国立環境研究所研究プロジェクト報告 第149号

NIES Research Project Report, No.149

SR - 149 - 2024

オキシダント生成に関連する水素酸化物ラジカルの多相反応に関する研究

(所内公募型提案研究)

A study of multiphase chemistry of hydrogen oxide radicals relevant to tropospheric ozone formation

令和3~令和5年度 FY2021~2023

国立研究開発法人 国 立 環 境 研 究 所

NATIONAL INSTITUTE FOR ENVIRONMENTAL STUDIES https://www.nies.go.jp/

国立環境研究所研究プロジェクト報告 第149号

NIES Research Project Report, No.149

SR - 149 - 2024

オキシダント生成に関連する水素酸化物ラジカルの多相反応に関する研究

(所内公募型提案研究)

A study of multiphase chemistry of hydrogen oxide radicals relevant to tropospheric ozone formation

令和3~令和5年度 FY2021~2023

国立研究開発法人 国 立 環 境 研 究 所 NATIONAL INSTITUTE FOR ENVIRONMENTAL STUDIES https://www.nies.go.jp/

所内公募型提案研究「オキシダント生成に関連する水素酸化物ラジカルの多相反応に関する研究」 (期間:令和3~5年度)

課題代表者:佐藤圭

執 筆 者:佐藤圭、梶井克純、森野悠、菅田誠治、永島達也、茶谷聡、吉野彩子、

坂本陽介、江波進一

編 者:佐藤圭

本報告書は、令和 3~5 年度の 3 年間にわたって実施した所内公募型提案研究「オキシダント生 成に関連する水素酸化物ラジカルの多相反応に関する研究」の研究成果をとりまとめたものです。 オゾンを主成分とする光化学オキシダントは、健康影響や植物影響のほか高い温室効果を持つ ことから低減が望まれています。国内ではオゾンの前駆物質である揮発性有機化合物の 4 割削減 が実現したにもかかわらずオゾンは高止まりしており、国内環境基準はほとんど達成されており ません。近年中国でも、PM_{2.5}等の大気汚染物質の排出削減に反してオゾンが増加したことが問題 となっており、2018 年に中国と米国の研究機関が共同で、PM_{2.5}の減少がオゾンの増加を説明す るという仮説を発表しています。しかし、オゾンと PM_{2.5}の相互作用の詳細の理解は不十分であ り、新たな仮説による日本国内におけるオゾンの押上げ効果は定量化されていませんでした。こ のような背景のもと、国立環境研究所では、京都大学と共同でオゾン生成と PM_{2.5}の相互作用を 研究するための手法開発に取り組んできました。

本研究では、オゾンと PM_{2.5}の相互作用に係る素過程のうち、オゾン生成の反応を担う水素酸 化物ラジカルの取り込み過程に着目し、取り込み速度を実験的に定量化するとともに、水素酸化 物ラジカルの取り込み過程の導入により国内のオゾン濃度の長期変化を説明する大気モデルを構 築しました。本研究によって、将来の国内オゾン低減に PM_{2.5}の削減が悪影響を及ぼさないこと が明らかになりました。この結果を踏まえ、将来の国内オゾンの低減には、国内での揮発性有機 化合物の削減余地を理解してオゾン前駆物質の削減をさらに進めつつ、東アジア諸国によるオゾ ン低減の国際協力も同時に進めることが必要です。オキシダント問題は今後長期にわたって取り 組むべき課題です。本研究の成果は、オキシダント問題の解決に向けて、オゾンの長期変化を理 解するための科学的基盤になることを確信しています。

最後に、本研究を進めるにあたり、研究所内外の多くの方々にご協力とご支援をいただきました。ここに深く感謝いたします。

令和6年11月

国立研究開発法人 国立環境研究所

理事長木本昌秀

[資料]

- 1 研究の組織と研究課題の構成
- 1.1 研究の組織

1.2 研究課題と担当者

- 2 研究成果発表一覧
 - 2.1 誌上発表
 - 2.2 口頭発表

1 研究の概要

1.1 研究全体の目的、目標、構成等

オゾン(O₃)を主成分とする光化学オキシダントは、健康影響や植物影響のほか、高い温室効果を持つことから低減 が望まれている。オゾンは、揮発性有機化合物(VOC)および窒素酸化物(NO、)の複雑な光化学反応によって生成し、 その濃度は VOC および NOx に対して非線形的に変化する。オキシダント削減戦略では、基準年の VOC 排出量を3割削 減すれば、オキシダント注意報発令レベル未超過が約 90%まで上昇することが期待された。ところが実際には VOC の 4 割削減が実現したにもかかわらず、オキシダントは高止まりしており、国内環境基準はほぼ達成されていない ¹。 VOC だけでなく、NOx および PM25 に関しても近年削減が進んでいることが知られるが、オキシダントのみ削減が進ん でいない(図1)。オキシダントの高止まりの要因として、VOCの削減と同時にNOxの削減が同時に行われたことによ る NO 滴定反応の減少の影響や、越境大気汚染によるオゾンの増加の影響があると示唆されている²⁾。ここで NO 滴定 反応とはオゾンと NO との反応によってオゾンが低減される反応のことである。近年中国でも、大気汚染対策による VOC、NO_xおよび PM₂₅の削減に反して、オゾンが増加したことが問題となっている。2018 年に中国と米国の研究機関 が共同で、PM25の減少がオゾンの増加を説明する可能性があることを報告している³⁾。新たな仮説では、PM25の削減 によってオゾン生成の連鎖反応を担う水素酸化物ラジカル [ヒドロキシ (OH) ラジカル、ヒドロペルオキシ (HO₂) およびペルオキシ(RO2)ラジカル]の取り込み過程が減少し、取り込み過程の減少によって水素酸化物ラジカルが増 加し、その結果としてオゾン濃度が押し上げられると考えられている(図 1)。しかしながら、HO2および RO2ラジカ ルの PM25への取り込み係数および取り込まれた HO2 ラジカルによる PM25粒子内の反応機構、日本国内におけるこの新 たな仮説によるオゾンの押上げ量に関する理解が不十分である。

そこで、本研究では、HO₂および RO₂ラジカルの取り込み係数や粒子内での反応機構を評価するとともに、評価結果 に基づいて大気モデルに多相反応過程を導入し、大気モデル計算を実施することによって国内におけるオゾン濃度およ び PM₂₅の削減によるオゾンの押上げ効果を評価することを目的とした。一連の研究によって、オゾンの長期変化を理 解するための科学的基盤を提供することが目標である。本研究の研究組織は、取り込み係数の評価を担当するサブテー マ1、粒子内の反応機構解明を担当するサブテーマ2、および大気モデル計算を担当するサブテーマ3によって構成さ れた(図1)。

サブテーマ1では、国立環境研究所と京都大学による都市大気化学連携研究グループの共同研究によって蓄積された 研究手法をオキシダントの生成に関する素過程の研究に活用した。京都大学では、これまでの研究によってレーザーポ ンププローブ法を用いることによってHO2およびRO2ラジカルの取り込み係数を従来法である流通法よりも高効率かつ 高精度に測定できるように改良することに成功した⁴⁵⁹。また、国立環境研究所ではこれまで大気光化学チャンバーを 用いた二次有機エアロゾルの生成機構に関する研究により⁶⁵⁷、二次有機エアロゾルおよび無機・有機混合エアロゾル の発生および計測の技術を蓄積してきた。本研究のサブテーマ1では、チャンバー実験とレーザーポンププローブ装置 の組み合わせによって、様々な化学組成の無機エアロゾル粒子および二次有機エアロゾル粒子によるHO2ラジカルおよ び RO2 ラジカルの取り込み係数を測定するとともに、粒子への銅(II)および鉄(II)イオンの添加やその濃度が取り 込み係数に及ぼす効果について調べた。本研究に先立って実施された都市大気エアロゾルによるHO2の取り込み係数の 観測では、HO2 ラジカルの取り込み係数が粒子中の金属成分比と正の相関を示し、粒子中の有機成分比と負の相関を示 した⁸。本研究の結果から以前の観測研究の結果を検証するとともに、本研究では都市大気エアロゾル粒子を模した無 機・有機混合粒子の取り込み係数についても評価した。

サブテーマ2では、エアロゾルに取り込まれたHO₂ラジカルによる反応で生成する過酸化水素のFenton反応の反応経路が研究された。Fenton反応はHO₂ラジカルの取り込みに影響を及ぼす可能性が示唆されている⁹。これまでFenton反応の生成物は直接検出されておらず、過酸化水素との反応により、鉄(II)イオンは鉄(III)またはオキソフェリル中間体 [Fe(IV)=O] に変換されると考えられている。鉄(III)イオンを生成する経路が有力視されているが、厳密には確立していない。サブテーマ2の担当者のグループは、以前にエアロゾル界面におけるFenton反応の研究において、鉄

1

(II) イオンと過酸化水素との反応の主要生成物としてオキソフェリル中間体の検出に成功した¹⁰。さらに最近、サブ テーマ2の担当者のグループは液相反応の初期生成物の検出可能なマイクロジェット衝突法の開発に成功した。サブテ ーマ2では、バルク反応法やマイクロジェット衝突法による実験を実施して、バルク条件の Fenton 反応、鉄(II) イオ ンと有機過酸化水素の反応および銅(II) イオンと過酸化水素の反応の生成物を検出することにより、粒子内での液相 反応機構を解明する。

サブテーマ3では、実験から得られた取り込み係数と反応機構に基づいて大気モデルに多相反応を導入し、過去およ び将来の国内オゾン濃度や、PM₂₅の削減がオゾンの増加に及ぼす影響を評価した。従来の大気モデル研究(例えばRef. 3等)では、HO₂ラジカルの取り込み係数として、0.2の一定値を使用している。本研究では、従来の方法に従って一定 値を使用した計算を実施したほか、遷移金属濃度の関数として評価された取り込み係数に基づく大気モデル計算も実施 した。さらに、実験で明らかにされた Fenton 反応の反応機構を反映した液相反応の計算も実施することによって、取り 込み係数の遷移金属濃度依存性に関する測定結果を検証した。過去および将来の国内オゾン濃度や、PM₂₅の削減がオ ゾンの増加に及ぼす影響を評価するため、最新の国内インベントリおよび 2000~2050 年の排出シナリオを利用するこ とによって、HO₂ラジカルの取り込み係数を 0.2 として大気モデル計算を実施した。以上実験及び大気モデル計算の 3 つのサブテーマの成果から、オゾンの長期変化を理解するための科学的基盤を与えることが本研究の目的である。

オゾンの長期変化を理解するための科学的基盤を与える

図1 研究の全体構成

1.2 研究の概要

サブテーマ1では、レーザーポンププローブ法を用いた取り込み測定を実施することによって、同一手法による取り 込み係数の測定としては、既往研究と比較して飛躍的に多種多様な化学成分と実験条件におけるデータが取得された。 まず、アトマイザーによって噴霧された無機エアロゾル粒子による HO₂ ラジカルの取り込み係数を測定した(図 2)。

