TPM11 - Session 4

PRA1. Freshwater Pollution- Progress in TPM Fresh Water

The Tripartite Presidents Meeting among CRAES, NIES and NIER

Progress in TPM Fresh Water

Chinese Research Academy of Environmental Sciences November, 2014

Contents

D Part I: Organization of the Workshop

Part II: Presentation No. 1

- **Part III: Presentation No. 2**
- **Part IV: Onsite Visit of Menlou Reservoir Basin**
- **D** Part V: Prospects

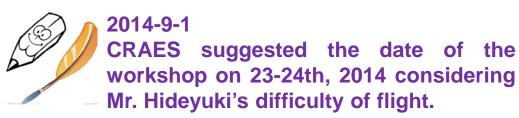
Part I

Organization of the Workshop

First Invitation of the workshop

2014-8-26

CRAES sent the invitation and agenda of the workshop on freshwater pollution control under the framework of TPM to NIER and NIES.


- > Date: Sep. 22-23th, 2014
- Venue: Yantai, China

Schedule: 4 Presentation(two from CRAES, one from NIES and one from NIER) Onsite Visit of Menlou Reservoir Basin

2014-8-29

Mr. Hideyuki in NIES replied and agreed to attend the workshop but has some difficulty in flight.

Rearrangement of the Workshop

2014-9-2

Mr. Hideyuki in NIES wrote to CRAES and noted that there would be another meeting during Sep. 22-25th, and hope to rearrange the date or specialist.

2014-9-2

CRAES replied to NIES that, rearrangement of the date would not be easy, hope NIES could reconsider to send another specialist.

Given that both CRAES and YEMC have well prepared for the workshop, not only the Yantai local Municipal Environmental Protection Bureau but also the Yantai Municipal Government would participate in the workshop.

2014-9-2

CRAES wrote to NIER to ask their advice of the workshop again but did not get any response from NIER.

Postpone and cancel of the Workshop

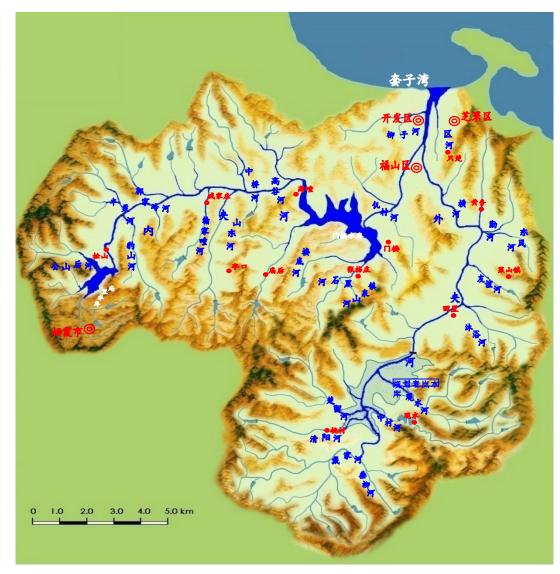
2014-9-11

CRAES wrote to NIES and NIER to suggest to postpone the date of the Workshop to the week of Oct. 12-17th, considering the time constraints of Visa for both NIES and NIER.

2014-10-15 NIES wrote to CRAES that they could not attend the workshop.

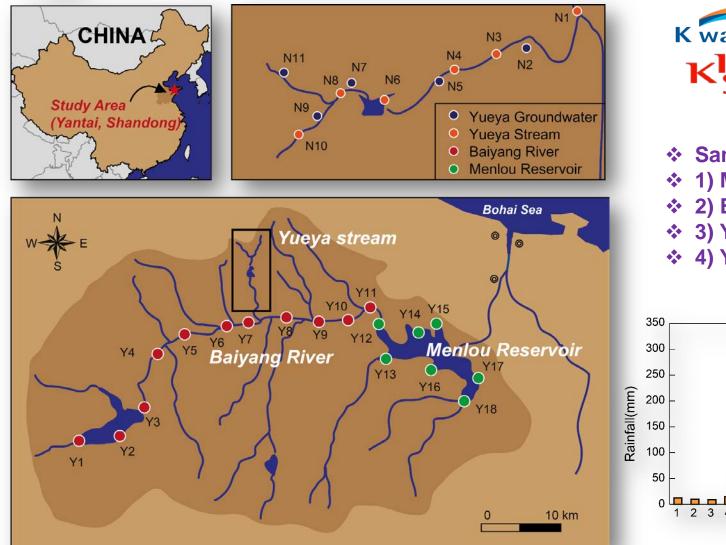
2014-10-27

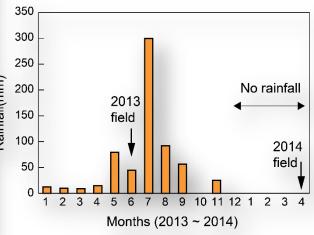
CRAES still could not get any positive response of the workshop from NIER, and decided to report the workshop directly on the TPM, considering the date of the TPM has approached.


