チオリん酸 O,O-ジメチル-O-(3-メチル-4-メチルチオフェニル)

Phosphorothioic acid, O,O-dimethyl- O- [3-methyl-4-(methylthio)phenyl]

別名:フェンチオン Fenthion

【対象物質の構造】

$$H_3C$$
 S CH_3 CH_3 CH_3

CAS 番号: 55-38-9 分子式: C₁₀H₁₅O₃PS₂

【物理化学的性状】

表 1 物理化学的性状

分子量	沸点()	蒸気圧(mmHg)	溶解度	Log Pow
278.3	87 (0.01mmHg)	¹⁾ 0.00004 (20) ¹⁾	$54 \sim 56 \text{ mg/L}^{-1}$	3.17~4.8 ²⁾

参考文献 1)、2)

【毒性、用途】

ADI: $0.0005 \text{ mg/kg/day}^{3}$

毒性:ラット (経口、LD50) (M) 215 mg/kg (F) 245 mg/kg ¹⁾

作業環境許容濃度: 0.2 mg/m³ (日本産業衛生学会勧告)

水道水質管理目標值: 0.001 mg/L 以下

用途 : 農薬、合成中間体

参考文献 1)、3)

§ 1 分析法

(1)分析法の概要

底質試料に、フェンチオン-d₆を添加し、アセトニトリルで抽出(2 回) する。5%塩化ナトリウム水溶液を加えた後、ヘキサンで 2 回抽出し、無水硫酸ナトリウムで脱水後、KD 濃縮、窒素ガス吹き付けを行う。その後、活性炭カートリッジ及びシリカカートリッジでクリーンアップ処理を行い、濃縮後、GC/MS(SIM)法で測定する。

(2)試薬・器具

【試薬等】

フェンチオン : 残留農薬試験用 和光純薬工業製

フェンチオン-d₆溶液 : 残留農薬試験用 100 mg/L アセトン溶媒

フェナントレン-d10溶液 : 残留農薬試験用 和光純薬工業製

アセトニトリル : 高速液体クロマトグラフ用

ヘキサン : 残留農薬試験用 (300 倍濃縮)アセトン : 残留農薬試験用 (300 倍濃縮)

塩化ナトリウム : 残留農薬試験用 硫酸ナトリウム(無水) : 残留農薬試験用

ポリエチレングリコール 300 : 試薬一級 和光純薬工業製活性炭カートリッジ : ENVI-Carb 250 mg、スペルコ製シリカカートリッジ : Sep-pak Plus silica ウォーターズ製

【試薬の安定性・毒性】

ばく露されないよう取り扱いに注意する。

【器具】

遠心管(ガラス製、50mL) 分液ロート(300 mL) KD 濃縮装置 ガスクロマトグラフ質量分析装置

(3)分析法

【試料の採取及び保存】

環境省「化学物質環境実態調査実施の手引き」(平成18年3月)に従う。

【試料の前処理及び試験液の調製】

遠心管に底質試料 20 g-wet (乾泥換算 10 g 相当量)及びフェンチオン- d_6 10 ng を加え、ガラス棒でかき混ぜる。ガラス棒に付着した底質は、少量の精製水 (5 mL 以下)を用いて、遠心管に流し込む。アセトニトリル 25 mL を加える。振とう (10 分間) 超音波処理 (10 分間)を行った後、遠心分離処理(2500 rpm)を 10 分間行い、アセトニトリルを分取する。この操作を 2 度行い、分取したアセトニトリルを併せた

溶液を分液ロートへ入れ、5%塩化ナトリウム水溶液 150 mL、ヘキサン 50 mL を加える。振とう、静置後、ヘキサン層を容器に入れ、残液に再度ヘキサン 50 mL を加え、ヘキサン抽出を行う。得られたヘキサン溶液を併せ、無水硫酸ナトリウムで脱水後、KD 濃縮、窒素ガス吹き付けを行い約 1 mL とする。活性炭カートリッジ及びシリカカートリッジを直結し、ヘキサン 10 mL でコンディショニングした後、試料抽出液をカートリッジに通し、ヘキサン 10 mL を流す。次に活性炭カートリッジをはずし、2%アセトン 98%ヘキサン溶液 10 mL でシリカカートリッジからフェンチオンを溶出させる。窒素ガスを溶出液に吹き付け、1 mL に濃縮後、フェナントレン- d_{10} を 50 ng 添加する。(注 1)(注 2)