無機エアロゾル粒子の化学組成として、塩化ナトリウム、硫酸ナトリウムおよび硫酸アンモニウムを用いた。それぞれ の無機エアロゾル粒子への銅(II)および鉄(II)イオンの添加効果も調べられた。さらに海塩粒子による HO2 ラジカ ルの取り込み係数が測定された。銅(II)および鉄(II)イオンが HO2ラジカルの取り込み係数を増大させる成分であ ることが明らかにされた。海塩粒子の HO2 取り込み係数は NaCl 粒子より高いことが明らかにされた。HO2 ラジカルの 取り込み係数に銅(Ⅱ)イオン濃度が及ぼす影響の測定結果に基づき、抵抗モデルと気相化学機構に基づく取り込み係 数の遷移金属濃度依存性の定式化が行われた。プロペン由来の RO2 ラジカルの取り込み係数の測定も実施された。RO2 ラジカルの取り込み係数の測定では、エアロゾル粒子として塩化ナトリウムを用いた。また、アスコルビン酸ナトリウ ム、塩化鉄(II)および塩化銅(II)を塩化ナトリウム粒子に添加することにより、取り込み係数に及ぼされる効果が 調べられた。アスコルビン酸ナトリウムおよび塩化鉄(II)の添加によって RO2 ラジカルの取り込み係数が増大するこ とが明らかにされた。さらに、チャンバーを利用して植物起源の VOC であるα-ピネンとオゾンの反応によって二次有 機エアロゾルを生成することにより、二次有機エアロゾル粒子や、二次有機エアロゾルと無機エアロゾルとの混合粒子 へのHO2ラジカルおよびプロペン由来RO2ラジカルの取り込み係数が測定された。HO2ラジカルの二次有機エアロゾル 粒子による取り込み係数はほぼゼロであった。都市エアロゾルを想定することにより、二次有機エアロゾルと銅(II) イオンを添加した硫酸アンモニウムエアロゾルの混合系の実験も行った。相対湿度約 50%の条件では、混合粒子によ る HO2 ラジカルの取り込み係数はほぼゼロであったが、約 80%では混合粒子による取り込み係数の上昇がみられた。 プロペン由来 RO2 ラジカルの二次有機エアロゾル粒子による取り込み係数も、HO2 ラジカルの場合と同様にほぼゼロで あった。二次有機エアロゾルと硫酸鉄(II)を添加した硫酸アンモニウムエアロゾルの混合系の実験も行われた。サブ テーマ1で、HO2ラジカルに関して測定された取り込み係数は0~0.7であった。この結果は以前の大気モデルで仮定さ れた0.2の取り込み係数の値と矛盾しなかった。また、RO2ラジカルに関して測定された取り込み係数は0~0.4であり、 これも以前の大気モデルで仮定された 0.1 の取り込み係数と矛盾しなかった。HO2 ラジカルの取り込み係数は無機エア ロゾル粒子中の遷移金属の濃度によって増加し、二次有機エアロゾルによる取り込み係数は小さいことが明らかにされ た。これらの結果は、以前の野外観測によるHO2ラジカルの取り込み係数と粒子化学成分比の相関に関する結果を支持 していた。従来の大気モデルでは取り込み係数を定数として扱っているが、粒子中の遷移金属の濃度、有機化合物濃度 および相対湿度によって取り込み係数が複雑に変化することをどのようにモデル化するかが課題であることが明らかに された。

サブテーマ2では、酸性条件の水溶液中における鉄(II)イオンと過酸化水素の反応(Fenton反応)の生成物を調べ ることによって、従来から有力視されていた鉄(III)イオンを生成する経路が主要経路であることが確かめられた(図 2)。鉄(II)-過酸化水素-捕捉剤-水系の液相バルク実験を実施し、反応機構が調べられた。ラジカル補足剤として、ジメ チルスルホキシド、安息香酸およびピノン酸が用いられた。いずれのラジカル捕捉剤を用いた場合にも、OH ラジカル の生成を示す生成物が検出され、従来から有力視されていた鉄(III)イオン、OH ラジカルおよび OHイオンを生成す る経路が主要経路であることが確かめられた。ミリ秒スケールの反応を調べることができるマイクロジェット交差衝突 実験によっても鉄-過酸化水素-水系の反応機構が調べられ、バルク実験と矛盾のない結果が得られた。鉄(II)-過酸化水 素-捕捉剤-水系の液相バルク実験の手法は、液相における OH ラジカルとレボグルコサンの反応速度および反応機構の 研究にも活用された。また、Fenton 反応の研究と同じ実験手法を展開することによって、水溶液中における鉄(II)イ オンと様々な有機過酸化物の化学反応過程についても調べられた。有機過酸化水素として、tert-ブチルヒドロペルオキ シドやα-テルピネオール由来のα-ヒドロキシヒドロペルオキシドが用いられた。鉄(II)- tert-ブチルヒドロペルオキシド -捕捉剤-水系の液相バルク反応では、OHイオンを生成する反応が主要経路であることが明らかにされ既往の結果が確 かめられた。鉄(II)-α-ヒドロキシヒドロペルオキシド-捕捉剤-水系の液相バルク反応では、α-テルピネオール由来のα -ヒドロキシヒドロペルオキシドが液相内で過酸化水素脱離反応を起こし、脱離した過酸化水素が Fenton 反応に進むと 示唆された。さらに、銅(Ⅱ) イオンと過酸化水素の反応も調べられた。銅(Ⅱ) が過酸化水素に対しても高い化学反 応性を示すことを明らかにされた。

サブテーマ3では、取り込み係数および粒子中における反応機構の実験結果に基づき、HO2 ラジカルの取り込み過程 を大気モデルに導入した。大気エアロゾルの HO2ラジカルの取り込み係数を 0.2 として 2019 年夏季におけるモデル計算 を実施し、HO2ラジカルの取り込みが東アジアのオゾン濃度に及ぼす影響を評価した。また、HO2ラジカルの取り込み が 2000~2050 年の国内オゾン濃度に及ぼす影響を大気モデルで評価した。近年 NIES で整備された過去 20 年の排出イ ンベントリ、および既往の将来排出シナリオを用いて HO2 ラジカルの取り込み係数を 0.2 としてオゾン濃度に関する大 気モデル計算を実施した。過去 20 年間の計算によって、HO2 ラジカルの取り込みによるオゾン低減効果が国内の春季 に2~3%、中国華北地方の夏季で3~6%に及ぶことを明らかにした。将来におけるHO2取り込みによるオゾン低減の効 果は、日本においては PM25の減少により限定的であるが、中国では依然として 2~4%の影響があることが示唆された。 さらに、銅(II)イオン濃度が HO2 ラジカルの取り込み係数に及ぼす影響を評価するために、抵抗モデルと簡易な液相 反応機構に基づく計算および液相詳細反応ボックスモデルに基づく計算を実施し、いずれのモデルも銅濃度依存性の予 測結果が実験結果を説明することを確認した。抵抗モデルと簡易な液相反応機構に基づいて定式化された計算方法を用 い、2019年の東アジアでの銅の排出統計に基づいて、中国華北地方でのHO2ラジカルの取り込み係数が0.5~0.7程度と 計算された。既往のモデルで 0.2 と評価されている HO2 ラジカルの取り込み係数は、東アジアにおいて倍半分程度の不 確実性があることが示唆された。2013-2017年中国華北地方におけるオゾン増加を説明したものと同様な PM25の削減に よる効果は 2000~2010 年代の夏季関東でも見られ、夏季関東におけるオゾンの押上げ量は 10 年間で 0.3 ppbv 程度であ ることが明らかにされた(図2)。VOCの削減努力にも関わらず国内オゾンの削減が見られなかったのは、国内のNOx の削減が同時に行われたことや越境輸送されるオゾンの増加の効果だけでなく、PM25の削減が関与していたことが示 唆される。他方、2010~2050年の夏季関東でのオゾン濃度は、10年間で2 ppmv 程度のゆっくりとした減少になること がモデルによって予測されたが、PM25の削減によるオゾン押上げ効果は限定的であった。すなわち、将来の国内オゾ ンの低減に PM25の削減が悪影響を及ぼさないことが明らかにされた。2010~2050 年の夏季関東における 10 年間で 2 ppmv 程度のオゾンの減少は国内の排出削減および越境輸送の変化によって説明されるものであることが示唆される。 しかし、中国を含む PM25高濃度地域の予測に関しては今後も PM25減少によるオゾン押し上げ効果を考量してモデル予 測する必要がある。

本研究では、HO₂ラジカルの取り込みが過去および未来の国内オゾン濃度に及ぼす影響を大気モデルで評価すること によって、現状のモデルが持つ不確実性が定量的に明らかにされ、オゾンの長期変化を理解するための科学的基盤を与 えるという目標が達成された。基準年から VOC を 3 割削減することによりオキシダントの低減が達成されるという予 測の問題点として、当時の大気モデル計算では PM₂₅によるペルオキシラジカルの取り込み過程がモデルに導入されて いなかったことに加え、将来の NO₄濃度は一定と仮定され、越境輸送の変化も考慮されていなかったことが可能性と して考えられる。本研究で得られた成果を踏まえ、今後国内でオキシダント対策を検討する際には、本研究で提示され た PM₂₅の効果を考慮するとともに、国内や周辺諸国での VOC、NO₄および PM₂₅排出の現実的な将来シナリオを検討 する必要がある。その上で、国内での VOC の削減余地を理解してオゾン前駆物質の削減をさらに進めつつ、東アジア 諸国によるオゾン低減の国際協力も進める必要がある。また、本研究によって、水素酸化物ラジカルのエアロゾル粒子 による取り込み係数の測定手法やエアロゾル粒子内の反応機構の測定手法が確立されるとともに、多相反応の反応過程 に関する新たな知見が蓄積された。本研究では、主に多相反応がオゾン生成に及ぼす影響の側面から研究が実施された が、多相反応が PM₂₅の生成・変質に及ぼす影響やそれらが気候に及ぼす影響についても今後さらなる研究が望まれ る。具体的には、粒子中の遷移金属濃度および pH がラジカルの取り込み係数に及ぼす影響、HO₂ラジカルや有機ペル オキシラジカルの多相反応が有機エアロゾルの生成や変質に及ぼす影響等に関して研究の発展が期待される。

4

図2 PM25粒子の削減がオゾン濃度の高止まりに及ぼした影響の解明(図中、MSAはメタンスルホン酸を表す)

- 引用文献
- 光化学オキシダント調査検討会: (2012) 光化学オキシダント調査検討会報告書―今後の対策を見すえた調査研究の あり方について―. https://www.env.go.jp/ (2024年8月26日アクセス)
- 2) 独立行政法人環境再生保全機構: (2022) 地域ごとの光化学オキシダントに関する研究のレビューとそのとりまとめ に関する調査研究. https://www.erca.go.jp/ (2024年8月26日アクセス)
- Li, K., Jacob, D.J., Liao, H., Shen, L., Zhang, Q., Bates, K.H.: (2018) Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc. Nat. Acad. Sci. USA, 116, 422-427, doi: 10.1073/pnas.1812168116
- Miyazaki, K., Nakashima, Y., Schoemaecker, C., Fittschen, C., Kajii, Y.: (2013) Note: a laser-flash photolysis and laser-induced fluorescence detection technique for measuring total HO₂ reactivity in ambient air. Rev. Sci. Instrum. 84, 076106, doi: 10.1063/1.4812634
- 5) 坂本陽介, Li, J., 河野七瀬, 中山智喜, 佐藤圭, 梶井克純: (2023) レーザー分光法を用いた大気エアロゾルによるイソプレン由来有機過酸化ラジカル取り込み係数の決定. 大気環境学会誌 58, 1-9
- 6) Sato, K., Fujitani, Y., Inomata, S., Morino, Y., Tanabe, K., Ramasamy, S., Hikida, T., Shimono, A., Takami, A., Fushimi, A., Kondo, Y., Imamura, T., Tanimoto, H., Sugata, S.: (2018) Studying volatility from composition, dilution, and heating measurements of secondary organic aerosols formed during α-pinene ozonolysis. Atmos. Chem. Phys. 18, 545-5466, doi: 10.5194/acp-18-5455-2018

- 7) Sato, K., Fujitani, Y., Inomata, S., Morino, Y., Tanabe, K., Hikida, T., Shimono, A., Takami, A., Fushimi, A., Kondo, Y., Imamura, T., Tanimoto, H., Sugata, S.: (2019) A study of volatility by composition, heating, and dilution measurements of secondary organic aerosol from 1,3,5-trimethylbenzene. Atmos. Chem. Phys. 19, 14901-14915, doi: 10.5194/acp-19-14901-2019
- Zhou, J., Sato, K., Bai, Y., Fukusaki, Y., Kousa, Y., Ramasamy, S., Takami, A., Yoshino, A., Nakayama, T., Sadanaga, Y., Nakashima, Y., Li, J., Murano, K., Kohno, N., Sakamoto, Y., Kajii, Y.: (2021) Atmos. Chem. Phys. 21, 12243-12260, doi: 10.5194/acp-21-12243-2021
- Lakey, P.S.J., Berkemeier, T., Baeza-Romero, M.T., Pöschl, U., Shiraiwa, M., Heard, D.E.: (2024) Towards a better understanding of the HO₂ uptake coefficient to aerosol particles measured during laboratory experiments. Environ. Sci. Atmos. 4, 813-829, doi 10.1039/D4EA00025K
- 10) Enami, S., Sakamoto, Y., Colussi, A.J.: (2014) Fenton chemistry at aqueous interfaces. Proc. Nat. Acad. Sci. USA 111, 623-628, doi: 10.1073/pnas.1314885111

