TPM11 - Session 3

Current Status and Countermeasure for Particulate Matter in Korea

Current Status and Countermeasure for Particulate Matter in Korea

Nov. 2014

Hong You Deog National Institute of Environmental Research

Outline

Air Quality Trend in Korea

Π

III

Scientific Design of PM_{2.5} Management

Recent Progress in Air Quality Forecasting

Environmental Performance Index (EPI)

- **T**he Yale Center For Environmental Law and Policy issued 2014 EPI scores at World Economic Forum on January of this year (**Swiss Davos**)
 - Korea EPI score ranking was 43 grade among 178 countries on 2014

(43 grade among 132 countries on 2012)

- But, PM_{2.5} EPI ranking of Korea scored 171 grade among 178 countries
 - PM_{2.5} data derived AOD(Aerosol Optical Depth) measured by MODIS sensor installed in Terra satellite
 - PM_{2.5} EPI was determined by PM_{2.5} population weighting average exposure and PM_{2.5} excess exposure (WHO guideline excess rate)

<PM_{2.5} Distribution by MODIS>

Annual Air Quality Trend of Korea

- Sulfur Dioxide decreased gradually since 1989 because of the environmental policies such as 'Surfur Content Control', 'Mandatory Use of Clean Fuel' and 'Restriction of Solid Fuel' etc.
- Nitrogen Dioxide maintained a stable state
- Ozone is increasing gradually and this trend is similar to the registration number of vehicle

Annual PM₁₀ and PM_{2.5} Trend

■ Annual PM_{2.5} Trend (City)

Emission and PM₁₀ in SMA

Annual PM₁₀ and PM_{2.5} Trend

Air Pollution Episode of Seoul ('13.12)

Annual PM_{2.5} of Cities in Korea

Number of Days over 100µg/m³ (PM₁₀ 24hr Standard)

Annual PM_{2.5} of Seoul and Other Cities

National Air Quality Standard for PM_{2.5} (Jan. 2015)

Air Quality Standard	Korea	USA	Japan	Australia	EU	WHO	
Appual						AQG	10
Annual Average	25 ⁴⁾	15 ¹⁾	15 ³	8	25	Intrim Target-3	15
(ug/m³)						Intrim Target-2	25
						Intrim Target-1	35
						AQG	25
24 nr Average	50 ⁴⁾	35 ²⁾	35	25	-	Intrim Target-3	37.5
(ug/m³)						Intrim Target-2	50
						Intrim Target-1	75

1) Annual mean of averaged over 3 years should not to be exceed 15ug/m³

2) 98th percentile(24hr) of averaged over 3 years should not to be exceed 35ug/m³

- 3) 98th percentile(24hr) of one year should not to be exceed 35ug/m³
- 4) Korea adopted Intrim Target 2 of WHO (Annual ave. 25ug/m³

PM_{2.5} Monitoring Station in Korea

< Site description of gravimetric monitoring stations>

- Gravimetric monitoring stations for PM_{2.5}
 - Mass concentration(36 sites)
 - Chemical composition(23 sites, Ion, EC/OC, Metal)
- Gravimetric monitoring stations are operated by Ministry of Environment(MoE)
- Gravimetric monitoring data are used to confirm the compliance with the national air quality standard and to conduct component analysis to determine the contribution ratio for emission sources
- Automatic monitoring stations are 155 sites
 - 34 sites are operated by MOE
 - 121 sites are operated by Local Government
- Automatic monitoring data are used to understand the real time trend of PM_{2.5} and used for high-episode alert system

Gravimetric Method and Automatic Continuous Method

- There are difference between gravimetric method and automatic continuous method(beta-ray, TEOM) according to chemical composition of PM_{2.5}, meteorological condition (temperature, humidity)
- Gravimetric method has less bias than automatic method
 - So, most countries have adopted the gravimetric method as the main method for PM _{2.5}
- Korea also adopted gravimetric method as the main method
 - And, Gravimetric method is used as the National Reference Method for Type approval of automatic method

Setup the National Reference Method System for PM_{2.5}

Performance Field Test

- 5 PM_{2.5} gravimetric method equipments
- Period : 2014.1.~2014.3 (3month)
- Site : Bulkwang Intensive Monitoring Station in Seoul

Performance Test Results of the Five PM_{2.5} NRM Candidates

National Reference Method and Equivalent Method for PM_{2.5}

Class identification

- US EPA : FRM, FEM (Class 1, 2, 3)
- Korea : NRM(National Reference Method). FEM (Class 1, 2)
- Korea establishes 2 NRM stations
- Location : Seoul, Kwangju
- Considering a regional characteristics
- Criteria
- Referenced USA CFR 50 part 53, a little modified

	FRM	Class 1 Class 2		Class 3
USA	`Gravimetric manual method	Gravimetric Gravimetric manual method modified method		Automatic method (B-ray)
	Impactor	Impactor Impactor (Single stage) (Sequential Type)		Impactoc, Cyclone
	NRM	Class 1		Class 2
KOREA	Gravimetric manual method	Gravimetric manual method		Automatic method (B-ray)
	Impactor	Single + Sec	Impactor, Cyclone	

Equivalent Test Campaign between NRM and Class II for PM_{2.5}

• Object : To assess the PM2.5 automatic equipment'equipvalence with the NRM which have used

