International harmonization in the development of the test guideline for endocrine disrupting chemicals

> Norihisa Tatarazako (National Institute for Environmental Studies) 鑪迫 典久 (独立行政法人国立環境研究所)

Contents

- Testing methods for the endocrine disrupting chemicals
- Development of the fish testing
- Development of the Daphnia testing
- Problems and the future prospects

Testing methods for the endocrine disrupting chemicals (OECD, Japan)

Why we should develop the new tests methods for the endocrine disrupting chemicals?

•The current test guidelines are the acute /subacute toxicity tests.

Because individual "life or death" is the endpoint by the current examination, we could not evaluate the "disrupting".
It is difficult to know what will be at the next generation even if we examine the impact only for the first generation.
There is no multi-generation method in the current OECD test guidelines.

Evaluate the impacts of the mating / breeding / the reproduction (number of eggs, fertility rate)

Current OECD test guideline

Fish FO **F1** embryo juvenile breeding adult young 203 All tests begin \rightarrow 204 with the death fertilized! egg 210 hatch/death/growth 212 death/growth 215 death/growth Daphnia

OECD-TG projects in progress now (Ecotoxicity Testing)

	PJ No.	Comments	Project Lead
	1	EDTA : New TG for Copepod Reproduction and Development	SWE
	2.3	Avian Avoidance Studies	UK
	2.4	2-Generation Avian Toxicity	US
	7	Fish Embryo Toxicity Test	GER
	.8	EDTA : Enhanced Test Guideline 211: Daphnia Magna Reproduction Test	JPN
	2.9	Collembola Reproduction Test	DK
	12	EDTA : Development and Validation of a Fish Life-Cycle Test	US/GER /JPN
	13	EDTA : New TG for Mysid Life-Cycle Toxicity Test	US
Ğ	14	EDTA : Development and Validation of a New TG: Fish Sexual Development Test	DK
	2.16	EDTA : Development of a DRP on Fish (Long Term) Testing	US
	2.17	Avian Acute Toxicity	UK
	18	EDTA : Development and Validation of a new TG: 21-Day Fish-Screening Test	OECD /JPN

PJ No.	Comments	Project Lead
2.19	EDTA : Development and Validation of Methods in Amphibians	US/
2.20	New TG on Determination of Developmental Toxicity of a Test Chemical to Dipteran Dung Flies	EC
2.22	New TG on <i>Hypoaspis Aculeifer</i> Reproduction Test	NL
2.23	New GD on Application of the Step Down Approach (or Upper Threshold Concentration) as a Limit Test for Acute Fish Toxicity Testing	F
2.24	Update of TG 209: Activated Sludge Respiration Inhibition Test	UK
2.25	EDTA : New DRP on Molluscs Life-Cycle Toxicity Testing	UK/GER
2.26	EDTA: New TG: The 21-Day Female Stickleback endocrine screening assay	UK
2.27	EDTA : New TG: Fish Short Term Reproduction Assay	
2.28	EDTA : New TG on a Chironomid Life- Cycle Toxicity Test	GER
2.29	New GD on Dung Beetles	EC
2.30	Fish Testing Framework	

Development of the fish testing

Importance of medaka *Oryzias latipes* in chemical toxicity testing in East Asian countries

Very common fish in fresh water area in East Asian countries
 (Same genius Oryzias sps. are also in South-east asian countries (One of the dominant fish in western pacific freshwater environment))

> The habitat close to human active environment (Rice field, small canal around agriculture farm, and sub urban area)

>Small size and short term life-cycle, easy for fish culture, exposure testing and it is available to reduce the waste of test chemical.