2 研究の成果

2.1 サブテーマ1:チャンバーおよび噴霧器により発生させた PM25粒子による水素酸化物ラジカル取り込み係数の 測定

2.1.1 目的と経緯

エアロゾルによるヒドロペルオキシル (HO₂) ラジカルの取り込みは、揮発性有機化合物 (VOC) の酸化、オゾン生 成、二次有機エアロゾルの生成に影響を与える可能性がある¹¹⁾⁻¹³。さらに、取り込み過程は、エアロゾルの大きさ、光 学特性、核形成などの特性を変化させることにより、気候に影響を与える可能性がある¹⁴⁾。したがって、HO₂ラジカル の取り込み過程は気相反応と競合し、大気の化学組成を大きく変える可能性がある。例えば、正午の熱帯海域における HO₂ラジカル濃度のモデル化と測定に基づいて、エアロゾルの取り込みが HO₂ラジカル損失の最大 23%に関与している ことが示されている¹⁵⁾。大気モデルの研究グループは、エアロゾルへの HO₂ラジカルの取り込み係数(γ) として 0.2 を利用している¹⁶⁾⁻¹⁹。多相反応によって減少する光化学オゾン生成の割合は、日本、欧米では 1970 年代に 18~35%、中国では 2014 年に 20~35%に達すると予測された¹⁸⁾。さらに、MARK モデルと呼ばれる経験的モデルにより、湿潤エ アロゾルへの HO₂ラジカルの取り込み係数が計算され、野外観測の結果と比較された²⁰⁾。しかし、銅を添加したエアロ ゾルへの HO₂ラジカルの取り込み係数を考慮すると、MARK モデルによって得られた取り込み係数の結果には大きな ばらつきが見られた。

エアロゾルは多様な化学成分からなり、大気中における分子や粒子は空力学的な影響を受ける。これらの条件が、エ アロゾル粒子とラジカルの多相反応を説明する上で取り扱いが難しい点である。鉄(II) イオンや銅(II) イオンなど の遷移金属イオン(TMI) は、大気エアロゾル粒子の酸化能と関連づけられることが以前の研究によって明らかにされ ている^{21,22)}。銅と鉄は、燃焼エアロゾルやダストを含む大気環境中に豊富に存在し、高い反応性を持つこと、そして最 も広く研究されている遷移金属であることから、本研究の研究対象とした^{32,34)}。しかし、多相反応における銅(II) や 鉄(II) のような遷移金属イオンが取り込み係数に及ぼす影響が十分に理解されているとは言えない。現在、多相反応 によるラジカル減衰速度に関する研究は限られており、先行研究のほとんどは、多相反応によるラジカル減衰速度を調 べるために、エアロゾルフローチューブ反応法とレーザー誘起蛍光法または化学イオン化質量分析法を組み合わせたも のであった^{25,31)}。エアロゾルフローチューブは、注入点を変えることでラジカルの滞留時間を制御し、一定時間エアロ ゾルと相互作用した後にラジカル濃度を検出する。しかし、このような方法ではラジカルの注入点を手動で制御する必 要があり、ラジカル減衰のデータの時間分解能が低くなる。取り込み係数は、初期ラジカル濃度、エアロゾルの化学 的・物理的特性、温度や相対湿度などの実験条件によって変化することを考慮すると、多相反応に関する理解を深める ためには効率的な測定手法が必要である。したがって、本研究では、レーザーボンププローブ法を採用することによっ て、時間分解測定を効率化した。様々な化学組成のエアロゾル粒子を用い、様々な濃度条件や混合状態等の測定条件に おける取り込み係数を同一手法で測定した。

2.1.2 方法

粒子を含む試料ガス中でのHO₂およびRO₂ラジカルの反応性は、化学変換レーザー光分解レーザー誘起蛍光(CC-LP-LIF)装置によって測定された(図 3)。ラジカル反応性をエアロゾル表面積濃度の関数として測定することによりラ ジカルの取り込み係数が評価された。装置及び解析方法については Ref. 32 に詳しい記載がある。粒子を含む試料ガス に水蒸気およびオゾンを添加した。オゾンは空気に水銀ランプの184.9 nmの光を照射して生成された。HO₂ラジカルの 測定を行う場合には混合ガスにさらに一酸化炭素を添加した。得られた混合ガスは長さ 1.4 m、内径 40 mmの反応セル

(1 気圧)に導入された。反応セル内に導入された混合ガスに Nd: YAG レーザー (Tempest 300, 5.5 mJ/pulse, New Wave Research Inc.) からの第四高調波 (266 nm) を照射した。レーザーの照射によって起こる次の一連の反応によって、HO₂ または RO₂ ラジカルが生成された。

 $O_3 + h \nu_{266nm} \rightarrow O(^1D) + O_2$

(R1)

7

	$O(^{1}D) + H_{2}O \rightarrow 2OH$	(R2)
	$OH + CO (+ O_2) \rightarrow HO_2 + CO_2$	(R3)
	RO2ラジカルの測定を行う場合には、一酸化炭素の代りにプロペンが添加され、下記の反応によってR	O₂ラジカル
が生	成された。	
	$OH + C_3H_6 (+ O_2) \longrightarrow RO_2$	(R3')
反応	、セル内のガスの一部を 0.5 mm のオリフィスから検出セル(圧力約 2 Torr)に導入した。検出セルでは、	HO ₂ ラジカ
ルは	NOとの反応によって OH ラジカルに変換された。	
	$HO_2 + NO \rightarrow OH + NO_2$	(R4)
同様	に、RO2 ラジカルの測定の場合もNOとの一連の反応によってOH ラジカルに変換された。	
	$RO_2 + NO \rightarrow RO + NO_2$	(R5)
	$\mathrm{RO} + \mathrm{O}_2 \rightarrow \mathcal{T} \vdash \mathcal{V} \text{ or } \mathcal{T} / \mathcal{V} \mathcal{T} \vdash \vdash \mathrm{HO}_2$	(R6)
	$HO_2 + NO \rightarrow OH + NO_2$	(R4)

生成された OH ラジカルの検出光として、Nd:YVO4 レーザー(10 kHz, YHP40-532Q, Spectra Physics)の第二高調波(532 nm)によって励起されたパルス色素レーザー(Credo-D, Sirah)の第二高調波(308 nm)の光が用いられた。検出光によって励起された OH ラジカルからの蛍光は4枚のレンズで集光され、バンドパスフィルタによって選別された後に光電子増倍管(R2256P,浜松ホトニクス)によって検出された。反応セル内のエアロゾル表面積濃度は走査型モビリティ粒子計測器(SMPS;凝縮型粒子計測器 model 3752,微分移動度分析装置 model 3081A,微分移動度分析装置プラットフォーム model 3082, いずれも TSI 製)を用いて測定された。

図3 HO₂および RO₂ラジカルの取り込み係数の測定に用いられたレーザーポンププローブ装置 [CC BY-NC, Li et al.: (2023) Environ. Sci. Atmos. 2, 1384-1395, doi: 10.1039/d3ea00093a]³²⁾

取り込み係数の測定に用いられたエアロゾル粒子はアトマイザーおよび大気チャンバーによって発生された。無機エ アロゾル粒子の発生にはアトマイザー(model 3076, TSI)が用いられた。無機エアロゾル粒子として、塩化ナトリウム 粒子、硫酸ナトリウム粒子、硫酸アンモニウム粒子が用いられた。塩化ナトリウム粒子による取り込み係数については 塩化銅(II)および塩化鉄(II)の添加効果が調べられた。同様に、硫酸ナトリウムおよび硫酸アンモニウム粒子によ る取り込み係数については硫酸銅(II)および硫酸鉄(II)の添加効果が調べられた。さらに、伊豆半島および八丈島 において採取された海水試料を超純水で100倍に希釈した水溶液を噴霧することによって海塩エアロゾルを発生させた。 伊豆半島の海水試料には、pHを8.3に保つための緩衝剤が添加された。

取り込み係数の測定に用いられた二次有機エアロゾル (SOA) については、大気チャンバーシステム (図 4) を用い て発生させた。FEPフィルムチャンバー(株式会社タケスエ製)を反応器として使用した。フィルムの厚さは50μmで あった。チャンバーは 1,700×1,600×800 mm の直方体型で、体積は 2.18 m³、表面積は 10.8 m²であった。チャンバーに は 12 個の FEP 製ガス導入口が取り付けられており、ガス導入、ガス排気および分析用ガス捕集のために使用された。 チャンバー内の希釈ガスには空気精製器(SGPU-S、堀場エステック製)によって精製された空気が使用された。精製空 気はナフィオン加湿管(Perma Pure 社製、FC-100-80)を用いることによって 45-80%の相対湿度に加湿された。チャンバ 一の空気温度は、実験室に設置された空調システムにより 298±1K に制御された。壁面沈着と希釈によるオゾンの6時 間平均損失速度は、(9.57 ± 0.32) × 10⁵ min¹であった。また、壁面沈着と希釈による硫酸アンモニウム粒子の表面濃度 の7時間平均損失速度は、(8.35±0.14)×10³ min⁻¹であった。SOAの前駆物質には人為起源 VOC であるトルエンまたは植 物起源 VOC であるα-ピネンを用いた。トルエン由来 SOA はトルエン-ジメチル-2-ブテン-オゾン-空気系の反応によっ て生成された。またα-ピネン由来 SOA はα-ピネン-オゾン-空気系の反応によって生成された。これらの反応に用いら れた VOC は真空装置内で一定量をガス溜めに測り取った後に窒素ガスをキャリアガスとしてチャンバーに導入された。 オゾンは純酸素を用いてオゾン発生器(OP-20W, 岩崎製)で発生させた。チャンバー内の VOC および生成物のガスの 濃度は陽子移動反応質量分析計(PTR-MS, Ionicon 製)によって測定され、オゾン濃度はオゾン計(APOA-370, 堀場製作 所製)によって測定された。また、エアロゾル粒子のサイズ分布が SMPS を用いて測定され、エアロゾル粒子の化学組 成はエアロゾル質量分析計(AMS, Aerodyne 製)を用いて測定された。SOA と混合するための無機エアロゾルは、SOA 発生の前または後にアトマイザーを用いて発生されテフロンバッグに導入された。

図4 二次有機エアロゾルおよび有機・無機混合エアロゾルの生成に用いられた大気チャンバーシステム

2.1.3 結果と考察

HO₂ラジカルの取り込み係数にエアロゾルの化学組成が及ぼす影響を調べた結果を表1に示す。塩化ナトリウム、硫酸アンモニウムおよび硫酸ナトリウム粒子によるHO₂ラジカルの取り込み係数はいずれも0.1よりも小さかった。これらの結果は、以前に塩化ナトリウム粒子^{29,30}および硫酸アンモニウム粒子^{25,28,29,30,31}による取り込み係数の文献値と近かった。HO₂ラジカルの取り込みを促進する物質として、抗酸化剤のアスコルビン酸ナトリウムを塩化ナトリウム粒子に添加したところ、HO₂の取り込み係数は0.46と増加することが確認された。塩化ナトリウム、硫酸アンモニウムおよび硫酸ナトリウムに銅(II)イオンを添加すると、取り込み係数は0.56~0.72に増加した。この結果も、以前に塩化ナ

トリウム粒子 ³⁰および硫酸アンモニウム粒子 ^{26)28)29,30)} に銅(II) イオンを添加した場合に見られた結果と矛盾しなかっ た。本研究では、さらに鉄(II) イオンを塩化ナトリウム粒子、硫酸アンモニウム粒子および硫酸ナトリウム粒子に添 加した場合についても調べ、取り込み係数が 0.17~0.28 と決定された。取り込み係数は鉄(II) イオンの添加によって も増加することが本研究で初めて明らかにされた。本研究では、伊豆および八丈島で採取された海水を噴霧して得られ た海塩粒子についても調べ、HO₂ ラジカルの取り込み係数を 0.11~0.22 と決定した。以前に利尻島で採取された海水か ら得られた海塩粒子の場合、取り込み係数は 0.10 であった。海塩粒子による HO₂ ラジカルの取り込み係数には採取場所 による違いが見られた。また、海塩粒子による取り込み係数は、塩化ナトリウム粒子による取り込み係数よりも大きか った。海塩に含まれる微量の金属イオンが海塩粒子の取り込み係数に影響を及ぼしている可能性がある。