【空試験液の調製】

アセトニトリル 50 mL にフェンチオン- d_6 を 10 ng 添加し、5%塩化ナトリウム水溶液 150 mL を加えた後、ヘキサン 50 mL で 2 回抽出し、無水硫酸ナトリウムで脱水後、KD 濃縮、窒素ガス吹き付けを行う。その後、活性炭カートリッジ及びシリカカートリッジでクリーンアップ処理を行った後、窒素ガスを吹き付けて 1 mL に濃縮し、フェナントレン- d_{10} を 50 ng 添加する。

【標準液の調製】

フェンチオン5 mgをアセトン: ヘキサン = 1:1の混合溶媒50 mLに溶解し、フェンチオンの標準原液を作成する。なお、使用する天秤の機種に応じ、5 mgを正確に精秤することが困難な場合は、フェンチオン20 mgをアセトン: ヘキサン = 1:1の混合溶媒200 mLに溶解して標準原液を作成する。その後、標準原液をヘキサンに溶解し、1、2、5、10、20 50 ng/mLの溶液を調製する。

別にフェンチオン- d_6 溶液をアセトンで希釈し、濃度 $2 \mu g/mL$ の溶液及びフェナントレン- d_{10} 溶液($1000 \mu g/mL$)をヘキサンで希釈し、濃度 $5 \mu g/mL$ の内標準液を作成する。

【測定】

〔ガスクロマトグラフ質量分析装置(GC/MS)〕

GC/MS 機器:島津 OP-2010 Plus

カラム : DB-5ms, 30 m × 0.25 mmID × 0.25 μm

昇温条件:60 (1 min)-20 /min-150 -10 /min-190 -5 /min-230

2 /min-250 -20 /min-280 (3 min) -20 /min-300 (3 min)

注入法 : スプリットレス(1 µ L)、カラムヘッド圧 89.6 k P a (定圧モード)

注入口温度:250 キャリヤーガス:He

モニターイオン: フェンチオン 278 (定量用) 169 (確認用)

フェンチオン-d₆ 284(定量用) 169(確認用)

〔検量線〕

調製したフェンチオン標準液1 mLに、フェンチオン- d_6 (2 μ g/mL) 5 μ L、フェナントレン- d_{10} (5 μ g/mL)溶液10 μ L、ポリエチレングリコール300のアセトン溶液(ポリエチレングリコール300をアセトンに溶解:濃度10 μ g/mL)8 μ Lを添加した後、GC/MSで

分析を行う。対象物質の濃度とピーク面積比に関する検量線を作成する。(注3)

[定量]

試験液 $1 \mu L \epsilon GC/MS$ に注入し、フェンチオンとフェンチオン $-d_6$ の面積比及び濃度比から検量線により検出量を求める。また、フェナントレン $-d_{10}$ は、サロゲートの回収率に使用する。

〔濃度の算出〕

試料中の濃度(ng/g-dry)=検出量(ng/mL)×最終液量(mL)÷試料量(g-dry)

〔装置の検出下限 (IDL)〕

IDLは、試料換算で 0.014 ng/g-dryとなった。(注4)

[検出下限 (MDL) 及び定量下限 (MQL)]
MDLは、試料換算で 0.21 ng/g-dry、MQLは、0.53 ng/g-dryとなった。 (注5)

注 解

- (注1)サロゲート及び内標準物質の添加量は、使用するGC/MSの感度等により、 適宜変更しても構わない。
- (注2)カートリッジは、ロットにより溶出パターンが変化する場合があるので 予め溶出パターンを確認すること。セップパックシリカは、できるだけ 開封直後のものを使用すること。開封後、セップパックシリカが残った 場合は、パックをヒートシールするなど、品質の変化に注意すること。
- (注3)ポリエチレングリコール無添加系で、ピークが十分鋭い場合は、添加しなくてもよい。また、ポリエチレングリコールの添加量は、使用する機器に合わせて、適宜変更して構わない。
- (注4) 検量線の最低濃度1 ng/mLの標準液を7回測定し、「化学物質環境実態調査実施の手引き」(平成18年3月)に従ってIDLを算出した。

