Import	Std Dev Import	Ave Rank
Isothermality (Bioclim 3)	47.72	3.47	1	53.7	3.04	1
Mean Temp of Warmest Quarter (Bioclim 10)	24.76	3.23	2	0	0	8
Temperature Seasonality (Bioclim 4)	10.42	0.61	3.4	4.3	0.53	5.9
USGS Geology	6.72	3.38	4.4	15.86	0.93	2
Precipitation Seasonality (Bioclim 15)	5.82	1.39	4.6	5.84	1.36	4.5
Topography	3.48	4.95	6	6.46	1.42	4.5
Annual Precipitation (Bioclim 12)	1.06	0.83	6.6	2.26	0.81	7
Mean Diurnal Range (Bioclim 2)	0	0	8	11.6	2.67	3.1

PRDB Predictions for *Kirengeshoma* palmata under the current climate

0.9-1

Hara and Kanai Predictions for *Kirengeshoma* palmata under the current climate

Model validation for *Kirengeshoma* palmata

AUC values and bootstrapped standard deviations

	PRDB data used for validation	Hara-Kanai data used for validation
Using predictor estimated	0.9901	0.8873
from PRDB data	(0.0002)	(0.0007)
Using predictor estimated	0.9769	0.9793
from Hara-Kanai data	(0.0034)	(0.014)

PRDB Predictions for *Salicornia europaea* under the current climate

AUC values and bootstrapped standard deviations

	PRDB data used for validation	Hara-Kanai data used for validation
Using predictor estimated	0.9666	0.7092
from PRDB data	(0.0622)	(0.2547)
Using predictor estimated	0.9974	0.9802
from Hara-Kanai data	(0.0003)	(0.0015)

Too few localities for Salicornia europaea

presence

0 - 0.1

0.1 - 0.2

0.2 - 0.3

0.3 - 0.4

0.4 - 0.5

0.5 - 0.6

0.6 - 0.7

0.7 - 0.8

0.8 - 0.9

0.9 - 1

 (\bullet)

Summary of model validation

- High AUCs for rare species
 - Initial sensitivity tests suggest that this is not a spurious effect
 - More sensitivity analyses are needed
- Estimates from Hara and Kanai data predicted true PRDB localities better than estimates from PRDB data predicted Hara and Kanai localities
 - Hara and Kanai had approximately 5 more localities per species, suggesting the importance of large datasets
 - More sensitivity analyses with larger datasets are needed
- At least when there are few presence observations, older distribution maps appear to make reasonable predictions
 - More sensitivity analyses are needed
- Important variables identified
 - More comparisons to literature needed

Rosa hirtula – Continuous to discrete presence probability

Range contraction for Rosa hirtula

Range changes for *Kirengeshoma palmata*

Range expansion for Salicornia europaea

Warnings about Salicornia europaea

- Model validation suggests that results be viewed with skepticism
 - Possibly due to shortage of presence data
- Much of the range expansion is predicted away from the coast (or other waterway); this is highly unlikely
- Introduced in Shikoku
 - Models predicted the suitability of the introduction
 - What are the conservation implications
- Experimental study points to the importance of species interactions
 - Gedan and Bertness 2009's warming experiment showed Salicornia europaea and bigelovii were outcompeted by Spartina due to soil drying

Summary of Species Distribution Predictions for a Warmer Climate

<u>Rosa hirtula</u>

• Predictions based on either dataset show range contractions

Kirengeshoma palmata

- Mostly range expansions with models estimated using PRDB data
- Roughly equal levels of expansion and contraction for models
 estimated with Hara and Kanai data

Salicornia europaea

- Predictions based on PRDB show mostly expansions
- Predictions based on Hara and Kanai data show retractions

Differences between datasets are magnified when future climate scenarios are used, suggesting the need for more data and more sensitivity analyses.

Thank you:

Nobuyuki Tanaka JSPS Tetsuya Matsui Motoki Higa Ikutaro Tsuyama