エアロゾル組成	相対湿度%	γ eff	γ	備考
NaCl	82	0.03 ± 0.01	0.03 ± 0.01	0.01 ± 0.02 (Ref. 29)
				0.10 ± 0.02 (Ref. 30)
CuCl ₂ /NaCl	74	0.65 ± 0.17	0.72 ± 0.17	0.65 ± 0.17 (Ref. 30)
FeCl ₂ /NaCl	84	0.27 ± 0.06	0.28 ± 0.06	
アスコルビン酸ナト	82	0.40 ± 0.15	0.46 ± 0.15	
リウム/NaCl				
$(NH_4)_2SO_4$	84	~0.01	~0.01	0.0010 ± 0.0007 (Ref. 31)
				0.004 ± 0.002 (Ref. 25)
				0.01 ± 0.01 (Ref. 29)
				0.19 ± 0.04 (Ref. 30)
				~0.1 (Ref. 28)
CuSO ₄ /(NH ₄) ₂ SO ₄	86	0.60 ± 0.19	0.67 ± 0.19	0.23 ± 0.07 (Ref. 26)
				0.4 ± 0.3 (Ref. 29)
				0.53 ± 0.13 (Ref. 30)
				0.5 ± 0.1 (Ref. 28)
FeSO ₄ /(NH ₄) ₂ SO ₄	83	0.25 ± 0.05	0.26 ± 0.05	
Na ₂ SO ₄	84	~0.04	~0.04	
CuSO ₄ /Na ₂ SO ₄	82	0.49 ± 0.21	0.56 ± 0.21	
FeSO ₄ /Na ₂ SO ₄	83	0.16 ± 0.02	0.17 ± 0.02	
海塩(伊豆)	82	0.11 ± 0.01	0.12 ± 0.01	
海塩(八丈島)	79	0.22 ± 0.04	0.24 ± 0.04	
海塩(利尻)				0.10 ± 0.02 (Ref. 29)

表1 HO2 ラジカルの取り込み係数にエアロゾルの化学組成が及ぼす影響

硫酸アンモニウム粒子中の遷移金属イオンの濃度の関数として HO₂ ラジカルの取り込み係数を調べた結果を図 5 に示 す。遷移金属イオンの濃度の増加に伴って取り込み係数も増加する結果が得られた。気相から取り込まれた HO₂ ラジカ ルは水相で O₂ + H⁺と平衡状態にあり、平衡定数は pH に依存する (R7) 。水相での HO₂ ラジカル同士の反応によって H₂O₂ と O₂が生成される (R8) 。また、O₂、HO₂ ラジカルおよび OHイオンの反応によって、H₂O₂、O₂および OHイオ ンが生成される (R9) 。さらに、O₂ は遷移金属イオンと反応して不活化する (R10) 。

$HO_2(g) \rightarrow O_2^-(aq) + H^+(aq)$	(R7)
$HO_2(aq) + HO_2(aq) \rightarrow H_2O_2(aq) + O_2(aq)$	(R8)
$O_2^{-}(aq) + HO_2(aq) (+ H_2O(l)) \longrightarrow H_2O_2(aq) + O_2(aq) + OH^{-}(aq)$	(R9)
O₂¯(aq)+TMI(aq)→生成物	(R10)

したがって、粒子相内で、Cu(II)やFe(II)などの遷移金属イオンは触媒として働き、HO₂はO₂と H₂O₂に変換され、 粒子の pH が増加する。以上に述べた反応機構と抵抗モデル関数 ³⁰を用いて実験結果を説明した。粒子の pH を熱力学 モデルである Extended Aerosol Inorganics Model (E-AIM)によって計算し、粒子中の遷移金属イオンと O₂の反応の速度定数 をフィット変数として関数を実験結果にフィットした。

[CC BY-NC, Li et al.: (2023) Environ. Sci. Atmos. 2, 1384-1395, doi: 10.1039/d3ea00093a]³²⁾

粒子内における遷移金属イオンとO₂の反応速度のフィット結果および文献値を表2に示す。本研究で得られたCu(II) イオンに関する速度定数は1.5×10⁷ M⁻¹ s⁻¹であり、熱力学モデルによるpH 推定値は4.1 であった。これらの結果は同じ く熱力学モデルとしてE-AIMを用いたSongetal.の結果²⁰と近かった。Kolbetal.による総説論文で紹介されているIUPAC の推奨速度定数の結果は本研究の30分の1とかなり小さかった¹⁴。IUPACが採用したpH 推定値は本研究と異なる熱力 学モデルで推定されたが、pH は 5.5 と本研究よりも高かった。pH = 5.5 を採用して本研究のフィットを行った場合、 IUPAC の速度定数に近い値が得られたことから、IUPAC との違いは pH の推定値の違いに起因していると考えられる。 銅(II) および鉄(II) のいずれについても、粒子中の速度定数はバルク反応速度よりも小さかった。粒子中では、塩 析によりモル濃度よりも活量が低いため、速度定数が低くなると推定される。本研究で決定された銅(II)の反応速度 定数は鉄(II)の反応速度定数の 115 倍であった。しかし、環境中での鉄の濃度は銅に比べて高いので鉄の取り込みへ の重要性が銅に比べて低いとは必ずしも言えない。

表2 粒子内における遷移金属イオンと O2の反応速度のフィット結果および文献値

遷移金属イオン	速度定数(M ⁻¹ s ⁻¹)	pH 推定值	備考
Cu ²⁺	$1.5 imes 10^{7}$	4.1	本研究
Cu ²⁺	1×10^{7}	4.2	Song et al., 2022 (Ref. 20)
Cu ²⁺	5×10^{5}	5.5	Kolb et al., 2010 (Ref. 14)
Cu ²⁺	1×10^{8} (HO ₂)	-	バルク反応速度
	1×10^{10} (O ₂ ⁻)		
Fe ²⁺	$1.3 imes 10^{5}$	4.1	本研究
Fe ²⁺	$2 \times 10^{6} (HO_2)$	-	バルク反応速度
	$1 \times 10^{7} (O_{2})$		

RO₂ラジカルの取り込み係数にエアロゾルの化学組成が及ぼす影響を調べた結果を表3に示す。プロペン由来RO₂ラジカルの塩化ナトリウム粒子による取り込み係数は0.03であった。塩化ナトリウム粒子にアスコルビン酸ナトリウムを添加したところ、取り込み係数は0.23に増加した。塩化ナトリウム粒子に銅(II)または鉄(II)を添加したところ、鉄(II)を添加したときの方がより大きな取り込み係数(0.41)が得られた。以前の研究⁵で測定されたイソプレン由来RO₂ラジカルの塩化ナトリウム粒子による取り込み係数(0.10)は本研究のプロペン由来RO₂の場合よりも高かった。イソプレン由来RO₂ラジカルの大気エアロゾル粒子による取り込み係数は0.08であった。これは以前にJacobがアルケン由来RO₂ラジカルの大気エアロゾルによる取り込み係数の推奨値とした0.1¹⁰に近かった。以前に測定されたメチルペルオキシラジカルおよびアセチルペルオキシラジカルの塩化ナトリウム粒子による取り込み係数はいずれもほぼゼロであった^{33,34)}。

ラジカル種	エアロゾル組成	γ eff	γ	備考
プロペン由来 RO ₂	NaCl	0.03 ± 0.02	0.03 ± 0.02	本研究
プロペン由来 RO ₂	CuCl ₂ /NaCl	0.05 ± 0.04	0.05 ± 0.04	本研究
プロペン由来 RO ₂	アスコルビン酸ナト	0.02 ± 0.01	0.23 ± 0.01	本研究
	リウム/NaCl			
プロペン由来 RO ₂	FeCl ₂ /NaCl	0.37 ± 0.01	0.41 ± 0.01	本研究
イソプレン由来 RO ₂	NaCl		0.11 ± 0.02	坂本ほか, 2023 (Ref. 5)
イソプレン由来 RO ₂	大気エアロゾル		0.08 ± 0.05	坂本ほか, 2023 (Ref. 5)
アルケン由来 RO ₂	大気モデル推奨値		0.10	Jacob, 2000 (Ref. 16)
CH ₃ O ₂	NaCl		0.004 ± 0.001	Gershenzon et al., 1995
				(Ref. 33)
CH ₃ C(O)O ₂	NaCl		0.0043 (+0.0024/-0.0015)	Villalta et al., 1996 (Ref.
				34)

表3 RO2 ラジカルの取り込み係数にエアロゾルの化学組成が及ぼす影響

HO₂ラジカルの SOA および無機・有機混合エアロゾルによる取り込み係数を測定した実験では4通りの実験を実施した。4通りの実験において AMS を用いて測定された粒子化学組成の時間変化を図6に示す。最初の実験として、チャン バー内でα-ピネンとオゾンの反応によって SOA を生成し、SOA による取り込み係数を測定した(SOA 実験、図6a)。 次に二番目の実験として、硫酸銅を添加した硫酸アンモニウム[CuSO4/(NH4)2SO4] 粒子をチャンバー内にアトマイザ ーによって噴霧し、取り込み係数を測定した(CuSO4/(NH4)2SO4 実験、図6b)。三番目の実験としてチャンバー内に CuSO4/(NH4)2SO4粒子を噴霧した後、α-ピネンとオゾンの反応によって SOA を生成し、無機・有機混合粒子による取り 込み係数を測定した(CuSO4/(NH4)2SO4 + SOA 実験、図6c)。硫酸アンモニウム粒子をシード粒子として α-ピネンのオ ゾン分解で生成する SOA の SEM 画像は、無機シード粒子が半揮発性の有機物によって覆われることを示している³⁵。 AMS の測定結果によれば、本研究では SOA の発生と同時に、硫酸アンモニウムからの信号が低下している。信号低下 の原因として、硫酸アンモニウムが SOA によって覆われることによって感度が低下したか、あるいは飽和によって感 度が低下した可能性がある。最後に四番目の実験として、チャンバー内で SOA を発生させた後に CuSO₄(NH₄)₂SO₄粒子 をチャンバー内に噴霧し、取り込み係数を測定した(CuSO₄(NH₄)₂SO₄+SOA 実験、図 6d)。

図 6 (a) SOA 実験、(b) CuSO₄/(NH₄)₂SO₄実験、(c) SOA + CuSO₄/(NH₄)₂SO₄実験および(d) CuSO₄/(NH₄)₂SO₄ + SOA 実験で AMS を用いて測定された粒子化学組成の時間変化

図 7 は、無機・有機混合粒子実験の粒子混合前後における空力学径の変化に関する測定結果を表している。 CuSO4/(NH4)₂SO4+SOA実験において、SOA発生前の硫酸エアロゾル粒子のピーク径は398 nm (図 7a) であり、SOA発 生後の硫酸エアロゾル粒子のピーク径は625 nm であった (図 7b)。つまり、SOAの発生後に硫酸塩を含む粒子の径が 増加した。この結果は、有機エアロゾルと無機エアロゾルが内部混合したことを示している。AMSの空力学レンズの カット径が1µmであるため、SOAの混合後に硫酸エアロゾルの粒径分布の大粒径側はカットされた。大粒径側のカッ トによってCuSO4/(NH4)₂SO4+SOA実験においてSOA発生後にAMSの硫酸エアロゾルの信号が低下した可能性がある。 SOA+CuSO4/(NH4)₂SO4 実験において、無機粒子導入前の有機エアロゾル粒子のピーク径は417 nm (図 7c) であり、無 機粒子導入後の有機エアロゾル粒子のピーク径は558 nm であった (図 7d)。つまり、無機粒子の添加後に有機エアロ ゾルの粒径は増加した。無機エアロゾルの添加が有機エアロゾルの粒径の増加に影響を及ぼしている結果は、SOA+ CuSO4/(NH4)₂SO4 実験でも内部混合が起こっていることを示唆している。

13

図7 CuSO₄/(NH₄)₂SO₄+SOA 実験における(a) SOA 発生前および(b) SOA 発生後における空力学径分布ならびに SOA + CuSO₄/(NH₄)₂SO₄実験における(c) 無機粒子導入前および(d) 無機粒子導入後における空力学径分布

HO₂ラジカルの α -ピネン由来 SOA および無機・有機混合エアロゾルによる取り込み係数の測定結果を表4に示す。SOA 粒子による HO₂ ラジカルの取り込み係数は、相対湿度が 44%のとき 0.02±0.01 と決定された。測定された値は Lakey et al.による文献値 ⁵⁰と近かった。CuSO₄/(NH₄)₂SO₄粒子による HO₂ ラジカルの取り込み係数は、相対湿度が 52%のとき、 0.49±0.02 と決定された。CuSO₄/(NH₄)₂SO₄粒子に関しても、測定された値は文献値 ^{20,28})^{29,30} (0.23~0.53) と近かった。 CuSO₄/(NH₄)₂SO₄粒子をシード粒子として SOA を発生させて得られる混合粒子では、相対湿度が 47%のとき取り込み係 数は-0.01±0.01、また相対湿度が 76%のとき取り込み係数は 0.18±0.02 と決定された。後者は都市大気エアロゾル粒子 による HO₂ ラジカルの取り込み係数の測定結果⁵⁰に近かった。47%の相対湿度では、CuSO₄/(NH₄)₂SO₄粒子が取り込みの 遅い有機物で覆われることによって、混合粒子の取り込み係数は低くなったと考えられる。測定された取り込み係数は 相対湿度の増加に対して有意に増加した。相対湿度の増加によって粒子内の拡散速度が増加した可能性がある。SOA 粒子を生成させた後に CuSO₄((NH₄)₂SO₄粒子を導入して得られる混合粒子では、相対湿度が 55%のときの取り込み係数 が 0.01±0.01 と決定された。測定された取り込み係数が検出限界以下であった結果から、SOA の発生後に CuSO₄/(NH₄)₂SO₄粒子を導入した場合も CuSO₄/(NH₄)₂SO₄粒子が半揮発性の有機物によって被覆された可能性がある。

