ポリ(オキシエチレン)ラウリルエーテル

Polyoxyethylene lauryl ether

別名 (ラウリルアルコールポリエトキシレート) (n-ドデシルアルコールポリエトキシレート) (ポリエチレングリコール n-ドデシルエーテル)

新潟県保健環境科学研究所

【構造式】

CAS 番号 9002-92-0

名称	略称	分子式	分子量
シ゛オキシエチレンラウリルエーテル	C12EO2	C ₁₆ H ₃₄ O ₃	274.4
トリオキシエチレンラウリルエーテル	C12EO3	C ₁₈ H ₃₈ O ₄	318.5
テトラオキシエチレンラウリルエーテル	C12EO4	C ₂₀ H ₄₂ O ₅	362.5
へ。ンタオキシエチレンラウリルエーテル	C12EO5	C ₂₂ H ₄₆ O ₆	406.6
ヘキサオキシエチレンラウリルエーテル	C12EO6	C ₂₄ H ₅₀ O ₇	450.6
ヘフ。タオキシエチレンラウリルエーテル	C12EO7	C ₂₆ H ₅₄ O ₈	494.7
オクタオキシエチレンラウリルエーテル	C12EO8	C ₂₈ H ₅₈ O ₉	274.4
ノナオキシエチレンラウリルエーテル	C12EO9	C ₃₀ H ₆₂ O ₁₀	582.8
テ゛カオキシエチレンラウリルエーテル	C12EO10	C ₃₂ H ₆₆ O ₁₁	626.9
ウンテ゛カオキシエチレンラウリルエーテル	C12EO11	C ₃₄ H ₇₀ O ₁₂	670.9
ト゛テ゛カオキシエチレンラウリルエーテル	C12EO12	C ₃₆ H ₇₄ O ₁₃	715.0
トリテ゛カオキシエチレンラウリルエーテル	C12EO13	C ₃₈ H ₇₈ O ₁₄	759.0
テトラテ゛カオキシエチレンラウリルエーテル	C12EO14	C ₄₀ H ₈₂ O ₁₅	803.1

【用途·毒性】

用途:乳化剂,可溶化剂,分散剂

(農薬, 切削油, 工業用エマルジョン, インキ, 化粧品, 医薬品)

生態毒性(C₁₂- C₁₃): ミジンコ 21d NOEC 0.24mg/L

§ 1 分析法

(1) 分析法の概要

水質試料は、対象物質を固相抽出後、メタノール及び酢酸エチルで溶出し、 LC/MS で測定する。

(2) 試薬及び器具

[試薬等]

- ・メタノール: HPLC 用またはこれと同等以上のもの (注 1)。
- ・酢酸エチル:残留農薬分析用またはこれと同等以上のもの(注1)。
- ・ジクロロメタン:残留農薬分析用またはこれと同等以上のもの (注1)。
- ・標準物質:日光ケミカルズ製 n-C12EO1~n-C12EO8林純薬工業製 n-C12EO9~n-C12EO14
- 内標準物質:林純薬工業製 C₂₆H₅₄O₈-d₂₅ (略称; n-C12EO7- d₂₅)
- ・ 水:対象物質及びその妨害物質を含まないもの (注1)。
- ・ ガラス繊維ろ紙:孔径 $1 \mu m$ のもの。予めアセトンで洗浄し、汚染のないところで乾燥・保管したものを用いる。
- ・ 固相カートリッジ: スチレンジビニルベンゼンポリマー, またはこれと同等の性能を有する基材を充填または成型したもの(注2)。使用前に酢酸エチル 5mL, メタノール 10mL 及び水 20mL で順次コンディショニングする(注3)。
- グラファイトカーボンカートリッジ:市販のグラファイトカーボンカートリッジ(注4)。使用前にジクロロメタン及びメタノール各5 mL を通して洗浄する。

[器具]

- ・試料採取容器:水質試料用は、ガラス製共栓付き褐色ガラス瓶 (容量 500mL)、または、四フッ化エチレン樹脂張りシリコーンゴム栓付きスクリューキャップ用ネジロ褐色ガラス瓶 (容量 500mL) またはこれと同等以上のもの。洗浄後、水ですすぎ、乾燥する。メタノール及びアセトンで洗浄し、乾燥する。キャップを堅くしめ、汚染のない場所に保管する。
- ・ガラス器具:洗浄後,水ですすぎ,乾燥する。さらに,メタノール及びアセトンで洗浄し、乾燥する。

(3) 分析法

【試料の採取及び採取試料の保存】

試料の採取は、「初期環境調査試料採取要領(水系)」に従う。試験操作は 試料採取後直ちに行う。直ちに行えない場合は、汚染の無い冷暗所(4℃以下) で保存し、できるだけ速やかに分析する(注 5)。

