TPM8 - Session 4

TPM-related Activities in each

Priority Research Area and Future Collaborations

The Management of Refractory Organic Matter in Water Environment

Soon-Ju Yu

National Institute of Environmental Research(NIER)

Content

2011 TPM (21 Nov. 2011)

- I. The Management of Organic Matter for Water Quality Conservation in Korea
- II. Status of Organic matter in Water Environment of Korea
- **III. Discharge Load of Organic Matter**
- IV. The Effect of Organic Matter in Drinking Water Sources
- V. The Change of Organic Matter Index
- VI. Research Project

I. The Management of Organic Matter for Water Quality Conservation in Korea

Research National Institute of Environmental Research

Goals of Water Quality Management

Water Environment Management Master Plan (2006~2015)

4 Object and Vision

- To create clean water environment where our children can swim with fish
- Ecologically healthy water environment and safe water free of harmful substances

Core indicators

- Maintaining the nationwide quality of 85% of the water at high levels under the revised Water Quality Conservation Act
- Restoring 25% of non-natural stream(21,800) into natural streams
- Creating 30% of the buffer zones in the upper streams of water quality sources as Riverine Ecobelt
- **4** Number of public health criteria will be increased from 9 to 30
 - Number of specific water quality hazard criteria will be increased from 17 to 35

Notional Institute of Environmental Research

Goals of Water Quality Management

Securing Fishable and Swimmable Rivers & Lakes

Perform Basic Research Restore Aqua-eco System Manage Hazardous Materials

Extend Basic Infra

Research National Institute of Environmental Research

Change of Water Quality Standard

A National Water Quality Management Standard for human health and sound aquatic environment

- **4** Water Quality and Aquatic Ecosystem
 - Water quality chemical standards focus on human health
 - Consider the effect of pollution on aquatic ecosystem
 - 5 grades in the existing category were increased to 7 in 2007 to more specifically explain water quality
 - Standard for human health protection (17)
 - Standard for the living environment (5) / 7th grade
 - Water quality biological feature of aquatic ecosystem, 4th grade

Water Quality Standard (WQS)

• River and Stream, Lake (before 2007)

Physic-chemical and organism-based environmental standard (5 grades)

classification	class	рН	BOD COD*	SS	DO	Total Coliform	TP *	TN *		
	Ι	6.5~8.5	≤ 1	≤ 25 ≤ 1 *	7.5 ≥	≤ 50	≤ 0.010	≤ 0.200		
Living Environment	II	6.5~8.5	≤ 3	≤ 25 ≤ 5 *	5 ≥	≤ 1,000	≤ 0.030	≤ 0.400		
	III	6.5~8.5	≤ 6	≤ 25 ≤ 15 *	5 ≥	≤ 5,000	≤ 0.050	≤ 0.600		
	IV	6.5~8.5	≤ 8	≤ 100 ≤ 15 *	2 ≥	-	≤ 0.100	≤ 1.0		
	V	V6.5~8.5 \leq 10No floating matter such as garbage2 \geq - \leq 0.150								
Protection of human health (9)	Cd \leq 0.01, As \leq 0.05 CN ND, Hg ND, Organic phosphorus ND, Pb \leq 0.1, Cr+6 0.05, PCB ND, ABS \leq 0.5									

Water Quality Standard

4 Standard for the living environment

- Animated character helps understand the environmental standard easily
- COD, TP were included to make up for water quality management from Jan. 2010