エアロゾル組成	相対湿度(%)	γ	備考
α -pinene SOA (チャンバー)	44	0.02 ± 0.01	本研究
α -pinene SOA (チャンバー)	75	-0.04 ± 0.04	本研究
α -pinene SOA	50-80	< 0.01	Lakey et al. (Ref. 25)
CuSO ₄ /(NH ₄) ₂ SO ₄ (チャンバー)	52	0.49 ± 0.02	本研究
CuSO ₄ /(NH ₄) ₂ SO ₄ (チャンバー)	45	0.23~0.53	Refs. 26, 28, 29, 30
CuSO ₄ /(NH ₄) ₂ SO ₄ (アトマイザー)	86	0.67	本研究
CuSO ₄ /(NH ₄) ₂ SO ₄ +SOA(チャンバー)	47	-0.01 ± 0.02	本研究
CuSO ₄ /(NH ₄) ₂ SO ₄ +SOA(チャンバー)	76	0.18 ± 0.02	本研究
SOA+CuSO4/(NH4)2SO4 (チャンバー)	55	0.01 ± 0.01	本研究

表4 HO2 ラジカルのα-ピネン由来 SOA および無機・有機混合エアロゾルによる取り込み係数

分子構造の違いからRO2ラジカルの二次有機エアロゾルによる取り込み係数はHO2ラジカルの場合と異なる可能性が あるため、RO2のα-ビネン由来 SOA および無機・有機混合粒子による取り込み係数についても測定を行った。プロペ ン由来 RO2 ラジカルの SOA および無機・有機混合エアロゾルによる取り込み係数の測定結果を表 5 に示す。予想に反 し、シード粒子を導入せずにテフロンバッグ内で生成された SOA による取り込み係数は、HO2 ラジカルと同様に検出 限界以下であった。次に硫酸鉄を添加した硫酸アンモニウム[FeSO4/(NH4)2SO4]粒子を 30 分かけてテフロンバッグ内に噴 霧し、その後取り込み係数を測定した。すると、FeSO4(NH4)2SO4粒子による RO2 ラジカルの取り込みも検出限界以下で あった。しかし、FeSO4/(NH4)2SO4粒子をアトマイザーによって噴霧した直後に測定すると、取り込み係数は 0.4 程度で あることが確認された。取り込みの低下には、テフロンバッグの影響があることが示唆される。酸性条件下では水溶液 中の鉄(II)の酸化が抑制されると報告されている³⁰。そこで、取り込みの低下は、チャンバー内での鉄(II)の酸化 によるものと仮定し、FeSO4(NH4)2SO4 粒子に硫酸を添加した FeSO4/H2SO4(NH4)2SO4 粒子を用いて測定を行った。 FeSO4/H2SO4/(NH4)2SO4粒子をテフロンバッグに噴霧して測定したところ、取り込み係数は 0.15 であった。値は、噴霧の 直後に測定された取り込み係数(0.33)より低いものの、有意にゼロよりも大きかった。抗酸化物質のアスコルビン酸 ナトリウムを硫酸アンモニウムに添加した粒子についても、テフロンバッグ内に噴霧して取り込みを調べた。FeASの 場合と同様に、アトマイザーの直後では0.25の取り込み係数が測定されたものの、テフロンバッグ内に噴霧された粒子 の取り込み係数は検出限界以下となった。最後に、FeSO4/H2SO4(NH4)2SO4粒子をシード粒子として、SOAを生成して得 られた混合粒子の取り込み係数を測定した。混合粒子の取り込み係数は、検出限界以下であり、FeSO4/H2SO4/(NH4)2SO4 粒子のみを噴霧した場合の取り込み係数よりも有意に低かった。SOA との共存によって無機粒子による取り込みが見 られなくなった結果は、HO2ラジカルの結果と同様に SOA による被覆の影響と考えられる。

エアロゾル	相対湿度(%)	γ	備考
SOA (チャンバー)	50	0.01 ± 0.05	本研究
FeSO₄/(NH₄)₂SO₄ (チャンバー)	50	0.00 ± 0.10	本研究
SOA (アトマイザー)	50	0.42 ±0.10	本研究
FeSO ₄ /H ₂ SO ₄ /(NH ₄) ₂ SO ₄ (チャンバー)	50	0.15 ± 0.04	本研究
FeSO4/H2SO4/(NH4)2SO4 (アトマイザー)	50	0.33 ± 0.04	本研究
アスコルビン酸ナトリウム/(NH4)2SO4	50	0.00 ± 0.05	本研究
(チャンバー)			
アスコルビン酸ナトリウム/(NH4)2SO4	50	0.24 ± 0.05	本研究
(アトマイザー)			
$FeSO_4/H_2SO_4/(NH_4)_2SO_4 + SOA$	50	-0.01 ± 0.03	本研究
(チャンバー)			

表 5	プロペン由来RO。ラジカルの	α-ピネン由来 SOA お上び無機・	「右機混合エアロゾルによ	ろ取り込み係数
エノ				

2.1.4 まとめ

サブテーマ1で、HO₂ラジカルに関して測定された取り込み係数は0~0.7であった。この結果は以前の大気モデルで 仮定された 0.2 の取り込み係数の値と矛盾しなかった。また、RO₂ラジカルに関して測定された取り込み係数は 0~0.4 であり、これも以前の大気モデルで仮定された 0.1 の取り込み係数と矛盾しなかった。HO₂ラジカルの取り込み係数は 無機エアロゾル粒子中の遷移金属の濃度によって増加し、二次有機エアロゾルによる取り込み係数は小さいことが明ら かにされた。これらの結果は、以前の野外観測によるHO₂ラジカルの取り込み係数と粒子化学成分比の相関に関する結 果を支持していた。従来の大気モデルでは取り込み係数を定数として扱っているが、粒子中の遷移金属の濃度、有機化 合物濃度および相対湿度によって取り込み係数が複雑に変化することをどのようにモデル化するかが課題であることが 明らかにされた。

また、本研究によって、水素酸化物ラジカルのエアロゾルによる取り込み係数の測定手法が確立されるとともに、多 相反応の反応過程に関する新たな知見が蓄積された。本研究では、主に多相反応がオゾン生成に及ぼす影響の側面から 研究が実施されたが、多相反応が PM₂₅の生成・変質に及ぼす影響やそれらが気候に及ぼす影響についても今後さらな る研究が望まれる。具体的には、粒子中の遷移金属濃度および粒子の pH がラジカルの取り込み係数に及ぼす影響、 HO₂ ラジカルや有機ペルオキシラジカルの多相反応が有機エアロゾルの生成や変質に及ぼす影響等に関して研究の発展 が期待される。

引用文献

- 11) Heard, D.E., Pilling, M.J.: (2003) Measurement of OH and HO₂ in the troposphere. Chem. Rev., 103, 5163-5198, doi: 10.1021/cr020522s
- 12) Khaled, A., Zhang, M., Ervens, B.: (2022) doi: The number fraction of iron-containing particles affects OH, HO₂ and H₂O₂ budgets in the atmospheric aqueous phase. Atmos. Chem. Phys. 22, 1989-2009, doi: 10.5194/acp-22-1989-2022
- 13) Ren, X., Brune, W.H., Oliger, A., Metcalf, A.R., Simpas, J.B., Shirley, T., Schwab, J.J., Bai, C., Roychowdhury, U., Li, Y., Cai, C., Demerjian, K.L., He, Y., Zhou, X., Gao, H., Hou, J.: (2006) OH, HO₂, and OH reactivity during the PMTACS–NY Whiteface Mountain 2002 campaign.: Observations and model comparison. J. Geophys. Res. Atmos. 111, 3639-3651 doi: 10.1029/2005JD006126
- 14) Kolb, C.E., Cox, R.A., Abbatt, J.P.D., Ammann, M., Davis, E.J., Donaldson, D.J., Garrett, B.C., George, C., Griffiths, P.T., Hanson, D.R., Kulmala, M., McFiggans, G., Pöschl, U., Riipinen, I., Rossi, M.J., Rudich, Y., Wagner, P.E., Winkler, P.M., Worsnop, D.R.,O'Dowd, C.D.: (2010) An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmos. Chem. Phys. 10, 10561-10605, doi: 10.5194/acp-10-10561-2010
- 15) Whalley, L.K., Furneaux, K.L., Goddard, A., Lee, J.D., Mahajan, A., Oetjen, H., Read, K.A., Kaaden, N., Carpenter, L.J., Lewis, A.C., Plane, J.M.C., Saltzman, E.S., Wiedensohler, A., Heard, D.E.: (2010) The chemistry of OH and HO₂ radicals in the boundary layer over the tropical Atlantic Ocean. Atmos. Chem. Phys. 10, 1555-1576, doi: 10.5194/acp-10-1555-2010
- 16) Jacob, D.J.: (2000) Heterogeneous chemistry and tropospheric ozone. Atmos. Environ. 34, 2131-2159, doi: 10.1016/S1352-2310(99)00462-8
- 17) Ha, P.T.M., Matsuda, R., Kanaya, Y., Taketani, F., Sudo, K.: (2021) Effects of heterogeneous reactions on tropospheric chemistry: A global simulation with the chemistry-climate model CHASER V4.0. Geosci. Model Dev. 14, 3813-3841, doi: 10.5194/gmd-14-3813-2021
- 18) Ivatt, P.D., Evans, M.J., Lewis, A.C.: (2022) Suppression of surface ozone by an aerosol-inhibited photochemical ozone regime. Nat. Geosci. 15, 536-540, doi: 10.1038/s41561-022-00972-9
- 19) Li, K., Jacob, D.J., Liao, H., Zhu, J., Shah, V., Shen, L., Bates, K.H., Zhang, Q., Zhai, S.: (2019) A two-pollutant strategy for improving ozone and particulate air quality in China. Nat. Geosci. 12, 906-910, doi: 10.1038/s41561-019-0464-x

