

T5-Session: Future Scenarios and Modelling of Natural Capital and Ecosystem Services

Date: 14 Dec. 2017, Venue: Ziyun Pavillion Part-1: 10:30-12:30, Part-2: 14:00-17:30

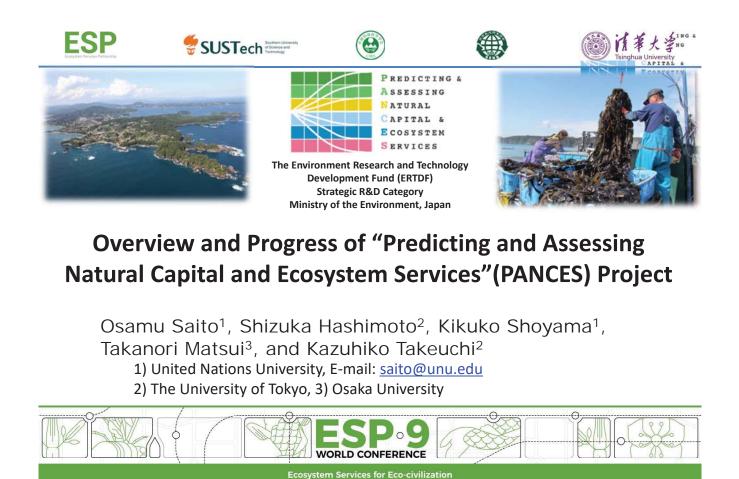
Host:	Osamu Saito	United Nations University	saito@unu.edu
		Institute for the Advanced Study	
		of Sustainability	
Host:	Kazuhiko Takeuchi	The University of Tokyo	takeuchi@ir3s.u-
			tokyo.ac.jp
Co-host:	Shizuka Hashimoto	The University of Tokyo	ahash@mail.ecc.u-
			tokyo.ac.jp

Objectives of this session:

- This session will offer an opportunity to present and share the updated science-policy issues on biodiversity and ecosystem services (BES) scenarios and modelling, the case studies at local to regional scales, capacity building efforts for BES scenarios and modelling, and policy support examples by using BES scenarios and modelling.
- This session will contribute to mobilizing and activating researchers and policy makers to strengthen network and partnership of BES scenarios and models beyond local and national scales.

Part 1 (15 min presentation+5min Q&A)/presenter

Time	First name	Name	Organization	Title of presentation
10:30- 10:40	Osamu	Saito	United Nations University	Overview and Progress of "Predicting and Assessing Natural Capital and Ecosystem Services" (PANCES) Project
10:40- 11:00	Shizuka	Hashimoto	University of Tokyo	Exploring alternative futures for the social- ecological production landscapes of Noto: implications of land use change on the provision of ecosystem services
11:00- 11:20	Chihiro	Haga	Osaka University	A Development of Future Scenario Simulation System of Natural Capital and Ecosystem Services on LANDIS-II —Linking Qualitative Scenarios and Landscape Change Model in Japan
11:20 - 11:40	Michio	Oguro	Forest and Forest Products Research Institute	Modelling provisioning services and their relationship with socio-ecological factors in Japan.
11:40- 12:00	Rei	Shibata	Research Institute for Humanity and Nature	Modelling and Mapping Recreation Services Using Multi-Scale Natural and Social Metrics in Japan
12:00- 12:20	Ronald	C. Estoque	National Institute for Environmental Studies, Japan	Future changes in Southeast Asia's forest cover and its ecosystem service value under the shared socioeconomic pathways (SSPs)