表2	IDLの算出			
物質名	フェンチオン			
試料量(g-dry)	10			
最終液量(mL)	1			
注入濃度(ng/mL)	1			
<u>注入量(μL)</u>	1			
結果1(ng/mL)	0.88			
結果2(ng/mL)	0.82			
結果3(ng/mL)	0.90			
結果4(ng/mL)	0.88			
結果5(ng/mL)	0.81			
結果6(ng/mL)	0.88			
結果7(ng/mL)	0.90			
平均(ng/mL)	0.87			
標準偏差(ng/mL)	0.037			
IDL	0.143			
CV(%)	4.20			
S/N	9.3			
換算IDL(ng/g)	0.014			

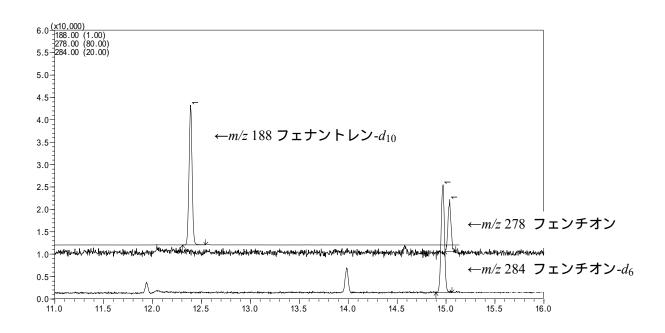


図1 IDL用試料のクロマトグラム

(注5)「化学物質環境実態調査実施の手引き」(平成18年3月)に従って検出 下限(MDL)及び定量下限(MQL)を算出した。

表3 MDL及びMQLの算出

41.55	
物質名	<u>フェンチオン</u>
試料量(g-dry)	10
添加量(ng)	5
試料換算濃度(ng/g)	0.50
最終液量(mL)	1
注入量(μL)	1
操作ブランク(ng/g)	ND
無添加(ng/g)	ND
結果1(ng/g)	0.53
結果2(ng/g)	0.55
結果3(ng/g)	0.54
結果4(ng/g)	0.53
結果5(ng/g)	0.44
結果6(ng/g)	0.45
結果7(ng/g)	0.44
平均(ng/g)	0.49
標準偏差(ng/g)	53.1
MDL(ng/g-dry)	0.21
MQL(ng/g-dry)	0.53
CV(%)	10.7
SÌN´	44