- 20) Song, H., Chen, X., Lu, K., Zou, Q., Tan, Z., Fuchs, H., Wiedensohler, A., Moon, D.R., Heard, D.E., Baeza-Romero, M.T., Zheng, M., Wahner, A., Kiendler-Scharr, A., Zhang, Y.: (2020) Influence of aerosol copper on HO₂ uptake: A novel parameterized equation. Atmos. Chem. Phys. 20, 15835–15850, doi: 10.5194/acp-20-15835-2020
- 21) Bates, J.T., Fang, T., Verma, V., Zeng, L., Weber, R.J., Tolbert, P.E., Abrams, J.Y., Sarnat, S.E., Klein, M., Mulholland J.A., Russell, A.G.: (2019) Review of acellular assays of ambient particulate matter oxidative potential: methods and relationships with composition, sources, and health effects. Environ. Sci. Technol. 53, 4003–4019, doi: 10.1021/acs.est.8b03430
- 22) Wong, J.P.S., Yang, Y., Fang, T., Mulholland, J.A., Russell, A.G., Ebelt, S., Nenes, A., Weber, R.J.: (2020) Fine particle iron in soils and road dust is modulated by coal-fired power plant sulfur. Environ. Sci. Technol. 54, 7088–7096, doi: 10.1021/acs.est.0c00483
- 23) Deguillaume, L., Leriche, M., Desboeufs, K., Mailhot, G., George, C., Chaumerliac, N.: (2005) Transition metals in atmospheric liquid phases: Sources, reactivity, and sensitive parameters. Chem. Rev. 105, 3388–3431, doi: 10.1021/cr040649c
- 24) Schroeder, W.H., Dobson, M., Kane, D.M., Johnson, N.D.: (1987) Toxic trace elements associated with airborne particulate matter: A Review. J. Air Pollut. Control Assoc. 37, 1267–1285, doi: 10.1080/08940630.1987.10466321
- 25) Lakey, P.S.J.,Berkemeier, T., Krapf, M., Dommen, J., Steimer, S.S., Whalley, L.K., Ingham, T., Baeza-Romero, M.T., Pöschl, U., Shiraiwa, M., Ammann, M., Heard, D.E.: (2016) The effect of viscosity and diffusion on the HO₂ uptake by sucrose and secondary organic aerosol particles. Atmos. Chem. Phys. 16, 13035–13047, doi: 10.5194/acp-16-13035-2016
- 26) Lakey, P.S.J, George, I.J., Whalley, L.K., Baeza-Romero, M.T., Heard, D.E.: (2015) Measurements of the HO₂ uptake coefficients onto single component organic aerosols. Environ. Sci. Technol. 49, 4878–4885, doi: 10.1021/acs.est.5b00948
- 27) Taketani, F., Kanaya, Y., Akimoto, H.: (2009) Heterogeneous loss of HO₂ by KCl, synthetic sea salt, and natural seawater aerosol particles. Atmos. Environ. 43, 1660–1665, doi: 10.1016/j.atmosenv.2008.12.010
- 28) Thornton, J., Abbatt, J.P.D.: (2005) Measurements of HO₂ uptake to aqueous aerosol: Mass accommodation coefficients and net reactive loss. J. Geophys. Res. Atmos., 110, D08309, doi: 10.1029/2004JD005402
- 29) George, I.J., Matthews, P.S.J., Whalley, L.K., Brooks, B., Goddard, A., Baeza-Romero, M.T., Heard, D.E.: (2013) Measurements of uptake coefficients for heterogeneous loss of HO₂ onto submicron inorganic salt aerosols. Phys. Chem. Chem. Phys. 15, 12829–12845, doi: 10.1039/C3CP51831K
- 30) Taketani, F., Kanaya, Y., Akimoto, H.: (2008) Kinetics of heterogeneous reactions of HO₂ radical at ambient concentration levels with (NH₄)₂SO₄ and NaCl aerosol particles. J. Phys. Chem. A 112, 2370–2377, doi: 10.1021/jp0769936
- 31) Zou, Q., Song, H., Tang, M., Lu, K.: (2019) Measurements of HO₂ uptake coefficient on aqueous (NH₄)₂SO₄ aerosol using aerosol flow tube with LIF system. Chin. Chem. Lett. 30, 2236–2240, doi: 10.1016/j.cclet.2019.07.041
- 32) Li, J., Sakamoto, Y., Sato, K., Morino, Y., Kajii, Y.: (2023) Investigation of HO₂ uptake onto Cu(II)- and Fe(II)-doped aqueous inorganic aerosols and seawater aerosols using laser spectroscopic techniques. Environ. Sci. Atmos. 2, 1384-1395, doi: 10.1039/d3ea00093a
- 33) Gershenzon, Y. M., Grigorieva, V. M., Ivanov, A. V., Remorov, R. G.: (1995) O₃ and OH sensitivity to heterogeneous sinks of HO_x and CH₃O₂ on aerosol particles. Faraday Discuss., 100, 83–100, doi: 10.1039/FD9950000083
- 34) Villalta, P.W., Lovejoy, E.R., Hanson, D.R.: (1996) Reaction probability of peroxyacetyl radical on aqueous surfaces. Geophys. Res. Lett. 23, 1765-1768, doi:10.1029/96GL01286
- 35) Olsen, N.E., Lei, Z., Craig, R.L., Zhang, Y., Chen, Y., Lambe, A.T., Zhang, Z., Gold, A., Surratt, J.D., Ault, A.P.: (2019) Reactive uptake of isoprene epoxydiols increases the viscosity of the core of phase-separated aerosol particles. ACS Earth Space Chem. 3, 1402-1414, doi: 10.1021/acsearthspacechem.9b00138
- 36) Garg, S., Jiang, C., Waite, T.D.: (2018) Impact of pH on iron redox transformations in simulated freshwaters containing natural organic matter. Environ. Sci. Technol. 52, 13184-13194, doi: 10.1021/acs.est.8b03855

2.2 サブテーマ2:液相における過酸化水素および有機過酸化物と遷移金属イオンとの反応機構の解明

2.2.1 目的と経緯

地球の気候変動とヒトの健康に大きな影響を与えているエアロゾルの環境動態を理解するためには、気相、液相、境 界相を含む多相(マルチフェーズ)の反応機構を分子レベルで理解する必要がある(図 8)。HO₂ ラジカルはエアロゾル に取り込まれた後、主に H₂O₂ に変換されることが知られているが、H₂O₂ はさらに鉄イオンと反応すると考えられてい る。エアロゾル内に取り込まれた HO₂の初期過程である銅イオンによる反応機構はある程度確立されているが、後続反 応として起こる鉄イオンの反応に関しては長年の議論がある。O₃ 生成抑制の不均一反応を導入した大気モデルでは、 鍵となる反応として、Fenton 反応: Fe²⁺ + H₂O₂ → Fe³⁺ + OH + OHが想定されている。しかし、過去の複数の研究によっ て Fe²⁺ + H₂O₂ の反応は FeO²⁺を生成する反応: Fe²⁺ + H₂O₂ → FeO²⁺ + H₂O に進む可能性が示唆されており、また以前の江 波の研究から、気液界面ではこの FeO²⁺ + H₂O を生成する過程が主要な経路であることが明らかになっている。 本研究では、液相の鉄(II) イオンと H₂O₂ との反応の初期生成物あるいはジメチルスルホキシド等の捕捉剤を添加した 場合の生成物を質量分析することにより、鉄(II) イオンと H₂O₂の反応機構を検証し、検証結果に基づいてエアロゾル 内で進む反応を検討した。

図8.大気中で起こる多相反応が与える影響を示した模式図

2.2.2 方法

液相反応を調べるためのバルク法と、液相反応の初期生成物を調べるためのマイクロジェット衝突法を用いることに よって、界面および液相における反応機構を明らかにする実験を行った。バルク法では、反応中間体の捕捉剤としてジ メチルスルホキシド等を用いて最終生成物を調べることにより、反応中間体を推定した。マイクロジェット衝突法では、 液相反応の初期生成物を調べ、ラジカル補足剤の有無による生成物の違いを比較した。

2.2.3 結果と考察

液相反応実験による粒子相における反応機構解明

HO₂取り込みの後に粒子内で生成する過酸化水素と鉄(II)の反応として液相ボックスモデルに採用されている Fenton 反応のメカニズムはまだよくわかっていなかった。Fenton 反応のメカニズムを調べることによって、既往の液相ボックス モデルに採用された基礎的な反応機構の妥当性を検証した。

鉄(II)-過酸化水素-捕捉剤-水系の液相バルク実験を実施し、反応機構を調べた。OH ラジカルの捕捉剤として、DMSO、 安息香酸およびピノン酸を用いた。鉄(II)-過酸化水素-DMSO 混合水溶液(pH~4.1)の負イオン質量スペクトルを図9に示 す。

図 9.0.05 mM H₂O₂+100 mM DMSO+0.05 mM FeCl₂ 混合水溶液の反応時間ごとに測定した負イオン質量スペクトル

主要な反応生成物として m/z 95 のメタンスルホン酸(MSA) の信号を検出した。また、2 価と3 価の鉄イオンと塩化物イオン(Cl)錯体である Fe^{II}Cl₃と Fe^{III}Cl₄の信号(m/z 161; 163 と m/z 196; 198; 200)を検出した。図 10 にこれらの信号の時間変化を示す。

図 10.0.05 mM H₂O₂+100 mM DMSO + 0.05 mM FeCl₂ 混合水溶液の負イオン質量スペクトルから得られた MSA, Fe^{II}Cl₃, Fe^{II}Cl₄の信号の時間変化

反応時間の経過に伴い、m/z 95 における MSA の信号が増加した。これは、OH ラジカルによる DMSO の酸化反応が進み、最終的に安定な MSA が生成したことを表している。一方で、Fe^{II}Cl₃ と Fe^{II}Cl₄の信号(m/z 161; 163 と m/z 196; 198; 200) は徐々に減少した。Fe^{II}Cl₃の減衰は、Fenton 反応(Fe²⁺ + H₂O₂)が進行していることを意味する。一方で、Fe^{III}Cl₄の減衰は、Fenton 反応によって生成した Fe³⁺が、水溶液中で加水分解反応を起こしていることを示唆している。

市販の MSA 試薬を用いて、m/z 95 の信号強度と MSA の濃度をプロットし、MSA の検量線を得た。図 10 の MSA 信号 の最大値から、0.05 mM H₂O₂+100 mM DMSO + 0.05 mM FeCl₂ 混合水溶液における Fenton 反応の収率~96%と決定した。 本条件下に置いて、鉄(II)-過酸化水素-捕捉剤-水系の液相バルク反応は、既知の Fenton 反応によって進むことが確かめ られた。現在、Fenton 反応の収率の pH 依存性についても追加実験を行っている。また、鉄(II)-有機過酸化水素-捕捉剤-水系の液相バルク実験も実施し、反応機構を研究した。ヒドロペルオキシド(ROOH)として、*tert-*ブチルヒドロペルオキ シドとα-テルピネオール由来のα-ヒドロキシヒドロペルオキシドを用いた。H₂O₂に比べると、これらの ROOH からの OH ラジカル生成は数%以下しかないことを明らかにした。鉄(II)- tert-ブチルヒドロペルオキシド-捕捉剤-水系の液相バ ルク反応では、OH ラジカルではなく、OHイオンを生成する反応が主要経路であることが明らかになり、既往の結果 が確かめられた。鉄(II)-α-ヒドロキシヒドロペルオキシド-捕捉剤-水系の液相バルク反応では、α-テルピネオール由来の α-ヒドロキシヒドロペルオキシド-捕捉剤-水系の液相バルク反応では、α-テルピネオール由来の なーとドロキシヒドロペルオキシドが液相内で過酸化水素脱離反応を起こし、脱離した過酸化水素が Fenton 反応に進むと 示唆された。本成果の一部は、Hu, Tonokura, <u>Morino, Sato, Enami</u>, "Effects of metal ions on aqueous-phase decomposition of ahydroxyalkyl-hydroperoxides derived from terpene alcohols", *Environ. Sci. Technol.*, **2021**, *55*, 12893-12901.として発表した³⁷。

本実験で確立した液相バルク実験の手法を、液相におけるレボグルコサンの酸化分解過程の研究に応用した。レボグ ルコサンはバイオマス燃焼エアロゾルに含まれる主要有機成分として重要である。

図 11.1 mM Levoglucosan + 0.2 mM NaCl + 1 mM H₂O₂ + 0.1 mM FeCl₂混合水溶液(pH 3.7)の反応時間ごとに測定した負イオン 質量スペクトル

鉄(II)-過酸化水素-レボグルコサン-塩化ナトリウム混合水溶液の負イオン質量スペクトルを図 11 に示す。ここで、レボ グルコサンとその生成物は塩化物イオン錯体として負イオン質量分析法で検出された。レボグルコサンの信号(m/z 197;199)は時間とともに減少し、一方で、酸素原子が複数付加した化合物の信号が徐々に増加した。特に、生成物に-OOH 基を持つヒドロペルオキシドが存在することが明らかになった。ヒドロペルオキシドは反応性が高いために、エ アロゾルの有害性を考えるうえで重要である。D₂O, H₂¹⁸O 溶媒を用いることで、反応機構に関する詳細なデータを得た。 バイオマス燃焼エアロゾル中で OH ラジカルが発生すると、安定なレボグルコサンは非常に反応性の高いヒドロペルオ キシドなどに数時間~数日のタイムスケールで変換されることが明らかになった。本成果は <u>Enami</u>, <u>Morino</u>, <u>Sato</u>, "Mechanism of Fenton oxidation of levoglucosan in water", *J. Phys. Chem. A.*, **2023**, *127*, 2975-2985. として発表した³⁸。

次に、銅(II)イオンの効果を調べるために、銅(II)-過酸化水素-捕捉剤-水系の液相バルク実験を行った。OH ラジカルの 捕捉剤として DMSO を用いた実験では、MSA の信号は無視できるほど小さかった。また、反応が進むにつれ、銅(II)イ オンの一部は銅(I)イオンに還元されることが明らかになり、鉄イオンとは全く異なる反応メカニズムが示唆された。こ れらの結果から、銅(II)イオンと過酸化水素は酸化反応と還元反応が混在する複雑な反応機構で進むことが示唆された。 今後、銅(I)イオンで同様の実験を行う予定であり、銅(II)-過酸化水素-捕捉剤の液相バルク反応に関する反応機構の解明 が期待される。

サブミリ秒スケールの反応を調べることができるマイクロジェット交差衝突実験によって、鉄-過酸化水素-水系の反応機構を調べた。本実験では、2本のネブライザーを反応チャンバー内で交差させ、10 µs 以内で起こる液相反応を調べた。その結果、Fenton反応(Fe²⁺ + H₂O₂)は主に Fe³⁺を生成することが明らかになった。気液界面で起こる Fenton反応とは異なり、FeO²⁺の反応経路は無視できるほど小さいことが示唆された。これは、上記のバルク実験結果と一致し、また従来の想定機構と矛盾しない。今後、さらに pH 依存性などを詳細に調べる予定である。