> Well-known and established the studies on development, sexual maturation, and reproduction

Distribution of medaka *Oryzias latipes* species in Eastern Asia

Oryzias latipes and sinensis (Japanese medaka and Chinese medaka)

Both Species of Medaka are Living in Korean Freshwater In Japan, only Latipes is habited, and In China, only sinensis is habited

Oryzias latipes latipes (Orange red)

Oryzias latipes sinensis (obtained from NIER)

Oryzias latipes latipes (Wild type) primer (suitable for both of DMY and DMRT1)

PG17.5 CCGGGTGCCCAAGTGCTCCCGCTG

PG17.6 GATCGTCCCTCCACAGAGAAGAGA

PCR condition

denature	: 94 degree, 2 min.
denature annealing extension	: 94 degree, 30 sec. : 55 degree, 45 sec. : 72 degree, 2 min. 32 cycles
extension	: 72 degree, 2 min.

Condition for amplification of DMY and DMRT1

DMY and DMRT1 of individual type of Medaka

It is known that Mekong medaka and Celebes medaka have not DMY gene!!

Comparison of sensitivity for producing VTG with three species

VTG mRNA Expression in Liver

Reverse Transcription - PCR

Fish ecotoxicity testing: Current Status in medaka

< Popular test methods>

Acute toxicity test: OECD TG203, Exposure stage and period: Adult, 96 hours Endpoint: 96 h LC50,

Early life-stage toxicity test: OECD TG210 Exposure stage and period Egg, Larva and Juvenile, 38days in medaka (10days for egg, 28 days for larva and juvenile) End point LC50 at end of test, LOEC on growth at end of test

< Test methods for EDCs>

Life-cycle test: Partial-life, full-life, Multi-generation, etc. Exposure stage and period: Egg, Larva, Juvenile, and Adult, over 70days in medaka End point: LOEC on growth, sexual maturation, sex change and reproduction at end of test

Comparison of test stage between full-life cycle test(FLCT) and 2-generation test(2GT)

Glass tank

Hatching machine

Live food

Artemia salina

Breeding system of Medaka

SPEED'98 < May 1998~ > Strategic Programs on Environmental Endocrine Disrupters **Evaluation of 69 Chemicals in the list Under the Framework of SPEED'98 <u>36 Tests Completed (2006)</u>** 69 66 chemicals Not Measured 30 Not confirmed to be in Actual Use in Japan Measured **Potential Hazardous Aspects** Not Detected in Japan other than Endocrine Disruption Detected No Reliable Data Evaluation of **Reliability** of Unintentional the Data **Products** etc

Pesticides

Evaluated chemicals In SPEED'98

Material	VTG	PLCT	FLCT	Results	Notes		
Tributyltin	CERI	CERI				before2001	
😅 Octyl phenol	CERI	CERI	CERI	Testis-ova		2001	
Nonyl phenol	CERI	CERI	CERI	Testis-ova		2002	
Di-n-butyl phthalate	CERI	CERI	CERI	Testis-ova		2003	
Octachlorostyrene	METO	CERI				2004	
Benzophenone	METO	CERI					
Dicyclohexyl phthalate	METO	CERI					
Di-(2-ethylhexyl)phthalate	METO	CERI					
Triphenyltin	NIES	NIES					
Butyl benzyl phthalate	NIES	NIES					
Diethyl phthalate	NIES	NIES					
Diethylhexyl adipate	NIES	CERI					
Pentyl phenol	CERI	CERI	CERI				
Pentachlorophenol	NIES	NIES					
Amitrole	NIES	NIES					
Bisphenol A	METO	NIES	NIES	Testis-ova			
2,4-Dichlorophenol	NIES	NIES					
4-Nitrotoluene	METO	CERI					
Dipentyl phthalate	METO	CERI					
Dihexyl phthalate	METO	CERI					
Dipropyl phthalate	METO	CERI					
Hexachlorobenzene (HCB)	CERI	CERI			POPs		
Hexachlorocyclohexane	METO	CERI					
Chlordane	METO	CERI			POPs		
trans-Nonachlor	METO	CERI					
o,p-DDT	CERI	CERI			POPs		
p,p-DDT	NIES	NIES			POPs		
p,p-DDE	NIES	NIES					
p,p-DDD	NIES	NIES					
Aldrin	NIES	NIES			POPs		
Endrin	NIES	NIES			POPs		
Dieldrin	NIES	NIES			POPs		
Heptachlor	METO	CERI			POPs		
Mirex	METO	CERI			POPs		
Kelthane	CERI	CERI					
Malathion	METO	CERI					
Permethrin	CERI	CERI					
17β-Estradiol		NIES	CERI	Testis-ova			
17α-Ethinyl Estradiol	CERI	NIES&CERI	NIES	Testis-ova			
Metyl testosterone	CERI		CERI				
Fultamide	CERI		CERI				