【試料の前処理及び測定用試料液の調製】 [水質試料]

試料 500mL(ビンの全量)をガラス繊維ろ紙(1μ m)でろ過し,ろ液と SS に分ける(注 6)。試料ビンをメタノール 5mL で 2 回洗浄し,ろ液に併せる。ろ液を予め洗浄した固相カートリッジ(2 個連結)に 10mL/分で通水する。ろ液の容器を水 10mL で 2 回洗浄し,固相に通水する。固相カートリッジを水 10mL で洗浄後,アスピレーターで 15 分間吸引して乾燥する(注 7)。メタノール 5mL 及び酢酸エチル 10mL で対象物質を溶出する(注 8)。酢酸エチル溶出液に窒素ガスを吹き付けて濃縮し,メタノール約 1mL に転溶したものを,先のメタノール溶出液と併せる(抽出液①)(注 8)。

SS は、ろ紙を 50mL の遠心管に入れてアセトン 20mL を加え、10 分間超音波抽出する。3000rpm で 10 分間遠心分離を行い、アセトン抽出液を分取する。この操作を再度繰り返す。アセトン抽出液を併せてロータリーエバポレーターで減圧濃縮する。さらに窒素ガスを吹き付けて濃縮し、メタノール約 1mL に転溶する(抽出液②)(注 9)。①及び②の抽出液を併せ、窒素ガスを吹き付けて濃縮し、1mL に定容する(注 10)。内標準溶液 5μ L を加えて混合したものを測定用試料液とする(注 11)。

【空試料液の調製】

試料と同量の水を用いて、【試料の前処理及び測定用試料液の調製】に従い、 試料と同様の処理をして得た試料液を空試料液とする(注 12)。

【標準液の調製】

[標準原液]

標準物質 100 mg を各々別の 100 mL メスフラスコに精秤し、メタノールを加えて正確に 100 mL とし、これを $1000 \mu \text{ g/mL}$ の標準原液とする。

[混合標準原液]

標準原液 2 mL を 100 mL メスフラスコに正確にとり、メタノールで 100 mL とし、これを混合標準原液とする。混合標準原液は 1 mL 中に各標準物質 $20\,\mu$ g を含む。

[内標準溶液]

標準物質 100~mg を 100~mL メスフラスコに精秤し、メタノールを加えて正確に 100~mL とし、これを $1000~\mu$ g/mL の内標準原液とする。内標準原液 2~mL を 100~mL メスフラスコに正確にとり、メタノールで 100~mL としたものを内標準溶液とする。内標準溶液は 1~mL 中に内標準物質 $20~\mu$ g を含む。

【測定】

測定用試料液の一部を LC/MS に注入する。対象物質及び内標準物質の各モニターイオン(表-1)の面積を求める。

[LC/MS 条件] 機種: Shimadzu LC/MS 2010A

LC 条件

カラム

: 関東化学製 Mightysil RP-18 GP 150mm-2.0 (5 μ m)

溶離液

: アセトニトリル/水 (70:30)

流速

0.2mL/min

カラム温度

: 40°C

注入量

10 μ L

MS 条件

イオン化法

: APCI-Positive

窒素ガス

: 2.5L/min

温度条件

: APCI \mathcal{I}^{\square} \mathcal{I}^{\square} (340°C), CDL(250°C), \mathcal{I}^{\square} \mathcal{I}^{\square} \mathcal{I}^{\square} (200°C)

モニターイオン : [M+H]⁺

表-1 対象物質及び内標準物質のモニターイオン

物質名	モニターイオン	物質名	モニターイオン
C12EO2	275	C12EO9	583
C12EO3	319	C12EO10	627
C12EO4	363	C12EO11	671
C12EO5	407	C12EO12	715
C12EO6	451	C12EO13	759
C12EO7	495	C12EO14	803
C12EO8	539	C12EO7-d ₂₅	520

[検量線]

標準混合原液を順次メタノールで希釈し、 $0.005\sim0.5\,\mu$ g/mL 程度の濃度の標準溶液を作製する。各標準液 1 mL に内標準溶液を添加し、その一部を LC/MS に注入する。内標準物質と対象物質の面積比を求め、検量線を作製する (注 13)。

[定量及び計算]

内標準物質と対象物質の面積比から、装置へ導入した試料液中の対象物質の 検出量を求める。次式で試料中の各対象物質濃度を計算する(注 14)。

水質: 濃度(ng/L)= (検出量 (pg)-空試料液の検出量(pg)) ×測定用試料液量(mL)/注入量(μL)/試料量(L)