PREDICTING & Assessing

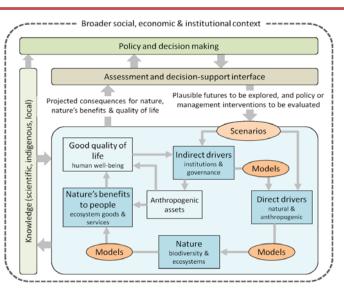
NATURAL

Predicting & Assessing

Part 2 (15 min presentation+5min Q&A)/presenter

Time	First name	Name	Organization	Title of presentation
14:00- 14:20	Rajarshi	Dasgupta	University of Tokyo	Scenario-based land change analysis of the lower Gangetic Delta: An exploratory investigation into alternative regional futures
14:20- 14:40	Sourya	Das	Tata Institute of Social Sciences. Ashoka Trust for Research in Ecology and the Environment	Scenario Building on the Forest Ecosystem Services and Human Well-being: a case study of Rammam Forest Village, Darjeeling, India
14:40- 15:00	Xinli	Ке	Department of Land Resources Management, Huazhong Agricultural Unviersity	Inner-Provincially or Inter-Provincially? An ex-ante assessment of impacts of China's Arable Land Requisition-Compensation Balance Policy on trade- offs between ecosystem services and economic benefits
15:00- 15:20	Ilkwon	Kim	National Institute of Ecology	Estimation of urban land use changes and their impacts on ecosystem services as a consequences of urban green space policies
15:20- 15:40	Anna	Duden	Utrecht University	Impact of wood pellet demand on biodiversity in the southeastern US
15:40- 16:00	Francesco	Accatino	INRA	Addressing the conflict between food production and other ecosystem services: scenarios on multiples spatial levels
16:00- 16:20	Yuchen	Zhang	National University of Singapore	Meeting global agricultural demand in 2050: what will we sacrifice?
16:20-16	5:40: Brief ora	l presentatio	ons of poster presentation	submitted to Session T-5
16:40-17	7:00: Discussio	on		4

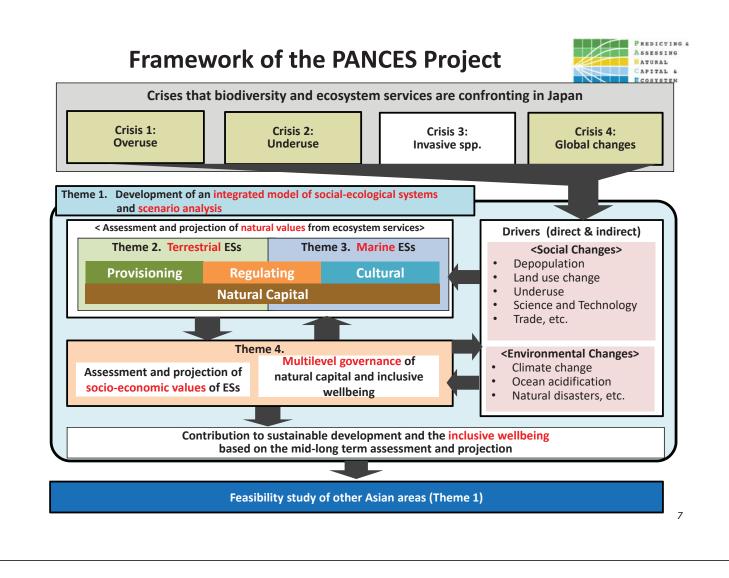
n people & landscapes through nature-based solutions

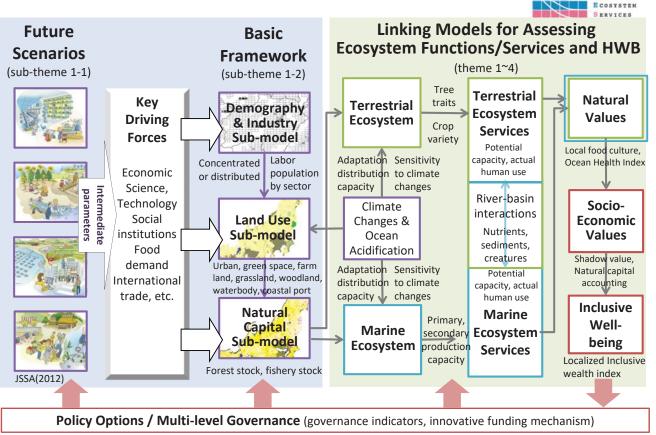


Develop an integrated assessment model of social-ecological systems to predict and assess natural and socio-economic values of natural capital and ecosystem services under different future scenarios of socio-economic conditions and policy options;