Stream and river		ər	State	nH	BOD	COD	TP		SS	DO	Coliforms (No/100mL)
		((Character)	PT	(mg/L)	(mg/L) (mg/	L)	(mg/L)	(mg/L)	Total coli.	Fecal coli.
Very Good		Ia	<u>e</u>	6.5 ~ 8.5	≤1	≤2	≤0.0	2	≤25	≥7.5	≤50	≤10
Good		Ib	<u>~</u>	6.5 ~ 8.5	≤2	≤4	≤0.0	4	≤25	≥5.0	≤500	≤100
Fairly Good		II	õ	6.5 ~ 8.5	≤3	≤5	≤0.1	L	≤25	≥5.0	≤1,000	≤200
Fair		III	8	6.5 ~ 8.5	≤5	≤7	≤0.2	2	≤25	≥5.0	≤5,000	≤1,000
Fairly Poor		IV		6.0 ~ 8.5	≤8	≤9	≤0	3	≤100	≥2.0	-	-
Poor		V	8	6.0 ~ 8.5	≤ 10	≤11	≤0.	5	1)	≥2.0	-	-
Very Poor		VI	3	-	>10	>11	>0.	5	-	<2.0	-	-
				COD	c	.c	DO	тр	TN	Chloro	Coliforms (I	No/100mL)
Lake		State	рН	COD (mg/L)	S (mg	S g/L)	DO (mg/L)	TP (mg/L)	TN (mg/L	Chloro phyll-a (mg/m ³)	Coliforms (I Total coli.	No/100mL) Fecal coli.
Lake Very Good	Ia	State	рН 6.5 ~ 8.	COD (mg/L) 5 ≤2	S (m <u>c</u>	S g/L)	DO (mg/L) ≥7.5	TP (mg/L) ≤0.01	TN (mg/L ≤0.2	Chloro phyll-a (mg/m ³) ≤5	Coliforms (f Total coli. ≤50	No/100mL) Fecal coli. ≤10
Lake Very Good Good	Ia Ib	State	рН 6.5 ~ 8. 6.5 ~ 8.	COD (mg/L) 5 ≤2 5 ≤3	S (mg <	S g/L) 1 5	DO (mg/L) ≥7.5 ≥5.0	TP (mg/L) ≤0.01 ≤0.02	TN (mg/L ≤0.2 ≤0.3	Chloro phyll-a (mg/m ³) ≤ 5 ≤ 9	Coliforms (N Total coli. ≤50 ≤500	No/100mL) Fecal coli. ≤10 ≤100
Lake Very Good Good Fairly Good	Ia Ib II	State	рН 6.5 ~ 8. 6.5 ~ 8. 6.5 ~ 8.	COD (mg/L) 5 ≤2 5 ≤3 5 ≤4	S (mg < < <	SS g/L) 55 5	DO (mg/L) ≥7.5 ≥5.0 ≥5.0	TP (mg/L) ≤0.01 ≤0.02 ≤0.03	TN (mg/L ≤0.2 ≤0.3 ≤0.4	Chloro phyll-a (mg/m ³) ≤ 5 ≤ 9 ≤ 14	Coliforms (1 Total coli. ≤ 50 ≤ 500 $\leq 1,000$	No/100mL) Fecal coli. ≤10 ≤100 ≤200
Lake Very Good Good Fairly Good Fair	Ia Ib II	State	 pH 6.5 ~ 8. 6.5 ~ 8. 6.5 ~ 8. 6.5 ~ 8. 	COD (mg/L) 5 ≤2 5 ≤3 5 ≤4 5 ≤5	S (mg < < < < <	SS g/L) 31 35 35 35	DO (mg/L) ≥7.5 ≥5.0 ≥5.0 ≥5.0	TP (mg/L) ≤0.01 ≤0.02 ≤0.03 ≤0.05	TN (mg/L ≤0.2 ≤0.3 ≤0.4 ≤0.6	Chloro phyll-a (mg/m ³) ≤5 ≤9 ≤14 ≤20	Coliforms (1 Total coli. ≤ 50 ≤ 500 $\leq 1,000$ $\leq 5,000$	No/100mL) Fecal coli. ≤10 ≤100 ≤200 ≤1,000
Lake Very Good Good Fairly Good Fair Fairly Poor	Ia Ib II III IV	State	 pH 6.5 ~ 8. 6.5 ~ 8. 6.5 ~ 8. 6.5 ~ 8. 6.0 ~ 8. 	COD (mg/L) 5 ≤2 5 ≤3 5 ≤4 5 ≤5 5 ≤5	S (mg < < < < < < < <	55 (2)(L) (5) (5) (5) (5) (1)(2)(2) (2)(2)(2) (3)(2)(2)(2) (3)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)	DO (mg/L) ≥7.5 ≥5.0 ≥5.0 ≥5.0 ≥2.0	TP (mg/L) ≤0.01 ≤0.02 ≤0.03 ≤0.05 ≤0.10	TN (mg/L ≤0.2 ≤0.3 ≤0.4 ≤0.6 ≤1.0	Chloro phyll-a (mg/m ³) ≤5 ≤9 ≤14 ≤20 ≤35	Coliforms (N Total coli. ≤ 50 ≤ 500 $\leq 1,000$ $\leq 5,000$	No/100mL) Fecal coli. ≤10 ≤100 ≤200 ≤1,000 -
Lake Very Good Good Fairly Good Fair Fairly Poor Poor	Ia Ib II III IV V	State	 pH 6.5 ~ 8. 6.5 ~ 8. 6.5 ~ 8. 6.5 ~ 8. 6.0 ~ 8. 6.0 ~ 8. 	COD (mg/L) 5 ≤2 5 ≤3 5 ≤4 5 ≤5 5 ≤8 5 ≤10	S (mg < < < < < < : : : : : : : : :	55 55 55 55 15 1)	DO (mg/L) ≥7.5 ≥5.0 ≥5.0 ≥2.0	TP ≤0.01 ≤0.02 ≤0.03 ≤0.05 ≤0.10 ≤0.15	TN (mg/L ≤0.2 ≤0.3 ≤0.4 ≤0.6 ≤1.0 ≤1.5	Chloro phyll-a (mg/m ³) ≤5 ≤9 ≤14 ≤20 ≤35 ≤70	Coliforms (N Total coli. ≤ 50 ≤ 500 $\leq 1,000$ $\leq 5,000$ -	No/100mL) Fecal coli. ≤10 ≤100 ≤200 ≤1,000 - -