Results of EDCs with Medaka test

(Nonyl phenol(NP),4-t-Octyl phenol(OP), Bisphenol A(BPA), o,p'-DDT)

Tosting Mothods	Endonointo	LOEC (µg/L)			
	Endopoints	NP	OP	BPA	DDT
Estrogen receptor binding assay	Binding to receptor	+	+	+	+
Vitellogenin assay	Vitellogenin induction	22.5	64.1	334	1.50
Partial life-evelo assav	Vitellogenin induction	11.6	11.4	890	3.36
	Testis-ova development	11.6	23.7	890	0.195
	Vitellogenin induction	-	9.92	>1179	0.522
Full life-cycle assay	Testis-ova development	<u>17.7</u>	<u>30.4</u>	<u>1179</u>	<u>0.522</u>
	Fertility	(17.7)	82.3	>1179	0.522
	NOEC	6.08	9.92	247	0.145

Detailed results of the fish testing

Chemical	Vitellogenin Assay	Partial Life Cycle (extended early life-stage)	Full Life Cycle
17β-Estradiol	↑ ♂ 14 & 21-d 22ng/L	↓ BL & BW 71 ng/L; ↑ testis-ova ♂ 24 ng/L; ↑ LSI ♀ 2.5 & ♂ 7.5 ng/L; ↑ VTG ♂ 0.9 & ♀ 24 ng/L	F_0 ↓ fecundity 28 ng/L; ↓ egg fertilization 8.7 ng/L; ↑ testis-ova ♂ 28 ng/L; ↑ LSI ♂ & ♀ 28 ng/L; ↑ VTG ♂ 8.7 ng/L; ↑ body length 8.7 ng/L; no male or female VTG change at 8.7 ng/L
Ethinyl Estradiol	↑ ♂ 21-d 15 ng/L ↑ ♀ 21-d 61 ng/L	 ↑ GSI ♂ 93 ng/L; ↑ testis-ova ♂ 25 ng/L; ↑ LSI ♂ 25 ng/L; ↑ VTG ♂ 25 & ♀ 93 ng/L 	F ₀ ↑ time to hatching 94 ng/L; ↑ testis-ova 3° 29 ng/L; ↓ egg fertilization 9.3 ng/L; ↑ VTG 3° 9.3 ng/L F ₁ ↑ VTG 3° as low as 1 ng/L
Bisphenol A	↑ ♂ 14-d 72 μg/L and 21-d 334 μg/L	 ↑ hatching time 4,410 µg/L; ↑ testis-ova ♂ 890 µg/L; ↑ LSI ♀ 2,120 & ♂ 4,410 µg/L; ↑ VTG ♂ 470 & ♀ 2,120 µg/L 	 F₀ ↑ mortality1,185 µg/L; ↑ LSI ♂ 1,185 ng/L F₁ ↑ body weight & length 1,185 µg/L; ↑ testis-ova ♂ (2/10) 1,185 µg/L; ↑ VTG ♂ 1,185 µg/L
<i>p,p</i> '-DDE	ி∂ 14 & 21-d 54 μg/L	 ↑ time to hatching & mortality 32 µg/L; ↑ testis-ova ♂ 32 µg/L; erratic LSI; ↑ VTG ♂ 32 & ♀ 111 µg/L 	In progress