Part II Presentation No. 1 Non-point pollution Control of Menlou Reservoir in Yantai China

Menlou River Basin

Tributary	Length (km)	Area (km²)		
Baoshan River	17.2	53		
Feili River	13.6	84		
Guojialing River	15.1	41		
Hanjiatuan River	16.1	34		
Shandong River	21	120		
Zhongqiao River	17.8	53		
Gaogu River	17	60		
Loudi River	21	93		


Name	Menlou Reservoir
Venue	Yantai Fushan
Storage Capacity	23.21 million m ³
Depth	Max16.68m,Average13m
Catchment Area	1077km ²
Flow	2.77m³/s
Flow Rate	2.77m/s



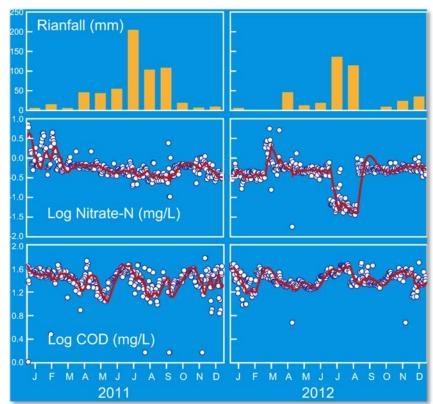
✤ Baiyang River watershed (1077 km2) in Yantai City, Shandong Province in East China. (121°50' ~ 121°18'E, 37°21' ~37°34'N)

- * Samples (2014):
- * 1) Menlou Reserovir
- 2) Baiyang River
- 3) Yueya Stream
- * 4) Yueya Groundwater

Water pollution & Purposes of This Study

■ NO₃-N and COD during two years (2011 ~ 2012)

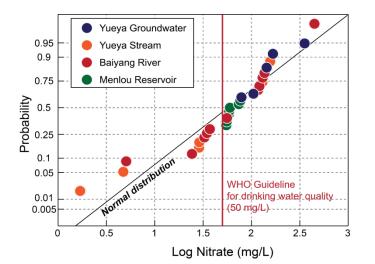
□ The average NO₃-N of this study area were 12.7 and 21.5 mg/L


 \checkmark The objectives are to assess the water quality status and to identify the major pollution sources.

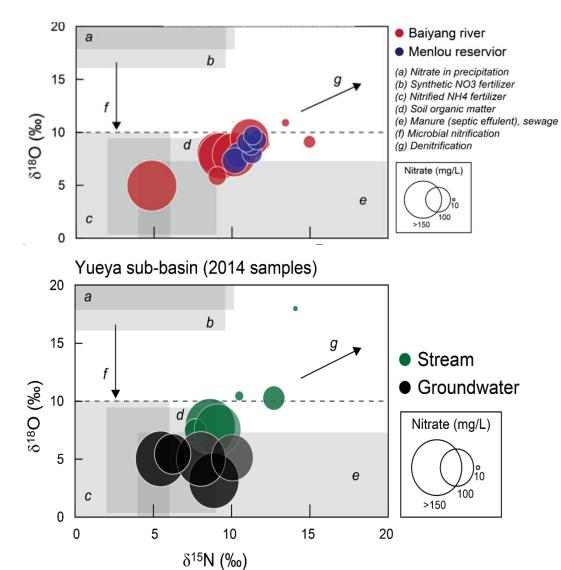
✓ For this, we sampled different water bodies and analyzed:

• Inorganic chemical compositions (pH, Cations, and Anoins)

• Dual isotopic values of nitrate (δ^{15} N and δ^{18} O)



Project for the Comprehensive Watershed
Management Study in Qingdao and Yantai to
Reduce Pollutants in the Yellow Sea
KOICA KIST KU
2012.2-2014.8



Analytical Results of Nitrate

- Many Samples exceeds the WHO guideline of nitrate
- Groundwater is highly vulnerable to the nitrate contamination

- Seong-Taek YUN Kyoung-Ho KIM (Korea University, Korea)
- ✓ Nitrate sources:
- 1) fertilization
- 2) Sewage (wastewater)