【装置検出限界(IDL)】

本分析法の検討に用いた LC/MS の装置検出限界 (IDL) 及び試料濃度換算値を表-2 に示す。(機種: Shimadzu LC/MS 2010A)

表-2 対象物質の装置検出限界 (IDL)

物質名	装置注入液	装置注入液量	IDL	IDL 試料濃度
	濃度	(μL)	(ng/mL)	換算值
	(ng/mL)			(ng/L)
C12EO2	20	10	4.1	8.2
C12EO3	10	10	2.1	4.2
C12EO4	5	10	1.1	2.2
C12EO5	5	10	1.2	2.4
C12EO6	5	10	1.0	2.0
C12EO7	5	10	1.2	2.4
C12EO8	5	10	1.1	2.2
C12EO9	5	10	1.2	2.4
C12EO10	5	10	1.1	2.2
C12EO11	5	10	1.1	2.2
C12EO12	5	10	1.1	2.2
C12EO13	10	10	1.7	3.4
C12EO14	10	10	2.3	4.6

【検出限界及び定量限界】

本分析法による検出限界及び定量限界を表-3に示す。

表-3 検出限界及び定量限界

物質名	水質	試料
	採取量	;500mL
,	検出限界	定量限界
C12EO2	29 ng/L	95 ng/L
C12EO3	17 ng/L	56 ng/L
C12EO4	21 ng/L	70 ng/L
C12EO5	19 ng/L	63 ng/L
C12EO6	18 ng/L	60 ng/L
C12EO7	18 ng/L	59 ng/L
C12EO8	16 ng/L	54 ng/L
C12EO9	23 ng/L	78 ng/L
C12EO10	19 ng/L	65 ng/L
C12EO11	20 ng/L	66 ng/L
C12EO12	20 ng/L	65 ng/L
C12EO13	20 ng/L	68 ng/L
C12EO14	24 ng/L	82 ng/L

(4) 注解

- (注1) 使用前に空試験を行い、使用の適否を確認すること。
- (注 2) Sep-Pak Plus PS-2 (265mg) など (備考 1)。
- (注3) コンディショニング後は、乾燥させないこと。
- (注4) Spelclean ENVI-Carb (0.25g) など(備考1)。
- (注 5) 対象化合物の分解性は,4週間(水中,活性汚泥)で74%(BOD),44%(TOC), 62%(UV)と報告されている。
- (注 6) SS が少ない場合には、操作を省略しても良い。
- (注7) 遠心分離により脱水しても良い。間隙水が残っていると回収率が低下することがあるため、十分取り除く。
- (注 8) 溶出液は別々に分取する。溶出速度が回収率に影響を及ぼすことがある ため、速くなり過ぎないよう留意する。
- (注9) メタノール転溶後、沈殿が生ずる場合はグラスウールでろ過し、さらに

少量のメタノールでグラスウールを洗い込み、ろ液を分取する。

- (注 10) SS が多い試料など、夾雑物の影響が考えられる場合には、併せたメタノール抽出液を 5mL 程度まで濃縮し、以下の操作を行う。予め洗浄したグラファイトカーボンカートリッジへ試料液を負荷し、流出液を捨てる。次にジクロロメタン/メタノール (7:3) 溶液 10mL で溶出する。溶出液に窒素を吹き付けて濃縮し、メタノール 1mL に転溶する。内標準溶液 5μL を加えて混合したものを測定用試料液とする。
- (注 11) 内標準溶液の添加量は対象物質濃度や装置感度などに応じて適切な量 とする。
- (注12) 空試験値については可能な限り低減化を図る。
- (注 13) 試料中の対象物質濃度や試験操作条件に応じて適切な濃度範囲とする。 また、LC/MSへの注入量は装置に応じて適切な量とする。
- (注 14) 空試料における検出値が空試験に用いた水に由来する場合は,空試料の 検出量は差し引かない。
- 備考 1) ここに示す商品は、このマニュアル使用者の便宜のために、一般に入手できるものとして例示したが、これらを推奨するものではない。これと同等以上の品質、性能のものを用いてもよい。
- (注 15) 装置検出限界(IDL)は、「環境調査における検出下限値の算出について」(平成 11 年 5 月)に従って算出した。結果を表-4 に示す。また、繰り返し試験における代表的なクロマトグラムを図-1 に示す。