Reference

Comparison of test condition with other test species

	Fathead minnow (<i>Pimephales</i> <i>promelas)</i>	Medaka (<i>Oryzias latipes)</i>	Zebrafish (<i>Danio rerio)</i>
Test type	Flow-through	Flow-through	Flow-through
Water temperature	25 ± 2℃	24± 2°C	$26 \pm 2^{\circ}C$
Photoperiod (dawn /dusk transitions are optional, however not considered necessary)	16 h light, 8 h dark	16 h light, 8 h dark	16 h light, 8 h dark
Test chamber size	10 L (minimum)	2 L (minimum)	4 L (minimum)
Age of test organisms	Reproductively mature fish (not senescent)	Reproductively mature fish (not senescent)	Reproductively mature fish (not senescent)
Wet weight of adult fish (g)	Females: $1.5 \pm 20\%$ Males: $2.5 \pm 20\%$	Females: 0.35 ± 20% Males: 0.35 ± 20%	Females: 0.65 ± 20% Males: 0.5 ± 20%

Our suggestion

- We Japan propose new testing method using the Medaka for OECD.
- We have a lot of know-how about the examination of the Medaka fish.
- In addition, we have a lot of data of the Medaka about the endocrine disrupting chemicals(SPEED'98).
- There is two kinds of Medaka in China, Korea, Japan, but the property/sensitivity are very similar.
- Joint ownership of data and the know-how of the Medaka is possible around the 3 countries.
- We (Asian scientists) will cooperate in future and should increase more information about EDCs based on it.

Development of the Daphnia testing

Different Endocrine Systems Between Vertebrates and Invertebrates

Vertebrates (e.g., Mammals)

Invertebrates (e.g., Arthropods)

Androgen Estrogen

DES EE2, etc.

Nonylphenol Bisphenol A, etc. **Ecdysteroid Juvenile hormone**

Insect Growth Regulators (IGRs)

?

Endocrine System in Invertebrates (e.g., Arthropods)

- Endogenous hormones
 - Ecdysteroids
 - Juvenile hormones
- Hormone mimics
 - Insect growth regulators (pesticides)

Crustacean Reproduction Toxicity Tests in OECD

- Draft DRP on mysid life cycle toxicity test (USA)
- Draft proposal on a new test guideline copepod development and reproduction test

(Sweden)

• *Daphnia magna* reproduction test

(TG 211; OECD 1998)

• Proposal for enhanced TG 211 for endocrine disrupting chemicals from Japan

Daphnia magna

Kingdom Animalia
 –Phylum Arthropoda

Class Crustacea
 Order Cladocera
 Cyclic Parthenogen

»Family Daphniidae

- Genus Daphnia

Species Daphnia magna

Reproductive System and Sex Determination in Cladocerans

- Cyclic parthenogenesis
- Environmental sex determination
- Emergence of males and initiation of sexual reproduction by
 - -Short photoperiod
 - -Low food concentration
 - -High population density, etc.

Experimental Design

Based on OECD TG 211 Daphnia magna reproduction test

Juvenile Hormones and Their Analogs

Juvenile hormones

- JH I
- JH II
- JH III
- Methyl farnesoate

• Insect growth regulators

- Fenoxycarb
- Pyriproxyfen
- Methoprene
- Kinoprene
- Epofenonane
- Hydroprene

Juvenile Hormones and Their Analogs

Juvenile hormones

Juvenile hormone analogs (Insect Growth Regulators; IGRs)

juvenile hormone III

fenoxycarb

methoprene

pyriproxyfen

methylfarnesoate

Offspring Sex Ratio

Male Neonates Induction in Different Taxonomical Groups

Other Daphnids in the Genus Moina

M. macrocopa

M. micrura

Other Daphnids in the Genus Ceriodaphnia

C. dubia

C. reticulata

Change in Offspring Sex Ratio Exposed to Fenoxycarb

JH analogs increase male production in cladoceran Switching from asexual to sexual cycle can be a marker for endocrine disruption