Nitrogen source & Tentative conclusions

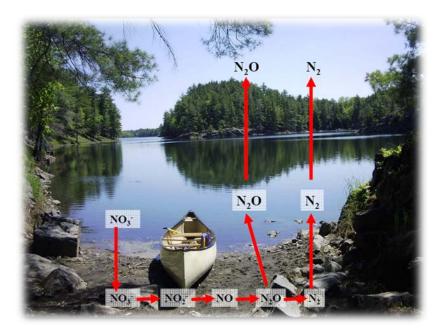
 Calculate quantitative contribution of nitrate sources on water samples based on a mixing model (SIAR) with Bayesian statistical framework

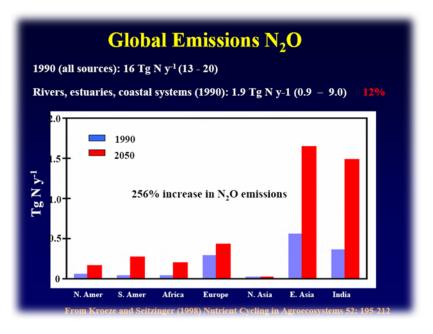
	Sompling site	Nitrate in precipitation		Soil N		Synthetic fertilizer		Manure & sewage	
	Sampling site	Mean	SD	Mean	SD	Mean	SD	Mean	SD
	Baiyang River	0.11	0.01	0.17	0.10	0.10	0.07	0.62	0.08
0044	Menlou Reservior	0.11	0.02	0.19	0.10	0.09	0.07	0.61	0.08
2014	Yueya Stream	0.15	0.04	0.19	0.12	0.12	0.09	0.54	0.12
	Groundwater	0.04	0.02	0.30	0.15	0.25	0.12	0.41	0.09

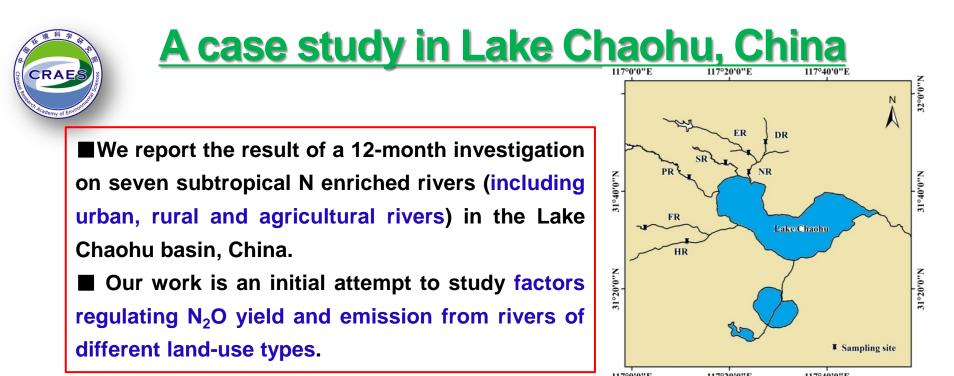
Agricultural pollution should be carefully managed.

□ The overuse of fertilizers and manure on agricultural fields (esp., orchards) should be evaluated (i.e., fertilization efficiency) and controlled.

Part III

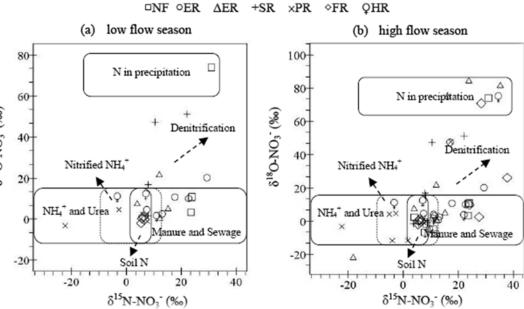

Presentation No. 2 Nitrous oxide concentration and emission from seven subtropical rivers: land uses and controlling factors

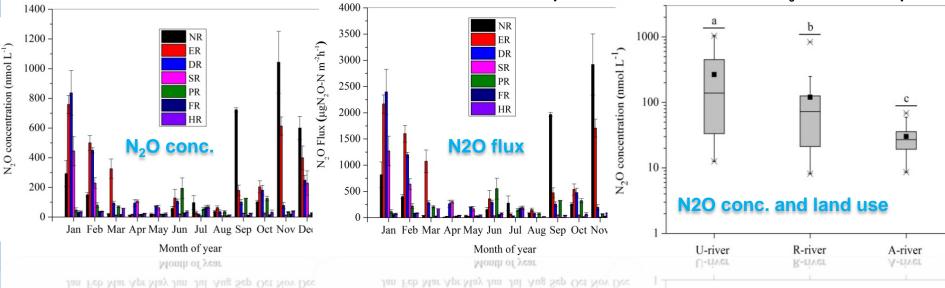

Nitrous oxide concentration and emission from seven subtropical rivers: land uses and <u>controlling factors</u>


Nitrous oxide (N_2O) is a potent greenhouse gas that greatly contributes to global warming and stratospheric ozone. Global N enrichment has resulted in increased atmospheric N_2O concentrations.