表-4 装置検出限界の算出

物質名	C12EO2	C12EO3	C12EO4	C12EO5	C12EO6
注入液濃度	20 ng/mL	10 ng/mL	5 ng/mL	5 ng/mL	5 ng/mL
測定結果1	16	8.9	4.8	4.3	4.3
測定結果2	19	11	5.8	5.6	5.1
測定結果3	20	12	6.4	6.1	5.9
測定結果4	19	11	5.3	5.3	5.1
測定結果5	17	10	5.6	5.5	5.1
測定結果6	21	9.3	4.9	4.7	4.5
測定結果7	22	11	5.4	5.4	5
標準偏差	2.12	1.10	0.547	0.596	0.513
IDL (ng/mL)	4.1	2.1	1.1	1.2	1.0
S/N	14	13	14	11	12
S/N適否	0	0	0	0	0
平均 (ng/mL)	19	10	5.5	5.3	5.0
RSD(%)	11	11	10	11	10
IDL試料濃度的	算值				
水質 (ng/L)	8.2	4.3	2.1	2.3	2.0

表-4 装置検出限界の算出(続き)

物質名	C12EO7	C12EO8	C12EO9	C12EO10
注入液濃度	5 ng/mL	5 ng/mL	5 ng/mL	5 ng/mL
測定結果1	3.8	3.9	4.2	4
測定結果2	5.4	4.9	5.2	5.4
測定結果3	5.7	5.6	5.9	5.6
測定結果4	5	5.1	5.5	5.1
測定結果5	4.9	5.1	5.1	5.3
測定結果6	4.5	4.4	4.3	4.5
測定結果7	4.7	5.1	5.2	5
標準偏差	0.619	0.556	0.613	0.558
IDL (ng/mL)	1.2	1.1	1.2	1.1
S/N	11	11	11	11
S/N適否	0	0	0	0
平均 (ng/mL)	4.9	4.9	5.1	5.0
RSD(%)	13	11	12	11
IDL試料濃度扩	英 算值			
水質 (ng/L)	2.4	2.2	2.4	2.2

物質名	C12EO11	C12EO12	C12EO13	C12EO14
注入液濃度	5 ng/mL	5 ng/mL	10 ng/mL	10 ng/mL
測定結果1	4.9	4.5	11	10
測定結果2	4.5	4.4	9.2	9.3
測定結果3	5.9	5.7	8.8	8.5
測定結果4	4.8	4.7	9.2	12
測定結果5	5.1	4.8	8.2	9.1
測定結果6	4.1	3.9	9.8	9.1
測定結果7	4.9	5	9.3	8.9
標準偏差	0.555	0.558	0.875	1.17
IDL (ng/mL)	1.1	1.1	1.7	2.3
S/N	12	12	14	14
S/N適否	0	0	0	0
平均 (ng/mL)	4.9	4.7	9.4	9.6
RSD(%)	11	12	9.4	12
IDL試料濃度数	算值			
水質 (ng/L)	2.2	2.2	3.4	4.5

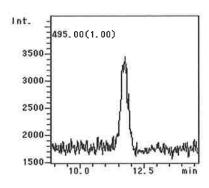
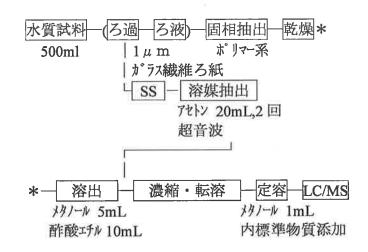


図-1 IDL 測定における代表的な クロマトグラム (C12EO7)