2.2.4 まとめ

独自の実験手法を用いて、遷移金属存在下のHO2取り込み後に粒子内の反応で生成される過酸化水素のFe(II)による分 解機構が検証された。液相バルク反応実験の結果はサブミリ秒スケールのマイクロジェット交差衝突実験によっても確 かめられ、液相ボックスモデルが採用している基礎的な反応機構の妥当性が確認された。

・鉄(II)-過酸化水素-捕捉剤-水系の液相バルク反応は、既知の Fenton 反応によって進むことが確かめられ、既往の液相 ボックスモデルの反応機構を確認した。今後、pH 依存性に関して研究を進める。

・マイクロジェット交差衝突実験によって得られた鉄-過酸化水素-水系の実験結果は液相バルク反応実験で明らかにさ れた反応機構と矛盾なかった。

・液相におけるレボグルコサンの Fenton 酸化の反応機構および速度論が明らかにされた。

・鉄(II)- tert-ブチルヒドロペルオキシド-捕捉剤-水系の液相バルク反応では、OHイオンを生成する反応が主要経路であることが明らかにされ既往の結果が確かめられた。

・鉄(II)-α-ヒドロキシヒドロペルオキシド-捕捉剤-水系の液相バルク反応では、α-テルピネオール由来のα-ヒドロキ シヒドロペルオキシドが液相内で過酸化水素脱離反応を起こし、脱離した過酸化水素が Fenton 反応に進むと示唆された。

・銅(II)-過酸化水素-捕捉剤-水系の液相バルク実験が実施され、鉄(II)とは異なる反応メカニズムで反応が進行することが示唆された。

引用文献

37) M. Hu, K. Tonokura, Y. Morino, K. Sato, S. Enami: Effects of metal ions on aqueous-phase decomposition of α -hydroxyalkylhydroperoxides derived from terpene alcohols, Environ. Sci. Technol., 2021, 55, 12893-12901.

38) S. Enami, Y. Morino, K. Sato: Mechanism of Fenton oxidation of levoglucosan in water, J. Phys. Chem. A., 2023, 127, 2975-2985.

2.3 サブテーマ3:多相反応を導入したオゾン生成モデルの構築と排出削減が国内オゾン濃度に及ぼす効果の解明

2.3.1 目的と経緯

日本や中国などのアジア域において、微小粒子状物質 (PM₂₅) や O₃ 前駆物質 (NOx・VOC) の排出量・大気濃度は 近年減少しているが、一方で大気 O₃ 濃度は減少しておらず、O₃ 対策に資する知見が求められている。中国における 2010 年代の O₃ 濃度増大の一つの要因として、この期間のエアロゾル濃度の減少が挙げられている。エアロゾル濃度が 減少することでヒドロペルオキシル (HO₂) ラジカルの取り込みを通じた O₃生成の抑制が起こりにくくなり、結果とし て O₃ 生成量が増加する。エアロゾル粒子による HO₂ 取り込みを定量解析する上では、HO₂の取り込み係数(粒子表面 に衝突した HO₂分子の内、粒子に取り込まれて消失する分子の割合、γHO₂) を正しく与える必要があるが、近年の数値 モデル研究では一律に O₂ と与えられることが多い。

本研究では、HO₂の取り込み係数の制御要因について室内実験とボックスモデル計算により評価するとともに、HO₂の取り込みが実大気中のO₃濃度に及ぼす影響について、3次元モデルを用いて推計した。

2.3.2 方法

(a) ボックスモデル計算

H0₂の取り込み係数(γ_{H02})の数値解析においては、気相成分の粒子取り込み過程を診断的に計算する抵抗モデル、 及び時間発展方程式を計算する多相反応モデルを利用した。抵抗モデルでは、H0₂の粒子への適応過程と、その後の粒 子内拡散・反応消失過程を下式により計算する。

$$\frac{1}{\gamma_{HO2}} = \frac{1}{\alpha_{HO2}} + \frac{\omega}{H_{eff}RT\sqrt{k_I D_{aq}Q'}}$$
(1)

ここで、 α_{H22} は適応係数、 ω は平均分子速度、 H_{eff} は有効ヘンリー定数、Rは気体定数、Tは気温、 k_1 は擬一次反応速度 定数 (= k_{II} [TMI], k_{II} はH0₂/0₂と遷移金属イオン(TMI)の反応速度定数)、 D_{aq} は粒子内拡散係数、Q'は粒子内拡散因子 を表す。多相反応モデルでは、ガス粒子交換と粒子内反応に関わる時間発展方程式を計算して γ_{H22} を推計する(Mao et al., 2013)⁴⁰。ガスの溶存は4成分(H0₂, H₂0₂, 0₃, 0₂)、粒子内反応はMao et al. ⁴⁰と同様に50本を計算対象とし、バ ルク粒子の組成は一律と仮定した。 γ_{H22} は下式から算出した。

$$k_{het} = \frac{S}{\frac{R_d}{D_g} + \frac{4}{\gamma_{HO2}\omega}}$$
(2)

ここで、 K_{het} はHO₂の取り込みによる消失速度係数、Sは粒子表面積、 R_d は粒子半径、 D_g はガス拡散係数を表す。図 12 に 多相反応モデルで計算されるHO₂(g)の経時変化を示した。モデル計算期間において、HO₂は擬一次的に減衰すると近似 できることから、モデルで計算されたHO₂の減衰速度より K_{het} を求めた。また、粒子中の水分量と pH の計算には Extended Aerosol Inorganics Model (E-AIM)を利用した。

室内実験における γ_{H2}の実測値には2.1.3節に記載したデータを利用した。実験対象は硫酸アンモニウム粒子で、幾 何平均直径 120 nm 程度であった。また、エアロゾルに一定量の硫酸銅を添加することによる粒子中銅濃度への感度評 価も合わせて実施した。

(b) 3次元モデル計算

実大気において HO₂取り込みが地表オゾン濃度に及ぼす影響を推計するために、大気化学シミュレーションを実施した。気象モデルには WRF v4.1.5、化学輸送モデルには CMAQ v5.3.2 を利用した。境界条件は全球化学輸送モデル CHASER の計算結果、気象要素の境界条件・ナッジングには NCEP-FNL (ds083.3)を利用し、CMAQ の化学反応メカニズムには SAPRC07、エアロゾルモジュール: AERO7i を選択した。計算期間は 2000 年、2010 年、2020 年、2030 年、2050 年とし、それぞれ 15 日間のスピンアップ計算を実施した。なお、2020 年、2030 年、2050 年の気象場は 2010 年と同様の データを利用している。計算領域は、東アジア域を 45km メッシュ、日本域を 15km メッシュとして設定した。

2000年、2010年の排出量には、統計データに基づく活動量等から推計した Chatani et al. (2023)のデータを利用した³⁹。 また、将来を含む 2020年、2030年、2050年の排出量は、ECLIPSEv6bの current legislation シナリオによる将来推計データ を基に、地域ごと・成分ごとの 2010年と各年の排出量比を年次補正係数として 2010年の排出量データに乗じることで 推計した。ECLIPSEv6bでは 2010年から 2050年にかけて、NOx 排出量が日本・中国においてそれぞれ 42%・50%、人為 VOC 排出量が同 35%・12%、一次 PM₂₅排出量が同 39%・46%減少すると推計されている。経年変動解析においては、 HO₂の取り込みが起こらない場合(w/o H-U)と取り込み係数(γ_{HO2})= 0.2 で HO₂がエアロゾルに取り込まれて、2 HO₂ → H₂O₂+O₂の反応を起こす場合(with H-U)との 2 通りを計算した。

また、2019年夏季において、抵抗モデルを基に1式にて計算した_{7H02}を基にHO₂取り込み過程を計算し、_{7H02}を一定値 と設定した計算事例とHO₂・O₃濃度への影響を比較した。CMAQ v5.3.2では銅を対象物質としておらず、これまで排出 量データも整備されていないため、Chatani et al. (2023)³⁹⁾をベースに、新たに遷移金属イオンの排出量を推計した。計算 期間は2019年7月1日-8月31日として、7月16日-8月15日を解析対象期間とした。

図 12. 多相反応モデルで計算される気相の HO₂濃度の経時変化。硫酸アンモニウム粒子に(a) 硫酸銅、(b) 硫酸/水酸化 ナトリウムを添加した事例を示す。

2.3.3 結果と考察

(a) ボックスモデル計算

図13に示した通り、 γ_{H22} の計算値はCu²濃度やpHと正の関係を有する。これは、先行研究と整合的であり、H0₂が粒子 内で遷移金属イオンとの反応により消失すること、およびH0₂が高pH条件下で効率的にイオン解離(H' + 0₂)することに より説明される。抵抗モデル、多相反応モデルで推計された γ_{H22} もこの傾向を示していたものの、全般に実測値を過大 評価していた(図14(a))。そこで、Li et al. (2023)と同様に、抵抗モデルで、 $k_{II} = 1 \times 10^{9}$ M¹ s⁻¹ (標準計算事例)か ら $k_{II} = 1.5 \times 10^{7}$ M¹ s⁻¹と変更したところ³²⁾、銅濃度依存性を適切に再現していた(図14(b))。なお、多相反応モデルで も抵抗モデルと同様に k_{II} を2桁減じたところ、実測値を適切に再現できた。

pHが6以下の条件では多相反応モデルと抵抗モデルの結果が整合している(図13)ことから、実大気エアロゾルに対して、抵抗モデルは概ね適用可能であると考えられる。一方で、pHが6-10の範囲でCu²濃度が10⁻³M以下の領域では抵抗 モデルが過大評価している可能性がある。多相反応モデルではH⁺ + 0₂⁻ *τ* H0₂が平衡関係に無かったことから、抵抗モデ ルにおける平衡の仮定が γ_{H2}の過大評価の一因と推察される。この点は、今後、pH依存性の実測データを基に検証する 予定である。

図 13. 多相反応モデル(KM)、及び抵抗モデル(RM)で計算される HO₂取り込み係数(_{γHO2})の pH と Cu²⁺濃度への依存 性。(a,c) 標準事例、及び(b,d) 反応速度係数を減じた事例

図 14. 動力学モデル(KM)、及び抵抗モデル(RM)で計算される γHO2の実測値との比較結果。

(b) 3次元モデル計算

エアロゾルによる HO₂ 取り込みがオゾン濃度とその経年トレンドに及ぼす影響について、O₃ の年平均濃度 (all-mean)、 及びO₃濃度の日最高 8 時間値の年間 98%分位点 (P98-mda8)を基に評価した。O₃ (P98-mda8)は高濃度 O₃ 事例の指標として 利用している。

図 15 と図 16 より、PM₂₅濃度は中国の都市部(京津冀(JJJ)と長江デルタ(YRD))では 2010 年、日本の都市部(首都圏 (TMA)と京阪神(KHS))では 2000 年に最も高く、その後 2050 年にかけて単調減少すると推計された。中国では 2010 年 から 2050 年にかけて 35-38%、日本では 2000 年から 2050 年にかけて 47-49%減少しており(図 15(a,b))、2.3.2 節に示し た PM₂₅ とその前駆物質の排出量低減を反映していた。PM₂₅濃度は経年減少トレンドを示すのに対して、O₃ (all-mean)は 中国で 2010 年以降、日本で 2000 年以降に、増大すると推計された(図 15(c,d))。年平均 O₃濃度は 40-46 ppbv 程度と低 く、NOx 濃度の経年減少トレンドによる滴定効果の低減も影響しているものと考えられる。一方で、O₃ (P98-mda8)は中 国・日本とも顕著な減少トレンドを示しており、中国ではピークの 2010 年から 2050 年にかけて 17-20 ppbv、日本では 2000 年から 2050 年にかけて 14-17 ppbv 減少していた(図 15(c,f))。このように、将来に見込まれる NOX・VOC 等の排 出削減に伴って、O₃の年平均濃度はやや増加する一方で、O₃の高濃度事象は大きく減少すると推計された。

続いて O₃ (P98-mda8)に対して、エアロゾルによる HO₂取り込みが O₃濃度に及ぼす影響を評価した(図 15・図 16)。 中国ではピークの 2010 年に 5 – 9 ppbv ほど低減効果を有していたのが、2050 年にかけて 3 – 6 ppbv ほど低減効果が小さ くなっていた(図 15(g))。また、日本においては、2000 年における低減効果が 1.6–2.0 ppbv であったのに対して、2050 年にかけて 0.8–1.4 ppbv ほど低減効果が小さくなっていた(図 15(h))。なお、エアロゾル取り込みによる HO₂濃度の低 減効果({[HO₂(w/o H-U)] – [HO₂(with H-U)]}/[HO₂(w/o H-U)])は中国において 30–31% (2000 年)から 22–25% (2050 年)ほ ど、日本において 14% (2000 年)から 8–9% (2050 年)ほどに減少している(図は非表示)。