1) No floating matter such as garbage

🕉 National Institute of Environmental Research

II. Status of Organic matter in Water Environment of Korea

Research National Institute of Environmental Research

Improvement of Water Quality

- The water quality of 4 major rivers has improved through the comprehensive water measures since 1996.
- Main water supply sources of 4 major rivers are well managed at 1~2 mg/L BOD.

Improvement of Water Quality

4 Improvement Rate of Aquatic Environmental Standard

- All streams nationwide are classified into 194 sections.
- Improvement rate of the standard focusing on BOD levels was 35.6 % in 2006, up from the 27.6 % in 2000.

🕉 National Institute of Environmental Research

Limitation in Water Quality Improvement

Limitation for the Management of Refractory Organic Matter in Water Environment

- COD has steadily increased since 2003 based on the data of stream (700 sites), lake(184 sites) during the last 15 years (1995~2009).
- COD/BOD in 4 major rivers is increasing $(1.2(^{\circ}95) \rightarrow 1.95(^{\circ}05))$

BOD, COD and COD/BOD in major 4 river

Limitation in Water Quality Improvement

Limitation for management of refractory organic matter in water environment

- Improvement rate of COD was lower than BOD in river during the last 5 years (2005~2009).
- Especially, improvement rate of COD in lake is lower than in river
 - COD standard in lake is stricter than river \rightarrow Different evaluation results
 - \Rightarrow Integrated standard for lake and river is needed

			river	lake				
Year	No. of sites	BOD			COD		COD	
		satisfied sites	improvement rate (%)	satisfied sites	improvement rate (%)	NO. Of sites	satisfied sites	improvement rate (%)
2005	578	369	63.8	292	50.5	160	21	13.1
2006	585	351	60.0	298	50.9	169	28	16.6
2007	645	449	69.6	339	52.6	181	20	11.0
2008	694	463	66.7	298	42.9	182	17	9.3
2009	696	464	66.7	287	41.2	182	11	6.0

😿 National Institute of Environmental Research

III. Discharge Load of Organic Matter

National Institute of Environmental Research

Discharge Load of Organic Matter

 COD increased because of increased chemical uses and refractory pollutant influx from non-point sources.