(注 16) 検出限界及び定量限界は「検出限界及び定量限界の算定方法」(平成 6 年 8 月) に従い,表-5 のとおり算出した。


表-5 検出限界及び定量限界の算出

GIAROS		1, 66				1 65	
C12EO2		水質		C12EO3		水質	
試料濃度(ng/L)	50	100	150	試料濃度(ng/L)	20	50	100
応答値(X)	46.03	83.07	120.4	応答値(X)	21.20	49.09	85.31
標準偏差(σR)	3.15	5,22	6.56	標準偏差(σ R)	1.81	3.97	4.15
検出力(Dn)	5.45	9.99	13.00	検出力(Dn)	2.72	6.43	7.74
検出限界(D×3)ng/L		28.44		検出限界(D×3)ng/L		16.89	
定量限界(D×10) ng/L		94.79		定量限界(D×10)ng/L		56.29	
不偏分散(Fd)		4.33		不偏分散(Fd)		5.26	
			-				
C12EO4		水質		C12EO5		水質	
試料濃度(ng/L)	20	50	100	試料濃度(ng/L)	20	50	100
応答値(X)	20.45	48.03	81.50	応答値(X)	22.35	47.65	81.82
標準偏差(σR)	2.50	3.98	5.40	標準偏差(σR)	2,26	3.82	4.75
検出力(Dn)	3.89	6,60	10.55	検出力(Dn)	3.22	6.38	9.24
検出限界(D×3)ng/L		21.04		検出限界(D×3)ng/L	0.22	18.84	7,21
定量限界(D×10)ng/L		70.15		定量限界(D×10) ng/L		62.81	
不偏分散(Fd)		4,67		不偏分散(Fd)		4.41	
- MOS IX (TU)	_	7,07		TIME OF BECCEN		4,41	-
C12EO6		水質		C12EO7		水質	
試料濃度(ng/L)	20	50	100	試料濃度(ng/L)	20	50	100
応答値(X)	22,54	47.24	81.24	応答値(X)			
心合il(A) 標準偏差(σ R)	1.66			心合値(X) 標準偏差(σR)	22.82	46.83	80.34
		4.07	4.54		2.55	4.15	3.55
検出力(Dn)	2.34	6.86	8.89	検出力(Dn)	3.56	7.05	7.04
検出限界(D×3)ng/L		18.09		検出限界(D×3)ng/L		17.64	
定量限界(D×10) ng/L		60.29		定量限界(D×10)ng/L		58.80	
不偏分散(Fd)		7.51		不偏分散(Fd)		2,64	
GIATOR		1.68					
C12EO8		水質		C12EO9		水質	
試料濃度(ng/L)	20	50	100	試料濃度(ng/L)	20	50	100
応答値(X)	22.38	46.66	81.41	応答値(X)	21.79	45.92	80.25
標準偏差(σ R)	2.45	4.11	2.91	標準偏差(σR)	3.06	4.73	5.46
検出力(Dn)	3.48	7.00	5.69	検出力(Dn)	4.47	8.20	10.82
検出限界(D×3)ng/L		16.17		検出限界(D×3)ng/L		23.49	
定量限界(D×10)ng/L		53,90		定量限界(D×10)ng/L		78.29	
不偏分散(Fd)		2.82		不偏分散(Fd)		3.19	
				-		- m/Tid	
C12EO10		水質		C12EO11		水質	
試料濃度(ng/L)	20	50	100	試料濃度(ng/L)	20	50	100
応答値(X)	20.25	45.92	83.18	応答値(X)	19.22	43.49	78.54
標準偏差(σ R)	2.56	2.88	5.45	標準偏差(σR)	3.90	3.73	3.21
検出力(Dn)	4.03	4.99	10.42	検出力(Dn)	6.47	6.83	6.50
検出限界(D×3)ng/L		19.43		検出限界(D×3)ng/L		19.80	
定量限界(D×10)ng/L		64.77		定量限界(D×10)ng/L		65.99	
不偏分散(Fd)		4.52		不偏分散(Fd)		1.48	
C12EO12		水質		C12EO13		水質	
試料濃度(ng/L)	20	50	100	試料濃度(ng/L)	20	50	100
応答値(X)	17.75	41.53	79.73	応答値(X)	16.08	39.20	76,52
標準偏差(σ R)	2.54	2.50	5.14	標準偏差(σR)	3.69	1.69	4.65
検出力(Dn)	4.56	4.79	10.25	検出力(Dn)	7,30	3.42	9.68
検出限界(D×3)ng/L		19.60	-	検出限界(D×3)ng/L		20.40	
定量限界(D×10)ng/L		65.32		定量限界(D×10) ng/L		68.00	
不偏分散(Fd)		4.22		不偏分散(Fd)		7.61	
				· PHASE INC. (A M.)		7,01	
C12EO14		水質					
試料濃度(ng/L)	20	50	100				
応答値(X)	14.87	37.26	76.06				
標準偏差(σR)	3.76	2.18	5.62				
検出力(Dn)	8.04	4.66	11.75				
検出限界(D×3)ng/L	0.01	24.45	11.75				
定量限界(D×10) ng/L		81.51					
不偏分散(Fd)		6.62					

§ 2 解説

(1) 分析法

1. 分析法フローチャート

【分析法の検討】

1. 検量線

検量線の例を図-2に示す。

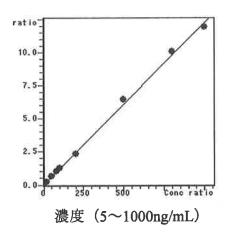


図-2 C12EO7 の検量線

2. 固相からの溶出溶媒の検討

固相から対象物質を溶出するための溶媒として、メタノール 5mL に続き、酢酸エチル、酢酸メチル、アセトン、ジクロロメタンを各 10mL 用いた場合の溶出率を比較した。その結果、酢酸エチルを用いた場合に最も良好な溶出率が得られたことから、メタノールに続く溶出溶媒として採択した。