Anthropogenic N elevations had led to increased river N loading.

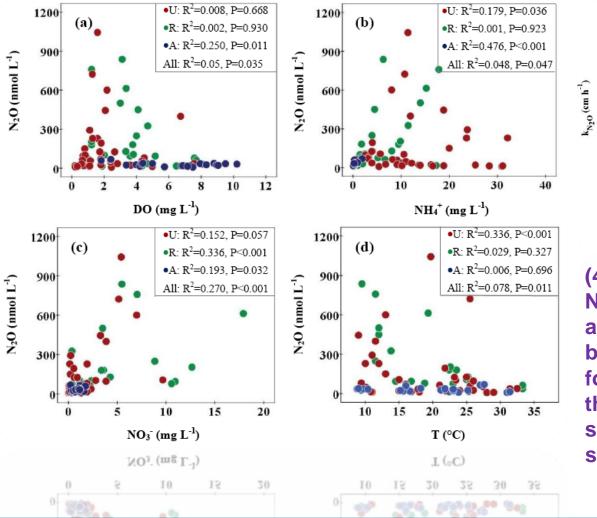
More N₂O is produced from various streams and rivers.

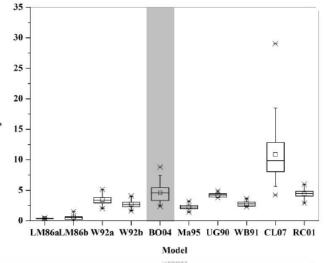

117°0'0"E 117°20'0"E								0"E 117°40'0"	Е		
	Sampling	Dominat	River	Dept	Flow	DO	NO3N	NH4+-N	рН	SO42-	CI-
	site	ed	length	h	velocity	(mg L-1)	(mg L-1)	(mg L-1)		(mg L-1)	(mg L-1)
		land use	(km)	(m)	(m s-1)						
	NR		70	3.2	0.10	1.51(1.98)	2.26(2.54)	12.75(5.70)	7.40(0.47)	111.70(101.4)	131.80(64.8)
	ER	urban	17	1.8	0.15	3.70(2.26)	4.81(5.38)	11.72(4.82)	7.61(0.54)	84.40(38.7)	81.10(23.6)
	SR		27	1.5	0.20	1.86(1.33)	1.53(2.73)	18.79(11.01	7.49(0.33)	62.60(25.5)	42.70(18.4)
)			
	DR	rural	30	2.5	0.10	4.80(3.5)	4.20(3.8)	2.90(1.7)	7.70(0.40)	154.40(217.1)	50.80(17.1)
	PR		60	2.4	0.05	2.35(1.41)	0.90(0.47)	7.41(5.60)	7.52(0.41)	75.69(119.1)	23.52(12.11)
	FR	agricultu	117	2.3	0.25	6.34(1.88)	0.86(0.41)	0.34(0.22)	7.49(0.42)	29.77(16.39)	23.54(12.77)
	HR	re	145	4.0	0.20	6.24(3.24)	0.89(0.43)	0.51(0.49)	7.66(0.45)	57.16(52.52)	37.99(15.99)



(1) Rivers that receiving anthropogenic N inputs is one of \mathfrak{F} main sources of atmospheric N₂O.

(2) Dissolved N_2O observed in urban rivers were significantly higher than in agricultural and rural rivers (P<0.01).




Relationship between $\delta^{15}N$ and $\delta^{18}O$ of NO_3^- in water sample

CRAES BORNES

(3) Dependence of N_2O concentration in rivers change with land use. NH_4^+ and DO level had great control on N_2O concentration in the agricultural and rural river, respectively; while N_2O concentration in the urban rivers may be mainly controlled by direct N_2O inputs from industry sewage.

(4) Wide disparities in estimated N_2O fluxes were investigated among different models. It is may be more reliable to give a range for the fluxes by using a more than one model than generate a single flux value by using a single model.

Part IV

Prospects

Conclusions

- **Feel Sorry For the Workshop this year**
- **Given Service Pollution Control, long-term efforts still needed**
- More cooperation & extensive academic communication among NIES, NIER and CRAES are expected

Thanks you for your attention