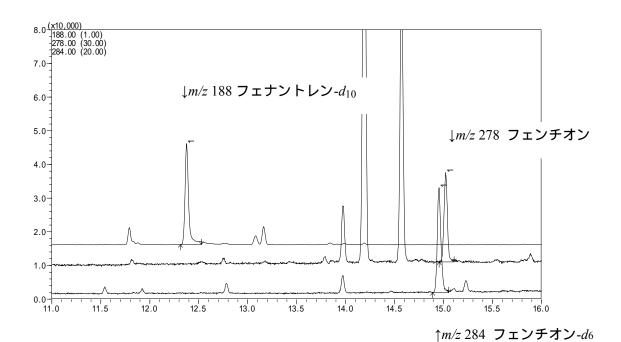


図2 MDL試料のクロマトグラム

§ 2 解説

【分析法】

〔フローチャート〕分析法のフローチャートを示す。

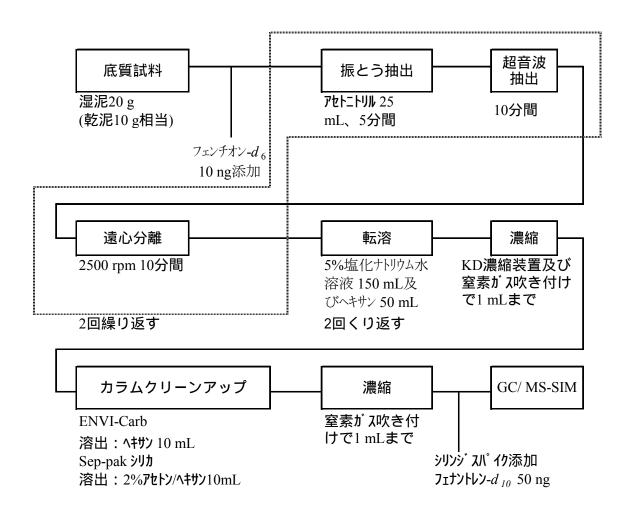


図3 分析法フローチャート

〔検量線及びクロマトグラムの例〕

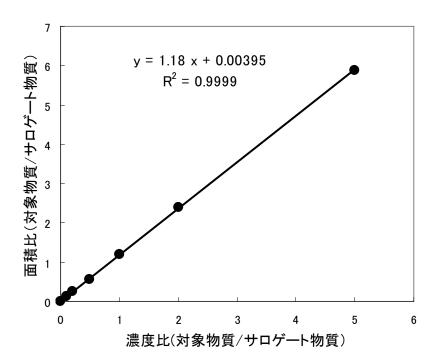


図 4 フェンチオンの検量線 対象物質濃度範囲 1~50 ng/mL サロゲート(フェンチオン-d₆)濃度 10 ng/mL

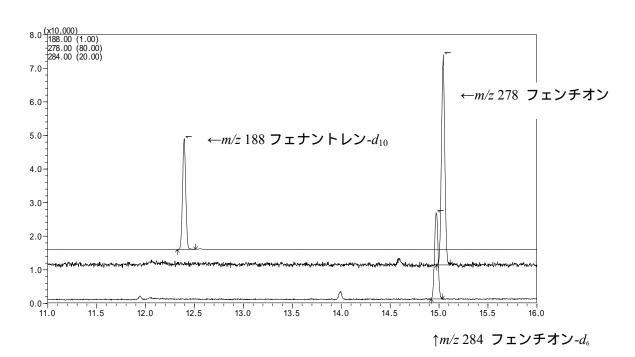


図5 検量線試料のクロマトグラム (フェンチオン 5 ng/mL、フェンチオン-d₆ 10 ng/mL、 フェナントレン-d₁₀ 50 ng/mL)

〔ポリエチレングリコール(PEG)の効果〕

フェンチオンの標準液(1 ng/mL) 1 mLにポリエチレングリコールを0、 $40 \mu g$ 、 $80 \mu g$ 、 $160 \mu g$ 添加した試料について、GC/MSを測定したところ、ポリエチレングリコールの添加により、ピーク高さの増大が認められた。そこで、標準液 1 mLに対してポリエチレングリコール $80 \mu g$ 添加した後、測定することとした。

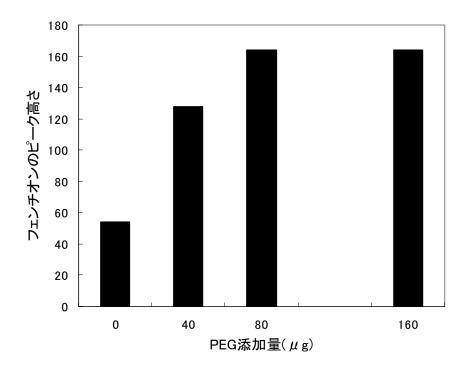


図6 ポリエチレングリコールの添加量とピークの高さ

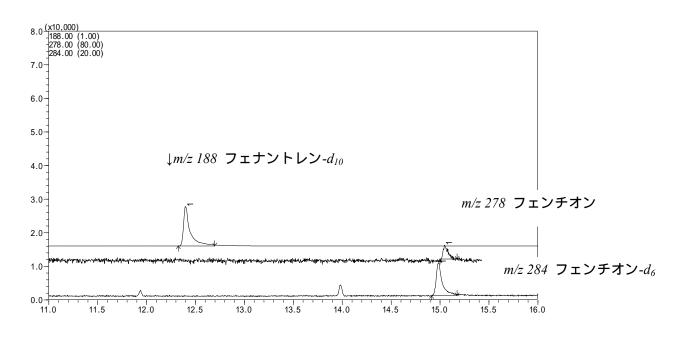


図 7 フェンチオン標準液 (1 ng/mL、PEG なし)

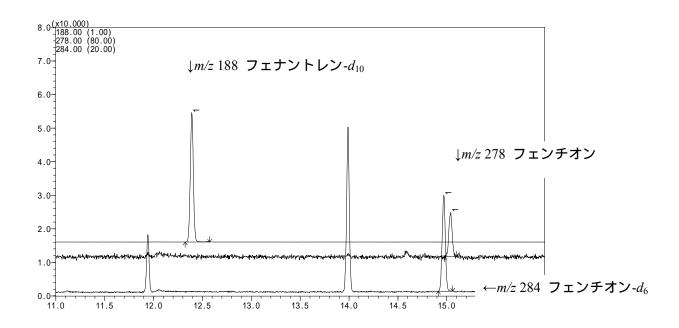


図 8 フェンチオンの標準液 (1 ng/mL、PEG 80 µg 添加)