なお、試料水から対象物質を抽出するための固相については、ポリマー系のほか、ODSを充填剤とする固相においても良好な回収率が得られた。

3. 精製水及び環境試料における本分析法の添加回収試験結果

精製水,河川水及び海水に標準物質を添加し,本法により測定した際の回収試験結果を表-6に示す。

表-6 水質試料の低濃度添加回収実験結果

化合物		試料量;50	0mL 添力	口量;100ng	4回測定	
	精	製水	河	川水	Ħ	毎水
	回収率	変動係数	回収率	変動係数	回収率	変動係数
	(%)	(%)	(%)	(%)	(%)	(%)
C12EO2	82.6	6.2	82.0	5.5	87.5	4.6
C12EO3	82.4	1.6	88.2	2.8	96.3	2.6
C12EO4	81.4	2.8	91.8	3.8	99.0	2.2
C12EO5	81.1	2.2	87.0	3.8	95.1	2.9
C12EO6	80.2	2.0	94.1	3.5	100	4.0
C12EO7	80.4	1.8	95.0	7.1	96.4	2.9
C12EO8	80.0	2.8	94.5	3.9	96.7	5.0
C12EO9	76.5	0.75	89.3	2.5	100	5.3
C12EO10	76.6	2.2	86.5	3.8	96.8	4.2
C12EO11	76.1	1.7	89.4	3.3	97.4	4.5
C12EO12	73.8	1.6	79.0	3.4	93.6	5.2
C12EO13	72.1	1.3	73.0	2.0	88.3	5.7
C12EO14	82.6	6.2	82.0	5.5	87.5	4.6