Experimental Design EnhancedTG211 Based on OECD TG 211 Daphaic magna reproduction test

collaborated organizations at ring test

- Finnish Environment Institute, Finland
- French National Institute for Industrial Environment and Risks (INERIS), France
- 3. Laboratoire Ecotoxicité et Santé Environnementale (ESE) Equipe CNRS UMR, France
- 4. Aachen University, Germany
- 5. Bayer CropScience AG, Germany
- Institute for Biological Analysis and Consulting (IBACON), <u>Germany</u>
- 7. UMWELTBUNDESAMT (UBA), Germany
- 8. Laboratory of Hydrobiology, <u>Hungary</u>
- 9. National Institute of Health, <u>Italy</u>
- 10. Agricultural Chemicals Inspection Station (ACIS), Japan
- 11. Kureha Special Laboratory, Co., Ltd., Japan
- 12. National Institute for Environmental Studies (NIES), Japan

Nijhout, H.F., 1994. Insect Hormones. Princeton University Press, New Jersey.

Publications in Refereed Journals and Proceedings

- Tatarazako, N., Oda, S., Sonobe, H., Watanabe, H., Morita, M., and Iguchi, T., 2002. Insecticides for juvenile hormone agonists exert the influence on the occurrence of the male daphnid. Proc. Jpn. Soc. Comp. Endocrinol., 17: 87.
- Tatarazako, N., Oda, S., Watanabe, H., Morita, M., Iguchi, T., 2003. Juvenile hormone agonists affect the occurrence of male *Daphnia*. Chemosphere 53, 827–833.
- Tatarazako, N., Oda, S., Abe, R., Morita, M., Iguchi, T., 2004. Development of a screening method for endocrine disruptors in crustaceans using *Daphnia magna* (Cladocera, Crustacea). Environmental Science 17, 439-449 (in Japanese with English abstract).
- Oda, S., Tatarazako, N., Watanabe, H., Morita, M., Iguchi, T., 2005. Production of male neonates in *Daphnia magna* (Cladocera, Crustacea) exposed to juvenile hormones and their analogs. Chemosphere 61, 1168-1174.
- Oda, S., Tatarazako, N., Watanabe, H., Morita, M., Iguchi, T., 2005. Production of male neonates in four cladoceran species exposed to a juvenile hormone analog, fenoxycarb. Chemosphere 60, 74-78.
- Watanabe, H., Tatarazako, N., Oda, S., Nishide, H., Uchiyama, I., Morita M., Iguchi, T., 2005. Analysis of expressed sequence tags of the water flea, *Daphnia magna*. Genome 48: 606-609.
- Oda, S., Tatarazako, N., Watanabe, H., Morita, M., Iguchi, T., 2006. Genetic differences in the production of male neonates in *Daphnia magna* exposed to juvenile hormone analogs. Chemosphere 63, 1477-1484.
- Tatarazako, N. and Oda, S., 2007. The water flea *Daphnia magna* (Crustacea, Cladocera) as a test species for screening and evaluation of chemicals with endocrine disrupting effects on crustaceans. Ecotoxicology, 16: 197-203.
- Kato, Y., Kobayashi, K., Oda, S., Tatarazako, N., Watanabe, H., and Iguchi, T., 2007. Cloning and characterization of the ecdysone receptor and ultraspiracle protein from the water flea *Daphnia magna*. Journal of Endocrinology, 193: 183-194.
- Watanabe, H., Takahashi, E., Nakamura, Y., Oda, S., Tatarazako, N., and Iguchi, T., 2007. Development of a *Daphnia magna* DNA microarray for evaluating the toxicity of environmental chemicals. Environmental Toxicology and Chemistry, 26: 669-676.
- Oda, S., Tatarazako, N., Dorgerloh, M., Johnson, R., Kusk, K. O., Leverett, D., Marchini, S., Nakari, T., Williams, T., Iguchi, T., 2007. Strain difference in sensitivity to 3,4-dichloroaniline and insect growth regulator, fenoxycarb, in *Daphnia magna*. Ecotoxicology and Environmental Safety, 67: 399-405.
- Kato, Y., Kobayashi, K., Oda, S., Colbourne, J. K., Tatarazako, N., Watanabe, H., Iguchi, T., 2008. Molecular cloning and sexually dimorphic expression of DM-domain genes in *Daphnia magna*. Genomics, 91: 94-101.