Shenzhen. China 011-15 Dec 201

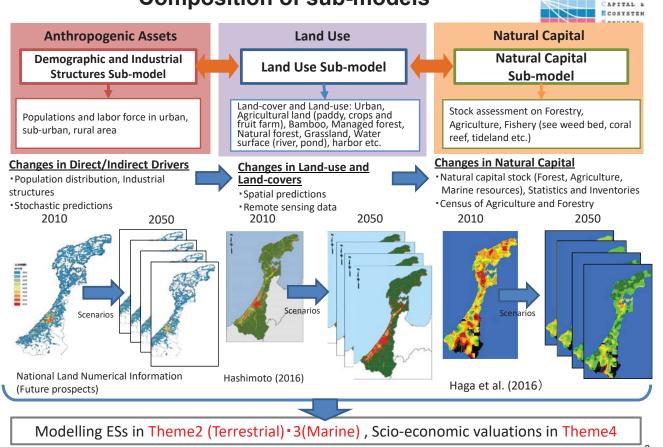
- Design a new conceptual framework to promote multilevel governance of natural capital to maintain and improve "inclusive wellbeing";
- Demonstrate the integrated assessment model at both national and local scales in Japan, and examine effectiveness and applicability to other areas in Japan and beyond.




PREDICTING

ASSESSING NATURAL CAPITAL 6

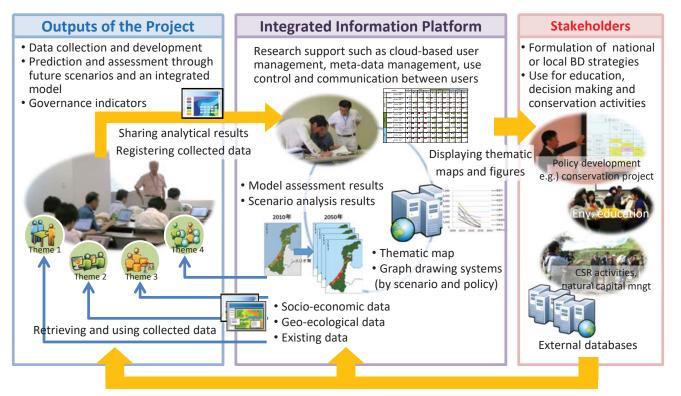
ECOSYSTEM


Framework of PANCES Scenarios and Models

PREDICTING Assessing

NATURAL CAPITAL 6

Composition of sub-models



Strengthen science-policy interface through the use and management of information platform

ASSESSING

ATURAL

Study Sites & Science-Policy-Society Interface

Study Sites:

- Japan-wide assessment
- Three major case-study sites
 - Hokkaido (Bekanbeushi River Basin)
 - Noto Peninsula & Sado Island
 - Okinawa Islands

Science-Policy-Society Interface:

- Participatory scenario co-design with multistakeholders
- Collaboration with local governments, policy makers and practitioners including private sectors
- Promote multi-level governance of natural capital through connecting international initiatives and local actions

Japan-wide assessment of natural capitals and ecosystem services

Delphi survey for co-designing scenarios

- Delphi may be characterized as a method for structuring a group communication process so that the process is effective in allowing a group of individuals, as a whole, to deal with a complex problem.
- The Delphi method was selected since it has proved a popular tool in for identifying and prioritizing complicated issues for decisionmaking (Okoli and Pawlowski, 2004).
- The Scenario Working Group of the project developed online questionnaire for Delphi survey against PANCES project members (i.e. experts)