[フェンチオンのマススペクトル]

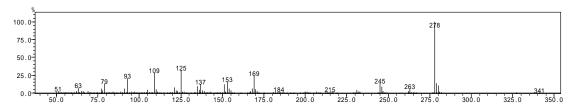
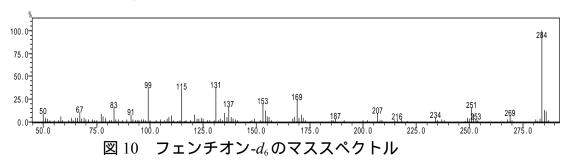



図9 フェンチオンのマススペクトル

〔フェンチオン-d₆のマススペクトル〕

〔活性炭カートリッジからの溶出〕

活性炭カートリッジにフェンチオンを50 ng添加した後、ヘキサンで溶出を調べたところ、フェンチオンはヘキサン $0 \sim 5 \text{ mL}$ 分画に添加量の75%、 $5 \sim 10 \text{ mL}$ 分画に添加量の20%存在し、 $10 \sim 15 \text{ mL}$ 分画では0%であった。そこで、試料調製に際しては、 $0 \sim 10 \text{ mL}$ の分画を作成し、分析に用いることとした。

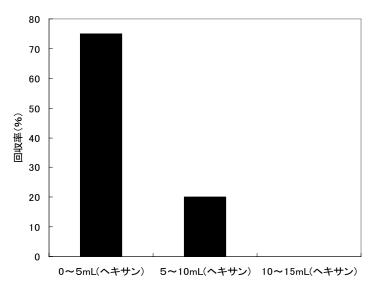


図11 フェンチオンの活性炭カートリッジからの溶出 (各分画に含まれるフェンチオン量/添加量)

〔シリカカートリッジからの溶出〕

シリカカートリッジにフェンチオンを50 ng添加した後、ヘキサン10 mL、2%アセトン:98%ヘキサン $0 \sim 5 \text{ mL}$ 、 $5 \sim 10 \text{ mL}$ 、 $10 \sim 15 \text{ mL}$ の分画を採取し、GC/MSで測定したところ、フェンチオンは2%アセトン/ヘキサン $0 \sim 5 \text{ mL}$ 分画に添加量の73%、 $5 \sim 10 \text{ mL}$ 分画に添加量の22%が認められた。そこで、シリカカートリッジからの溶出は、2%アセトン/ヘキサン $0 \sim 10 \text{ mL}$ の分画を作成し、分析に用いることとした。

(参考1)シリカカートリッジからの溶出に、20%アセトン80%へキサンを用いた場合は、20%アセトン / ヘキサン $0\sim5$ mLで添加量の95%フェンチオンの溶出が認められた。

(参考2)試料及び分析機器の状況により、シリカカートリッジの洗浄を行う場合は、ヘキサン洗浄した後、2%アセトンで溶出する前に1%ジエチルエーテル/ヘキサン5 mLで洗浄を行う。フェンチオンは、1%ジエチルエーテル/ヘキサン $0\sim5$ mL分画に添加量の0%、 $5\sim10$ mL分画に添加量の65%、 $10\sim15$ mL分画に添加量の35%が認められたことから、洗浄は1%エーテル/ヘキサン 5 mLとした。

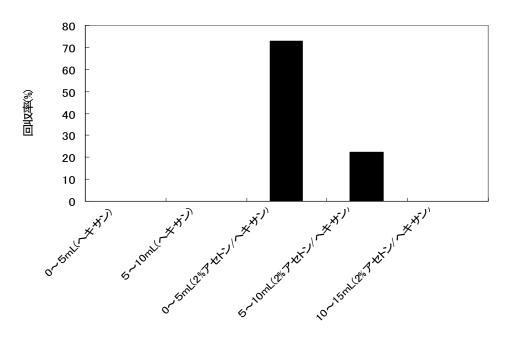


図12 フェンチオンのシリカカートリッジからの溶出 (2%アセトン) (各分画に含まれるフェンチオン量 / 添加量)