Discharge Load of Organic Matter

4 The change of treatment facilities

- Treatment facilities have continuously increased from 2003 to 2009.
 sewerage (432), manure (60), wastewater (61), agricultural &industrial (80)
- BOD loads of effluent from sewerage and individual wastewater were higher than others (2003~2009)

BOD load ('07) : sewerage > individual industrial > industrial > agricultural industrial > manure

Discharge Load of Organic Matter

4 Load from discharge sources

- BOD load from 4 major rivers amounts to a total of 8,906,341 kg/day
 - livestock >living > industry > land
 - Han river > Nakdong river > Guem river, Youngsan-sumjin river

🔊 🔆 National Institute of Environmental Research

Discharge Load of Organic Matter

G Discharge load from sources

- BOD discharge load from 4 major river is 814,217 kg/day, totally
 - livestock > land > living > landfill
 - Youngsan river > Nakdong river > Han river > Guem river
- Variation of discharge load : living $28.0\% \rightarrow 18.0\%$, industrial $26.4\% \rightarrow 4.8\%$

livestock $35.8\% \rightarrow 38.4\%$

land 7.6 % \rightarrow 20.8%, landfill 1.6% \rightarrow 18.0 %

Research National Institute of Environmental Research

IV. The Effect of Organic Matter in Drinking Water Sources

2020 National Institute of Environmental Research

Organic Matter in Treatment Process

Treatment efficiencies of organic matter in the purification facilities (7)

Classification		1 st		2 r			
		KMnO ₄ demand	тос	KMnO ₄ demand	тос		
		SN2	68.7	41.7	78.1	54.7	
		SN3	82.4	71.1	89.2	67.6	
Advanced	River	SN4	68.2	40.9	79.3	37.9	
process		SG	70.9	34.1	78.0	45.2	
		SS	69.5	40.1	74.0	41.4	
		average	71.9	45.6	79.7	49.4	
		SH	63.2	49.8	-	-	
	River	SN1	59.2	26.9	80.0	57.7	5
Rapid		SP	53.7	7.9	65.3	14.4	4
filtration		LP	54.3	29.9	73.1	38.2	
Process	Lako	LD	52.5	28.2	78.1	38.2	
	Lake	LJ	59.2	38.6	-	-	
		average	57.0	25.2	74.1	37.1	Research

20

Effect of Organic Matter with CBPs

The Relationship of coefficients between CBPs formation and NOM

Formation	DOC	UV254	SUVA	>100k	<100k	<10k	<1k	Ν
THMFP	0.38	0.85	0.86	0.17	0.80	0.38	-	n = 20
HAAFP(2)	0.41	0.54	0.54	0.03	0.99	-	0.99	n = 33

(p> 0.005)

Research National Institute of Environmental Research

V. The Change of Organic Matter Index

National Institute of Environmental Research

4 The comparison of organic index

		DOD	CC	DD	TOC
	content	BOD ⁵	COD _{Mn}	COD _{Cr}	TOC
	Confirmation of refractory organic matter	×		0	0
Analytical	Analysis time	×	\triangle	\triangle	0
condition	Analytical error	×	\triangle	\triangle	0
	Repeatability	×	\triangle	\triangle	0
	Institutional instrument	0	0	×	×
	Available data	0	0	×	×
Application of	Unit load	0	×	×	×
enforcement	Load allocation	0	0	0	0
emoreement	Modeling	0	\triangle	×	\triangle
	Connection of water management strategy	×	×	\triangle	0
	Score	30	32	26	36
				fair (2)	(1)