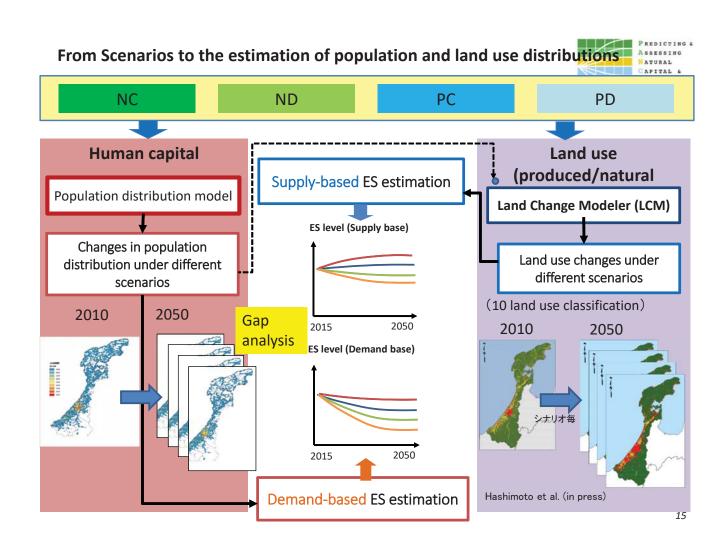
	First Delphi Survey	Second Delphi Survey
Date	13 Dec. 2016 – 8 Jan. 2017	13 Jan. 2017 – 29 Jan. 2017
The number of invited respondents	104	94
The number of actual respondents	94	86
Response rate (%)	90%	91%

Drivers which may influence the future society up until 2050

	CAPITAL &
1. National GDP growth rate will significantly improve	19. Citizen's participation and role of non-governmental actors will
	significantly expand
2. Primary industry will significantly shrink	20. Collaboration within organization (government, private company, university, etc) and across organizations will progress
3. The amount of international trade will significantly increase due to	
advance of free trade	21. The subjects associated with environment will significantly increase at primary, middle, and high school curriculum.
4. Income disparity will significantly expand across regions and individuals	
5. International collaboration and partnership with neighboring countries	22. Educational methods will be significantly diversified, including
for environment and resources management will be significantly	partnership between community and school, active learning, experience- based learning, exc.)
strengthened	
6. Population concentration to Mega-cities and major urban areas will	23. Demand for eat-outing and eating cooked food which is not cooked at home will significantly expand
further advance by rural outmigration	
7. Social relations of rural communities will be further weaken	24. Preference to local production and local consumption as well as organic agriculture will be strengthened, and demand for value added products by
	production place and method will significantly expand
8. Fertility rate will significantly improve	
9. Healthy life expectancy will be significantly extended	25. Demand for place and experience-based tourism such as ecotourism and green tourism will significantly expand
10. Foreign labor will significantly increase	26. Traditional knowledge and traditional culture will be significantly lost
11. Foreign visitors will significantly increase	27. Use of artificial intelligence (AI) technology will significantly expand in various sectors
12. Compactification of urban areas will significantly advance	28. Virtual reality (VR) technology will be significantly innovated and applied to various sectors
13. Public transportation system will be significantly improved	
	29. Use of information and communication technology (ICT) at primary industry will significantly expand
14. Ecosystem-based infrastructure development, disaster risk reduction,	
and land management will significantly advance	30. Bio-production technology such as plant factory and aquaculture will be innovated and applied to various sectors
15. Environmental conservation and restoration through economic	· · ·
incentives will significantly progress	31. Low carbon technology will be significantly innovated and applied to various sectors
16. Transformation from non-renewable energy to renewable energy will	
significantly progress	32Water purification technology such as sea water desalination and waste water treatment technology will be significantly innovated and applied to
17. Dependency on nuclear energy will significantly decline	various sectors
	33. Risk of domestic terrorist attack events will significantly increase
18. Mainstreaming biodiversity in agriculture, forestry and fishery policy	34. Incidence of committing war will significantly increase
will significantly progress	54. Incluence of committing war will significantly increase