図13 フェンチオンのシリカカートリッジからの溶出 (20%アセトン) (各分画に含まれるフェンチオン量 / 添加量)

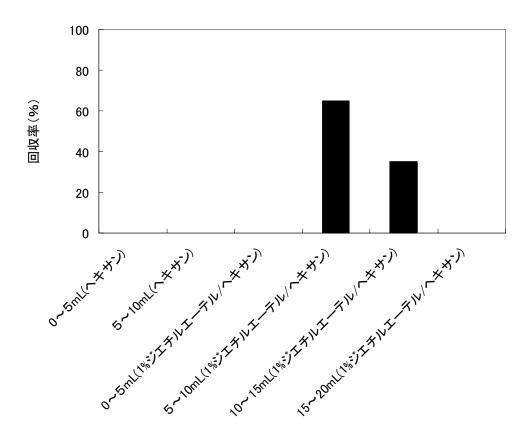


図14 フェンチオンのシリカカートリッジからの溶出 (1%ジエチルエーテル/ヘキサン)(各分画に含まれるフェンチオン量/添加量)

〔操作ブランク〕

空試験を行ったところ、フェンチオンのピークは認められなかった。

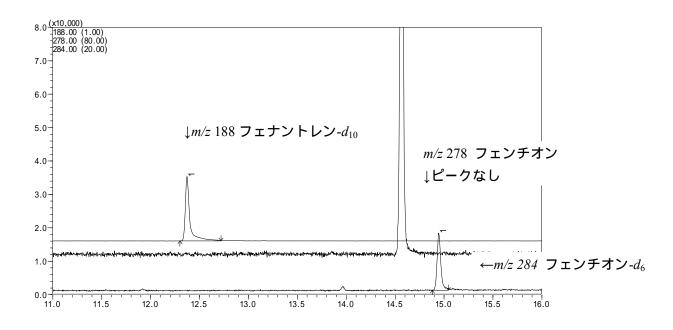
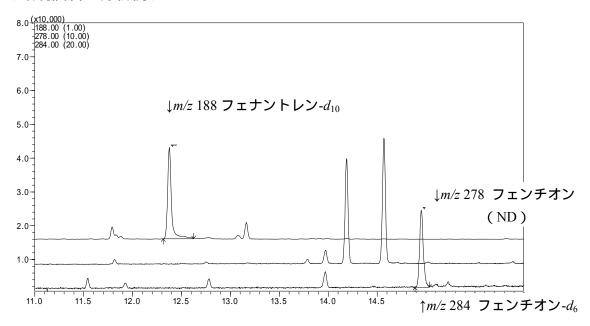
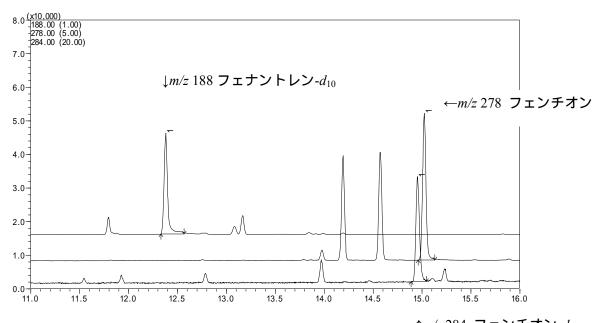


図 15 ブランク試験のクロマトグラム

[環境試料の分析例]




図16 鶴見川底質の分析例 フェンチオンは不検出であった。

[添加回収試験]

鶴見川の底質にフェンチオン及びフェンチオン-*d*₆を添加し、分析を行ったところ、フェンチオンの回収率は91%であった。

表4 添加回収試験結果

物質	試料量(g)	添加量 (ng)	測定回数	検出濃度 (平均値) ng/g	回収率(%)	変動係数	サロゲート の回収率(%)
フェンチオン	10	5	5	0.46	91	5.1	110

↑m/z 284 フェンチオン-d₆

図17 添加回収試験のクロマトグラム

【評価】

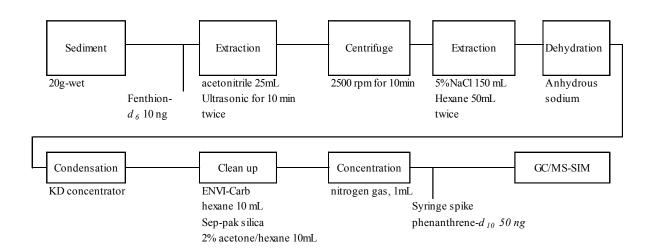
本法により、底質試料中のフェンチオンを、検出下限(MDL)0.21 ng/g-dry で測定することが可能である。