National Institute of Environmental Research

 \triangle . Idl (5),

4 Advantage of new index

COD_{Cr}

- Possible to measure total organic matter including refractory organic matter
- Good repeatability with high degradability of organic matter
- Very effective to consider design of treatment facility and treatment efficiency
- Easy to manage data related to wastewater

TOC

- Precise method to measure organic carbon including refractory and autochthonous organic matter
- Possible to control and manage the treatment facilities with rapid measurement
- Automated system
- Predict formation potential of disinfection byproduct in drinking water
- Rapid response to emergency accidents and real - time monitoring

බාර්ග වේදී National Institute of Environmental Research

Disadvantage of new index

COD _{Cr}	TOC
 Lack of nationwide data Depends on characteristic of sample Secondary pollution such as chromium and mercury Data-conversion is needed for water 	 Lack of source data such as industrial and sewerage facilities Data-conversion is needed for wat quality modeling
 chromium and mercury Data-conversion is needed for water 	 Data-conversion is needed for wa quality modeling High costs for buying and

quality modeling

- Bigger Error range in lower concentration

- Potential instrumental errors

maintaining instrument

🕗 National Institute of Environmental Research

water

4 Application of Modeling to simulate Water Quality

			POD									
Subject	Modal	DO		COD							TIC	
Subject	Widder	DO	BOD		TOC	DOC	Labile	Refractory	POC	Labile	Refractory	IIC
							DOC	DOC		POC	POC	
	QUAL2E	0	0									
	QUALKO2	0	0	0								
RIVER	QUAL-NIER	0	0		0	0						
/LAKE	WASP	0	0		0	0			0			
	EFDC	0		0	0	0			0	0	0	
	CE-QUAL-W2	0			0	0	0	0	0	0	0	0
	AnnAGNPS				0							
	ANSWERS				0							
	SWMM	0	0	0								
BASIN	SWAT	0	0									
	MOHID	0			0	0	0	0	0			0
	HSPF	0	0									0
	CAMEL	0		0	0	0	0	0	0	0	0	0

🕉 National Institute of Environmental Research

4 Comparison of scores from CODcr and TOC

content	COD _{Cr}	ТОС	
International application ¹	3	4	
Representativeness ¹	3	3	
Monitoring program ¹	1	4	
Analytical technique ¹	4	4	
Precision/Accuracy ¹	3	3	
Analytical time ¹	2	3	
Instrument price ¹	3	1	
Handling of operation ¹	2	3	
Relation with byproduct ¹	1	3	Level score : 0. none,
Relation with present index	2	2	1 very poor 2 poor
Foreign data availability	3	4	3 fair
Analytical experience	1	2	4 good X Chang E. E.(2005) "Evaluation of
Survey of unit load	0	2	Source Water Quality Standards for Total Coli forms, TOC, and COD in
Total score			Taiwan"

4 Coefficient relationship with each item in monitoring data

- Coefficient relationship with BOD and COD was high in surface water over the past 10 years (2000~2009).
- SS, TP, PO₄-P, Chl-a were more correlated with COD rather than with BOD.

Item	DO	BOD	COD	SS	TN	ТР	PO ₄ -P	Chl-a
рН	0.2	0.08	0.08	0.06	0.03	0.01	-0.02	0.18
DO	1	-0.10	-0.18	-0.25	0.01	-0.15	-0.13	-0.07
BOD		1	0.80	0.57	0.49	0.65	0.55	0.51
COD			1	0.68	0.46	0.70	0.59	0.58
SS				1	0.36	0.60	0.45	0.51
TN					1	0.65	0.65	0.19
ТР						1	0.86	0.40
PO ₄ -P							1	0.26

🕉 National Institute of Environmental Research

4 Coefficient relationship with TOC in monitoring data

 TOC showed good coefficient relationship with BOD and COD with statistical significance level in major water monitoring sites (more than 8,000 data) in 2010.