Publications in Refereed Journals and Proceedings

- Tatarazako, N., Oda, S., Sonobe, H., Watanabe, H., Morita, M., and Iguchi, T., 2002. Insecticides for juvenile hormone agonists exert the influence on the occurrence of the male daphnid. Proc. Jpn. Soc. Comp. Endocrinol., 17: 87.
- Tatarazako, N., Oda, S., Watanabe, H., Morita, M., Iguchi, T., 2003. Juvenile hormone agonists affect the occurrence of male *Daphnia*. Chemosphere 53, 827–833.
- Tatarazako, N., Oda, S., Abe, R., Morita, M., Iguchi, T., 2004. Development of a screening method for endocrine disruptors in crustaceans using *Daphnia magna* (Cladocera, Crustacea). Environmental Science 17, 439-449 (in Japanese with English abstract).
- Oda, S., Tatarazako, N., Watanabe, H., Morita, M., Iguchi, T., 2005. Production of male neonates in *Daphnia magna* (Cladocera, Crustacea) exposed to juvenile hormones and their analogs. Chemosphere 61, 1168-1174.
- Oda, S., Tatarazako, N., Watanabe, H., Morita, M., Iguchi, T., 2005. Production of male neonates in four cladoceran species exposed to a juvenile hormone analog, fenoxycarb. Chemosphere 60, 74-78.
- Watanabe, H., Tatarazako, N., Oda, S., Nishide, H., Uchiyama, I., Morita M., Iguchi, T., 2005. Analysis of expressed sequence tags of the water flea, *Daphnia magna*. Genome 48: 606-609.
- Oda, S., Tatarazako, N., Watanabe, H., Morita, M., Iguchi, T., 2006. Genetic differences in the production of male neonates in Daphnia magna exposed to juvenile hormone analogs. Chemosphere 63, 1477-1484.
- Tatarazako, N. and Oda, S., 2007. The water flea *Daphnia magna* (Crustacea, Cladocera) as a test species for screening and evaluation of chemicals with endocrine disrupting effects on crustaceans. Ecotoxicology, 16: 197-203.
- Kato, Y., Kobayashi, K., Oda, S., Tatarazako, N., Watanabe, H., and Iguchi, T., 2007. Cloning and characterization of the ecdysone receptor and ultraspiracle protein from the water flea *Daphnia magna*. Journal of Endocrinology, 193: 183-194.
- Watanabe, H., Takahashi, E., Nakamura, Y., Oda, S., Tatarazako, N., and Iguchi, T., 2007. Development of a *Daphnia magna* DNA microarray for evaluating the toxicity of environmental chemicals. Environmental Toxicology and Chemistry, 26: 669-676.
- Oda, S., Tatarazako, N., Dorgerloh, M., Johnson, R., Kusk, K. O., Leverett, D., Marchini, S., Nakari, T., Williams, T., Iguchi, T., 2007. Strain difference in sensitivity to 3,4-dichloroaniline and insect growth regulator, fenoxycarb, in *Daphnia magna*. Ecotoxicology and Environmental Safety, 67: 399-405.
- Kato, Y., Kobayashi, K., Oda, S., Colbourne, J. K., Tatarazako, N., Watanabe, H., Iguchi, T., 2008. Molecular cloning and sexually dimorphic expression of DM-domain genes in *Daphnia magna*. Genomics, 91: 94-101.

Problems and the future prospects

There are few study examples that paid the attention to "impact to the Southeastern Asian ecosystem" by chemicals It may be necessary to build a tool generalizing data affecting

Southeastern Asian ecological effects

The scientist will have to in future to protect a Sou Asian ecosystem. It is preferable to use common technique and organism. In China, Korea and Japan , it is possible to cooperate.