4. マススペクトル

対象物質及びサロゲート物質のマススペクトルを図-3-1~図-3-14に示す。

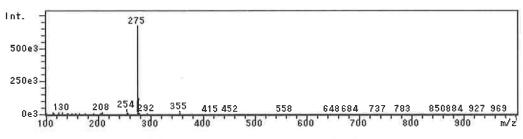


図-3-1 C12EO2 のマススペクトル

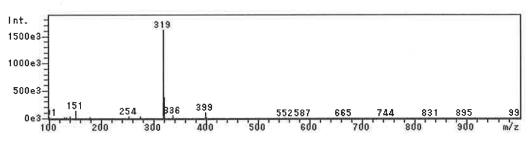


図-3-2 C12EO3 のマススペクトル

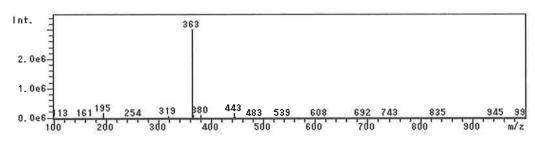


図-3-3 C12EO4 のマススペクトル

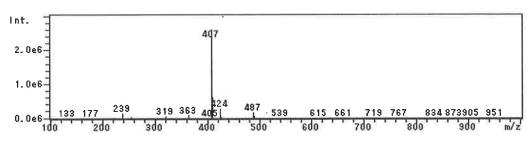


図-3-4 C12EO5 のマススペクトル

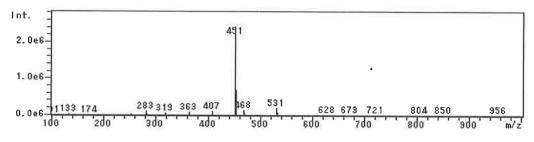


図-3-5 C12EO6 のマススペクトル

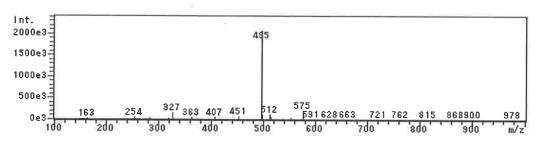


図-3-6 C12EO7 のマススペクトル

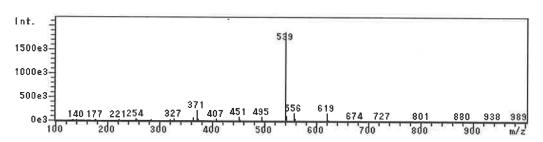


図-3-7 C12EO8 のマススペクトル

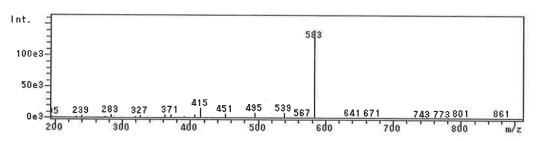


図-3-8 C12EO9 のマススペクトル

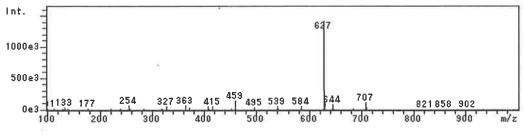


図-3-9 C12EO10 のマススペクトル

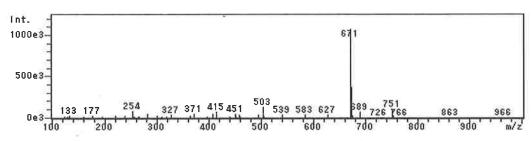


図-3-10 C12EO11 のマススペクトル

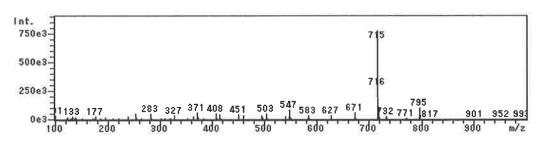


図-3-11 C12EO12 のマススペクトル

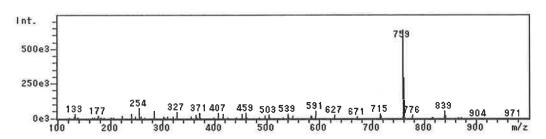


図-3-12 C12EO13 のマススペクトル

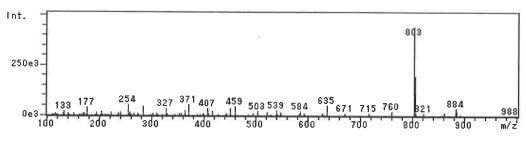


図-3-13 C12EO14 のマススペクトル

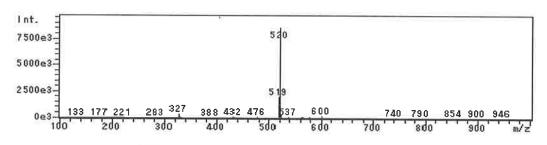


図-3-14 C12EO7-d₂₅のマススペクトル

5. SIM クロマトグラム

標準溶液を測定した際の SIM クロマトグラムを図-4 に示す。

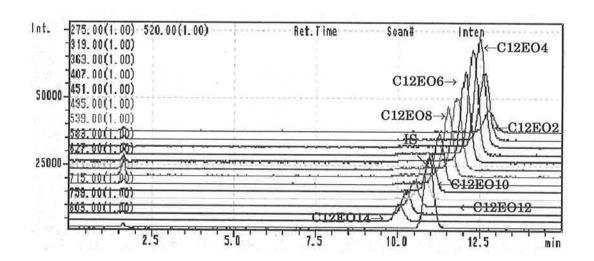


図-4 標準液 (100ng/mL) のマスクロマトグラム

【環境試料分析結果】

環境試料及び標準物質を添加した環境試料を分析した際のクロマトグラムの例を図-5-1~図5-5に示す。河川水(信濃川)及び海水中の対象物質濃度を分析した結果,海水ではN.D.,河川水ではN.D.~77ng/Lであった。