item	BOD	COD	SS	ТР	chl -a
тос	0.73	0.81	0.58	0.70	0.49
BOD	1.00	0.82	0.63	0.72	0.64
COD		1.00	0.69	0.76	0.61
SS			1.00	0.73	0.58
ТР				1.00	0.52

Research National Institute of Environmental Research

4 Coefficient relationship with TOC in monitoring data

- TOC showed good coefficient relationship with BOD and COD with statistical significance level in TMDL(total management daily load) monitoring sites (more than 15,320 data) during 2007~2010.7.
- TOC was more correlated with COD rather than with BOD by all monitoring data

item	DO	BOD	COD	SS	TN	ТР	тос	Flow
рН	0.21	-0.05	-0.07	-0.06	-0.17	-0.15	-0.10	0.04
DO	1.00	-0.14	-0.22	-0.34	0.04	-0.24	-0.22	-0.20
BOD		1.00	0.88	0.67	0.57	0.78	0.83	0.05
COD			1.00	0.72	0.56	0.82	0.92	0.11
SS				1.00	0.36	0.68	0.66	0.33
TN					1.00	0.67	0.54	-0.01
ТР						1.00	0.79	0.12
тос							1.00	0.07

నిత్రి National Institute of Environmental Research

4 Coefficient relationship with TOC in sewerage wastewater

 Both TOC and DOC showed good coefficient relationship with BOD and COD with statistical significance level in effluent from sewerage facility(Dalseo).

Item	BOD	COD	SS	T-N	T-P	тос	DOC
COD	0.48	1					
SS	0.81	0.65	1				
T-N	0.70	0.54	0.81	1			
T-P	0.63	0.79	0.58	0.44	1		
тос	0.85	0.83	0.05	0.00	0.65	1	
DOC	0.86	0.91	0.08	0.02	0.75	0.98	1

National Institute of Environmental Research

4 Establishment of TOC for WQS

- TOC distribution in surface water, achievement of goal level, disinfection byproduct formation potential
- Consider TOC standard or guideline in other countries

Level		State	River and Stream		Lake	River/Lake
		(character)	BOD	COD	COD	тос
Very good	Ia	æ	1	2	2	?
Good	Ib	õ	2	4	3	?
Fair good	II	<u> </u>	3	5	4	?
Fair	III	8	5	7	5	?
Fair poor	IV	3	8	9	8	?
Poor	V	()	10	11	10	?
Very poor	VI	8	> 10	> 11	> 10	?

🔊 💞 National Institute of Environmental Research

VI. Research Project

National Institute of Environmental Research

Now

4 Revision of TOC in Water Quality Standard Method

- Comparison of combustion type and UV-persulfate type for TOC analysis of freshwater
 - Quality control
 - Oxidation rate of refractory organic matter by these types

Urea, Tartaric acid, L-glutamic acid, Sodium dodecylbenzenesulfonate, Caffeins, Lleucine, Fumaric acid

- Interference effect of inorganic carbon, Salinity
- Correction by existence of turbidity and algae
- Instrumental difference by filter size

Establishment of TOC standard to conserve water quality and aquatic ecosystem

2011 TPM (21 Nov. 2011)

Future Study

- A study on source of organic matter and background level
 - Investigation of authochthonus and allochthonous natural organic matter(NOM) in watershed
 - Behavior mechanism of natural organic matter and the relation with refractory organic matter
 - Investigation of TOC background level by soil characteristic, sediment and forest
 - Estimation on variation of organic matter depending on climate change
- A study on establishment of TOC effluent standard in sewerage treatment facility and industrial wastewater treatment
 - Treatment efficiency of TOC by specific type of industry
 - Best available treatment of TOC
 - Establishment of TOC standard for sewerage treatment and wastewater treatment facility

2011 TPM (21 Nov. 2011)

Thank you for your attention

National Institute of Environmental Research