Summary of Equivalent Field Campaign Results

 Regression slope, intercept and R²between NRM and 155 automatic equipments were checked

- About 90% were satisfied acceptance limit or return to normal range by QA/QC procedure

Ensuring Traceability Procedure for PM_{2.5}

Air Quality Forecasting

OBJECT: Air Quality Forecasting provides the people with PM, Ozone with enough accuracy and advance to take action to prevent or reduce adverse effects

- Forecasting Air Pollutants : PM₁₀, PM_{2.5}, O₃
- Forecasting Region (6 Regions) \rightarrow (10 Regions)
- Metropolitan Area(1), Kangwon Area(2), Chungcheong Area(3)
 Honam Area(4), Youngnam Area(5), Jeju Area(6)
- → Seoul(1), Incheon(2), North of Kyunggi(3), South of Kyunggi(4)
 West of Kangwon (5), East of Kangwon (6), Chungcheong (7)
 Honam (8), Youngnam(9), Jeju(10)
 - **Foecasting Schedule**
- '13.8~ : Forecasting on a trial basis (PM₁₀)
- '14.2~ : Main Forecasting (PM₁₀)
- '15.1~ : Main Forecasting (PM_{2.5}, O₃)
- Forecasting Time : 2times/day (5PM, 11AM) → 4times/day(5AM, 11AM, 5PM, 11PM)
- Forecasting Period : 24hrs averaged concentration forecasting for tomorrow
- Forecasting Steps : 5Step s (Good, Moderate, Bad a little, Bad, Very Poor)

→ 4Steps (Good, Moderate, Bad, Very Poor)

		/	Forecasting St	teps	
Forecasting Conc.		Moderate	Bad a little	Bad	Very Poor
(µg/m³.day)	0~30	31~80	81~120	121~200	201~

Air Quality Forecasting Procedure

Forecasting Accuracy

Forecasting Period (2014) : February ~ September

	Total	Over 80ug/m ³ (Bad a little)
Forecasting Accuracy	82.6 %	48.1 %

* Forecasting accuracy was not good in the high episode cases

☐ Forecasting accuracy by region

Month	SMA	Chung- cheong	Kwang- won	Youngnam	Honam	Jeju
Total	77.5%	83.8%	82.9%	85.8%	84.0%	81.6%
Over 80ug/m ³	46.5%	51.5%	44.1%	56.5%	45.5%	50.0%

Reasons of Bad Forecasting

(Forecasting Procedure)

(Bad forecasting) In analysis of bad forecasting cases(61times), main reasons are classified 4 categories.

<Bad forecasting in high pollution episodes by types >

Frequency of bad forecasting	d Meteorology data ¹) Emission ²⁾ Uncertainty incompleteness (wind/rain) (Domestic • foreign)		Air quality ³⁾ forecasting limitation (model/computation)	Lack of experienced forecasters ⁴) (Verification/Determination)
Accuracy(%)	22.9%	24.6%	27.9%	24.6%

* 1) Uncertainty of weather forecasting such as wind direction/speed, precipitation and snowfall, etc

2) Uncertainty of domestic emission, incompleteness of emission of China and North Korea

3) multi-model operation, limitation of comparison,

4) Lack of experience in correction to numerical prediction in case of pollution and Asian dust, and etc

Accuracy of PM Prediction depends on Forecast of Precipitation

Incompleteness of Emission

Improvement of the Accuracy for Air Quality Forecasting

Emission improvement

- Updated emission(CAPSS 2013)
- Improving China and North Korea emission
- Utilization of both top down and bottom up emission
- Realization of spatial and temporal allocation

□ Air quality model improvement and development

- Applying data assimilation technique
- Shortening model operation time
- Developing on-line coupled model
- Improving physical and chemical parameterization

Model

improvement and

development

Emission improvement Capacity building forecasters

Expansion of forecasters and forecasting frequency

- Four times per day
- Manpower for the stable operation
- Systematic accumulation of forecasting experience
- Securement of experts in meteorology and air quality

Prediction technique improvement

• probability forecast using ensemble prediction

prediction

technique

improvement

- Statistics-dynamics forecasting technique application
- Prediction technique improvement by expansion of region and species
- providing customized information to the public

Systematic/organized/scientific development strategy for the stablization and accuracy improvement of national air quality forecast 23

Air Pollution Alert

OBJECT : Air Pollution Alert means that air pollution concentration may become unhealthy for sensitive groups, including children, people suffering from athma, other lung disease or elderly. The effect of air pollution can be minimized by avoding strenuous activity or excise outdoors. Operation of Emission sources, such as vehicle, factoty, should be banned as well

- Air Pollutants : PM_{10} , $PM_{2.5}$
- Region : 16 Local Government
 - City (7), Province (9)
- Air Pollution Alert Schedule
 - -'15.1~: National Government
 - * Before Jan. 2015, Local government can enforce Air Pollution Alert to protect the citizen against air pollution

International Cooperation Campaign

Object : Enhance the understanding for Megacity-Biosphere- Atmosphere Interaction in East Asia and to improve air quality forecasing accuracy
Period : 4years (2015-2018)
Main participants : NIER, NASA, NCAR, PNNL

Surface monitoring, Aircraft/Ship measurement, Satellite measurement

Thank you for your attention !!!