13

Four PANCES Scenarios


	PREDICTING :
	ASSESSING
11-1	NATURAL
	CAPITAL &
	ECOSYSTEM
	SERVICES

Base trends: population decline, aging and low economic growth Uncertainties: effective utilization of nature, population distribution

Natural capital based compact society (NC)

Natural capital based dispersed society (ND) Natural capital basis Higher food self-sufficiency Eco-tourism and expansion of tourism in domestic countryside Use of ecosystem-based & green infrastructures • Increase in the use of renewable energy Promotion of compact cities Counter urbanization Decentralized heat and energy Rewilding /greening of underutilized land Urban **Dispersed** Centralized heat and energy Prefer local production and local compactification Prefer domestic products consumption population Association oriented (connection based on • Decentralized authority (decision making) purposes) Community oriented (place-based) Inexpensive and diverse choices by increased imports Extensive use of ICT/AI for improved productivity Conventional infrastructure development Improved efficiency in conventional power generation and energy consumption Utilization of CCS (carbon capture and storage) technology **Produced capital basis** Produced capital based compact society (PC)

Produced capital based dispersed society (PD)

Sustain Sci (2017) 12:633-634 DOI 10.1007/s11625-017-0458-9

emphasis on drivers of change in n resources, including alternative policy

options, Furthermore, "models" are def

or quantitative descriptions of key comp and of the relationships that exis

components. While IPBES has identified the dev

narios as a key to aid decision mak potential impacts of different policy of

lacks studies on substantial long-term-so

ILK together with the social-ecological

diversity and ecosystem services; therefore the substantial diversity of local contex

(Kok et al. 2017). IPBES empha

patory processes is essential.

ANNOUNCEMENT

Call for Papers for "Future scenarios for socio-ecological production landscape and seascape"

Kazuhiko Takeuchi¹ · Osamu Saito² · Shizuka Hashimoto³ · Shunsuke Managi⁴ · Masahiro Aiba⁵ · Takehisa Yamakita⁶

Published online: 27 July 2017 © Springer Japan KK 2017

Introduction

Core research agendas for sustainability science include the following: (1) co-designing future scenarios and visions with a participatory approach, (2) integrating indigenous and local knowledge (ILK) systems into both scientific knowledge and future scenarios, and (3) the formulation of actions to transform society toward a more sustainable future (Miller et al. 2014; Schneider and Rist 2014; Kishita et al. 2016).

In 2016, The Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) approved a methodological assessment report on scenarios and models of biodiversity and ecosystem services. This report guides experts regarding the use of scenarios and models to per-

In total, 32 abstracts were submitted, and 21 were selected for this special feature

eBook Series "Sciences for Sustainable Societies" (Springer Nature)

http://www.springer.com/series/11884

Book title (tentative): Mapping Social-ecological Production Landscapes, Stakeholder, Policy and Action

Objectives:

- 1) Generate useful knowledge and mapping (visualization) tools to development of local solutions for local challenges, and indications of how this might contribute to effective implementation and collaboration across different stakeholders.
- 2) Map out the current research landscape surrounding this topic to identify research gaps, challenges, and success factors, with a view to strengthening future biodiversity-related Science-Policy Interfaces (SPIs).
- Present an alternative understanding on the measures for sustainable utilization and conservation of resources by integrating indigenous and local knowledge (ILK) systems into both scientific knowledge and future scenarios through participatory approaches; and

Schedule:

- Chapter manuscript submission: Aug./Sept. 2018
- Publication: Aug./Sept. 2019

Thank you for your attention

For more information: Email: saito@unu.edu PANCES website: http://pances.net/top_eng/

Acknowledgement:

This research has been funded by the Environment Research and Technology Development Fund (S-15 "Predicting and Assessing Natural Capital and Ecosystem Services" (PANCES)) of Ministry of the Environment, Japan.