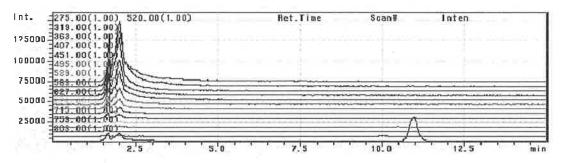


図-5-1 河川水Aのマスクロマトグラム

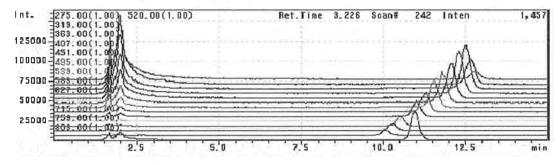


図-5-2 河川水Aに標準 100ng を添加した試料のマスクロマトグラム

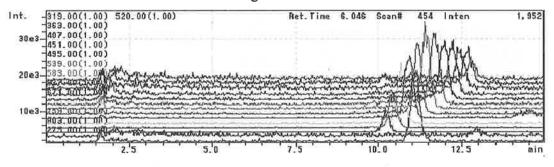


図-5-3 河川水Bのマスクロマトグラム

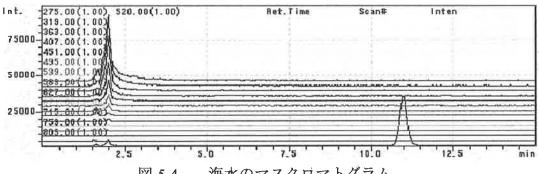


図-5-4 海水のマスクロマトグラム

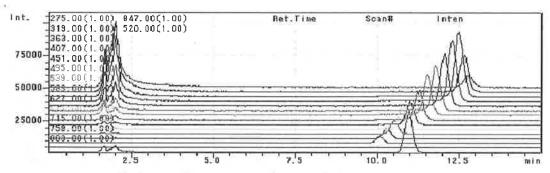


図-5-5 海水に標準 100ng を添加した試料のマスクロマトグラム

【分解性スクリーニング試験】

対象物質の分解性スクリーニング試験を行った結果を,表-7 に示す。 表-7 分解性スクリーニング試験結果

物質名	£		初期濃度	100	ng/mL		
	pH	15		рН7		рŀ	19
	1時間後	5 日後	1時間後	5	日後	1時間後	5 日後
	残存率	残存率	残存率	残	存率*	残存率	残存率
	(%)	(%)	(%)	(%)	(%)	(%)
C12EO2	98	92	82	89	(92)	92	98
C12EO3	86	100	82	91	(94)	91	99
C12EO4	87	103	83	92	(93)	89	102
C12EO5	90	102	84	95	(93)	89	103
C12EO6	93	103	89	96	(92)	91	103
C12EO7	96	105	91	96	(93)	96	100
C12EO8	99	110	95	99	(93)	99	99
C12EO9	101	115	96	108	(102)	101	109
C12EO10	100	114	98	110	(105)	105	102
C12EO11	107	119	104	107	(106)	104	108
C12EO12	104	119	98	109	(107)	106	108
C12EO13	100	121	101	107	(102)	106	105
C12EO14	98	92	82	89	(96)	92	98

^{*()}内は明所,他は暗所における値を示す。

【参考文献】

環境庁水質保全局水質管理課:「要調査項目等調査マニュアル(水質, 底質, 水生生物)」, p.14 (2000).

Reemtsma, T.: J. Chlomatogr. A, 1000, 477 (2003).

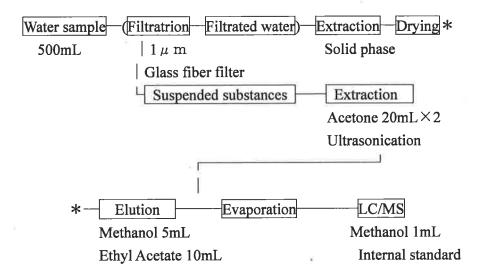
【評価】

本法により、水質試料中に存在するポリ(オキシエチレン)ラウリルエーテルを ng/L レベルまで定量することが可能である。

担当:新潟県保健環境科学研究所

住所: 〒950-2144 新潟市曽和 314-1

電話:025-263-9417 FAX:025-263-9410


担当者:田辺顕子, 横尾保子, 茨木剛, 山口晃

物質名	分析法フローチャート	洪士
		備考
ポリ(オキシエ	【水質】	
チレン)ラウリ	I sea Noted I was to be a sea of the sea of	LC/MS
ルエーテル	水質試料 (ろ過 ろ液) 固相抽出 乾燥*	カラム:
	500mL 1 μ m ポリマー系	関東化学製
	ガラス繊維ろ紙	Mightysil
	SS」一「溶媒抽出」	RP-18 GP
	アセトン 20mL,2 回	150×2.0mm
	超音波	(5µm)
	I	
	* 一 溶出 一 濃縮・転溶 一定容 LC/MS	
	メタノール 5mL メタノール 1mL	検出限界
	酢酸エチル 10mL 内標準物質添加	(水質) ng/L
		C ₁₂ EO ₂ 29
		C ₁₂ EO ₃ 17
		C ₁₂ EO ₄ 21
		C ₁₂ EO ₅ 19
		C ₁₂ EO ₆ 18
		C ₁₂ EO ₇ 18
		C ₁₂ EO ₈ 16
		C ₁₂ EO ₉ 23
		C ₁₂ EO ₁₀ 19
		C ₁₂ EO ₁₁ 20
	ž	C ₁₂ EO ₁₂ 20
		C ₁₂ EO ₁₃ 20
		C ₁₂ EO ₁₄ 24
		12 14

Abstract

A solid-phase extraction and liquid chromatography-mass spectrometric (LC/MS) method was applied to the determination of polyoxyethylene raulyl ether in environment water samples. The target compounds in 500 mL of water were extracted with two solid phase (styrene-divinylbenzene copolymer) cartridges in a series and eluted with 5mL of methanol followed by 10mL of ethyl acetate. If necessary, water samples were filtered through a glass-fiber filter. The suspended substances were extracted ultrasonically twice with 20mL of acetone and the extracts were added to the eluates. The resulting solution was evaporated under the reduced pressure and then under a nitrogen gas stream. The residue was dissolved in 1mL of methanol. Heptaoxyethylene laurylether-d25 was added to the extract as an internal standard, and the resulting mixture was analyzed by LC/MS.

Flow chart