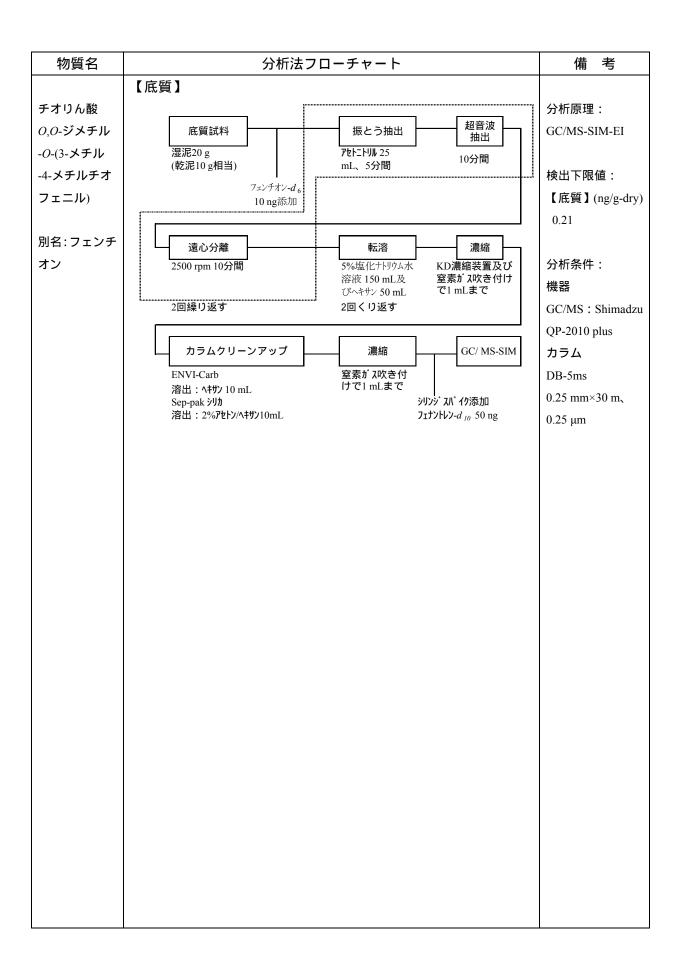
【参考文献】

- 1) 国際化学物質安全性計画, Data sheets on pesticides, Fenthion, 1976.
- 2) 国際化学物質安全性カード, ICSC.
- 3) 環境省、化学物質ファクトシート-2007年度版.

【担当者氏名・連絡先】

担当:横浜市環境科学研究所


住所:〒235-0012 横浜市磯子区滝頭 1-2-15 TEL:045-752-2605 FAX:045-752-2609


担当者:酒井 学

E-mail: ma02-sakai@city.yokohama.jp

Fenthion

An analytical method is developed for the determination of fenthion in the sediment by gas-chromatography mass spectroscopy (GC/MS). Sediment sample (20 g-wet) is extracted by acetonitrile twice (1st 25 mL, 2nd 25 mL) after adding 10 ng of fenthion- d_6 . The acetonitrile extract is put into a separating funnel with 5% sodium chloride aqueous solution (150 mL). Sodium chloride aqueous solution with acetonitrile is extracted by hexane twice (1st 25 mL, 2nd 25 mL). Then hexane extract is dehydrated with anhydrous sodium sulfate and it is concentrated to 1 mL using Kuderna-Danish concentrator. The concentrated extract is cleaned up by a graphite carbon cartridge (ENVI-Carb, 250 mg) and silica cartridge (Sep-pak plus silica). The elution (2%acetone/hexane, 10 mL) is concentrated to 1.0 mL by a stream of nitrogen gas. Then ten micro liter of phenanthrene- d_{10} solution (5.0 mg/L) is added to the solution. Fenthion in this solution is measured by GC/MS-SIM (selective ion monitoring). Monitoring ions for fenthion and fenthion- d_6 are m/z=278 and m/z=284, respectively. The method detection limit is 0.21 ng/g-dry.