図 17 に O₃ 濃度指標ごとのエアロゾルによる HO₂取り込みの影響を示した。平均値 (all-mean)は既に述べた通り中国・ 日本とも基準年(中国は 2010 年、日本は 2000 年)から 2050 年にかけて増加すると推計され、O₃ (mean-mda8)も中国で は 2 ppbv ほどの増加、日本でも 2 ppbv ほどの減少に留まる。一方で、高濃度の指標である O₃ (P98-mda8)や O₃ (max-mda8) は中国・日本において将来にかけて大きく減少すると推計されており、O₃ (max-mda8(w/o H-U))の低減幅は中国で 23-33 ppbv、日本で 27 ppbv であった。なお、この低減幅がエアロゾルによる HO₂取り込みの影響を考慮することで、中国で 2.9-6.0 ppbv、日本で 1.0-1.3 ppbv ほど小さくなった。このように、エアロゾルによる HO₂取り込みは O₃高濃度事例の 経年トレンド解析において一定の寄与を有していた。

一方、抵抗モデル(2式)を基に γHO2を計算したところ、全般に海域よりも陸域で高く、陸域で 0.1 – 0.7 程度であった(図 18)。これは、主に銅濃度が海域よりも陸域にて高濃度であることを反映している。また、陸域ではアンモニアが陰イ オン(SO4²⁻, NO3⁻)を中和しやすいために pH が高いことも陸域の γHO2 に影響している。なお、本推計では遷移金属イオン の混合状態や有機エアロゾルの被覆などの効果を考慮しておらず、γHO2 を過大に推計している可能性があることに注意 が必要である。

2式に基づく γ_{HO2} を利用した場合と0.2や0.5に固定した場合の3事例において、HO2取り込みがHO2濃度やO3(MDA8h) に与える影響を比較した(図 19)。HO2濃度への影響は中国東部からロシア東部にかけての地域で大きく、抵抗モデルの γ_{HO2} を利用した場合には、 γ_{HO2} =0.5の場合と同程度の影響を示した。O3 (MDA8h)への影響は中国北東部で最も大きく、 γ_{HO2} =0.2の場合では2 ppbv程度の影響であったのに対して、抵抗モデルの γ_{HO2} と γ_{HO2} =0.5の場合では、6 ppbv程度の影響を示した。このように、 γ_{HO2} の設定がO3濃度に与える影響は大きく、 γ_{HO2} の設定によってHO2取り込みがO3濃度に与 える影響に2倍程度の不確実性が含まれることが示された。

26

図 15. 大気モデルで計算された PM₂₅と O₃濃度の経年変動で、all-mean は年間平均値、P98-mda8 は O₃濃度の日最高 8 時間値の年間 98%分位点を表す。中国(a,c,e)の京津冀(JJJ)と長江デルタ(YRD)、日本(b,d,f)の首都圏(TMA)と京阪神(KHS)を解析対象領域とした。Δ^hO₃はエアロゾルによる HO₂取り込みを考慮しない場合とした場合の差分を示す。

図 16. 大気モデルで計算された 2010 年と 2050 年における PM₂₅と O₃濃度の経年変動。P98-mda8 は O₃濃度の日最高 8 時 間値の年間 98%分位点を表す。Δ^hO₃はエアロゾルによる HO₂取り込みを考慮しない場合とした場合の差分を示す。

図 17. 大気モデルで計算される 2050 年と基準年(中国は 2010 年、日本は 2000 年)における濃度差(Δ^yO₃)。mean-mda8 は O₃濃度の日最高 8 時間値の年平均値、max-mda8 は日最高 8 時間値の年最高値を表す。

図 18. 2019年7月15日-8月15日において大気モデルで計算された Cu2+濃度、pH、及び2式で計算された уно2

図 19. 大気モデルで計算された、HO2取り込みを考慮した場合としない場合のHO2濃度とO3濃度の差。MDA8hは日最高8時間値の98%分位点を表し、_{2HO2}=0.2, 0.5, 抵抗モデル計算式の3事例を示す。

2.3.4 まとめ

本研究では、HO2の取り込み係数の制御要因について室内実験とボックスモデル計算により評価するとともに、HO2の取り込みが実大気中のO3濃度に及ぼす影響について、3次元モデルを用いて推計した。

室内実験で得られた γ_{HO2} の数値解析においては、抵抗モデルと多相反応モデルを利用した。いずれのモデルにおいて も、 γ_{HO2} の計算値は Cu^{2+} 濃度や pH と正の関係を有しており、両モデルとも整合的な結果を示した。また、 γ_{HO2} の Cu^{2+} 濃度への依存性については先行文献と同様に、 Cu^{2+} と HO_2/O_2^{-} の反応速度定数を減じた設定にてモデル計算結果は実測値 を再現していた。

3次元モデルにおいては、yHO2=0.2を仮定して 2000 年から 2050 年にかけてエアロゾルによる HO2 取り込みが O3 濃度 に与える影響を経年的に解析した。この期間、NOX・VOC 等の排出削減に伴って、O3 の年平均濃度はやや増加する一 方で、O3の高濃度事象(日最高 8 時間値の年間 98%分位点, P98-mda8h)は大きく減少すると推計された。また、同期間 のエアロゾルによる HO2 取り込みが O3 濃度に及ぼす影響については、エアロゾル濃度の減少に伴い、HO2 取り込みが O3(P98-mda8h)に与える影響も小さくなっていた。このように、エアロゾルによる HO2 取り込みは O3 高濃度事例の経年 トレンドに一定の寄与を有していた。また、2019年の夏季において yHO2=0.2 と 0.5 と設定した場合と、抵抗モデルで計 算した yHO2 を利用した場合において、HO2 取り込みが O3 濃度に与える影響の 3 次元モデル計算結果を比較した。その結 果、O3 濃度への影響は、抵抗モデルの yHO2 を利用した場合に yHO2=0.5 の場合と同程度であり、yHO2=0.2 の場合の 2 倍以 上であった。このことから、yHO2の設定により HO2 取り込みが O3 濃度に与える影響に 2 倍程度の不確実性が含まれるこ とが示された。

引用文献

- 39) Chatani S., Kitayama K., Itahashi S., Irie H., Shimadera H. Effectiveness of emission controls implemented since 2000 on ambient ozone concentrations in multiple timescales in Japan: An emission inventory development and simulation study. Science of The Total Environment 2023; 894: 165058.
- 40) Mao J., Fan S., Jacob D., Travis K.R. Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols. Atmospheric Chemistry and Physics 2013; 13: 509-519.

[資料]

1 研究の組織と研究課題の構成

1.1 研究の組織

[A 研究担当者]

地域環境保全領域

	室長	佐藤圭	
	都市大気化学連携研究グループ長	梶井克純	
	室長	森野悠	
	室長	菅田誠治	(令和 3~4 年度)
	主席研究員	永島達也	
	主幹研究員	茶谷聡	
	主任研究員	吉野彩子	
	主任研究員	坂本陽介	(令和5年度)
地球	システム領域		
	主幹研究員	江波進一*)	(令和 3~4 年度)
(注)	所属・役職は年度終了時点のもの。また、	*) 印は過去に所属していた職員等る	を示す。

[B 客員研究員]

江波進一	(筑波大学数理物質系化学域)	(令和5年度)
坂本陽介	(京都大学大学院地球環境学堂)	(令和3~4年度)
Jiaru Li	(京都大学大学院地球環境学堂)	
加藤俊吾	(東京都立大学都市環境学部)	
中嶋吉弘	(東京農工大学大学院農学研究院)	(令和4年度)

[C 協力研究者]

高見昭憲	(地域環境保全領域)	
越川海	(地域環境保全領域)	(令和3年度)
木村知里	(地域環境保全領域)	
塚越清美	(地域環境保全領域)	
菅田誠治	(連携推進部)	(令和5年度)
今村隆史	(企画部)	(令和3年度)
今村隆史	(東京都環境科学研究所)	(令和4~5年度)
村野健太郎	(京都大学大学院地球環境学堂)	
戸野倉賢一	(東京大学大学院新領域創成科学研究科)	(令和3年度)
定永靖宗	(大阪公立大学大学院工学研究科)	
河野七瀬	(京都大学大学院地球環境学堂・日本学術振興会)	(令和3年度)
Mingxi Hu	(東京大学大学院新領域創成科学研究科)	(令和3年度)
宮武宏輔	(京都大学大学院地球環境学堂)	(令和3年度)
Ratih Dwi Fardilah	(京都大学大学院地球環境学堂)	(令和4年度)
三上陸太	(京都大学大学院地球環境学堂)	(令和5年度)
村岡達也	(大阪公立大学大学院工学研究科)	

1.2 研究課題と担当者

サブテーマ1 チャンバーおよび噴霧器により発生させた PM_{2.5} 粒子による水素酸化物ラジカル取り込み係数の 測定

佐藤圭、梶井克純、森野悠、吉野彩子、坂本陽介、*Jiaru Li、*加藤俊吾、*中嶋吉弘、**高見昭憲、**越川海、 **塚越清美、**村野健太郎、**今村隆史、**定永靖宗、**河野七瀬、**宮武宏輔、**Ratih Dwi Fardilah、** 三上陸太、**村岡達也

サブテーマ2 液相における過酸化水素および有機過酸化物と遷移金属イオンとの反応機構の解明 江波進一、佐藤圭、**戸野倉賢一、**Mingxi Hu

サブテーマ 3 多相反応を導入したオゾン生成モデルの構築と排出削減が国内オゾン濃度に及ぼす効果の解 明

森野悠、菅田誠治、永島達也、茶谷聡、**木村知里

(注)*客員研究員、**協力研究者

2 研究成果発表一覧

2.1 誌上発表

<雑誌>

発表者・(刊年)・題目・掲載誌・巻(号)・頁

【査読あり】

Li, J., Sakamoto, Y., Sato, K., Morino, Y., Kajii, Y. (2023) Investigation of HO₂ uptake onto Cu(II)- and Fe(II)-doped aqueous inorganic aerosols and seawater aerosols using laser spectroscopic techniques. Environmental Sciences: Atmospheres, 3(10), 1384-1395

坂本陽介, Li, J., 河野七瀬, 中山智喜, 佐藤圭, 梶井克純. (2023)レーザー分光法を用いた大気エアロゾルによるイソプレン由来有機過酸化ラジカル取り込み係数の決定. 大気環境学会誌, 58(1), 1-9

Enami, S., Morino, Y., Sato, K. (2023) Mechanism of Fenton oxidation of levoglucosan in water. Journal of Physical Chemistry A, 127(3), 2975-2985

Morino Y., Sadanaga Y., Sato K., Sakamoto Y., Muraoka T., Miyatake K., Li J., Kajii Y. (2023) Direct evaluation of the ozone production regime in smog chamber experiments. Atmospheric Environment, 309(5), 119889

木村 知里, 森野悠, 永島達也, 荒木 真, 上田 佳代, 米倉 哲志 (2023) 大気オゾンの環境影響評価に向けたバイアス補 正手法の検討. 大気環境学会誌, 58 (3), 74-85

Hu, M., Tonokura, K., Morino, Y., Sato, K., Enami, S.: (2021) Effects of metal ions on aqueous-phase decomposition of αhydroxyalkyl-hydroperoxides derived from terpene alcohols. Environmental Science & Technology, 55(19), 12893-12901

【査読なし】

佐藤圭、森野悠、定永靖宗、黎珈汝、坂本陽介、梶井克純 (2024) オゾン生成曲線およびオゾン生成感度に銅添加粒子が 及ぼす影響に関するチャンバー実験.大気環境学会誌,59(1),A58-A61.

坂本陽介、黎珈汝、河野七瀬、佐藤圭、森野悠、梶井克純 (2024) 過酸化ラジカル反応性測定が示すオゾン生成メカニズ ムの不確実性. 大気環境学会誌, 59(1), A51-A54.

森野悠, 佐藤圭, 坂本 陽介, 定永 靖宗, 梶井 克純 (2023) 数値モデルによるオゾン生成速度・生成レジームの再現性検 証. 大気環境学会誌, 58 (1), A69-A71

坂本陽介、Li, J.、河野七瀬、中山智喜、佐藤圭、梶井克純 (2022) エアロゾルへの有機過酸化ラジカル取込による対流圏 オゾン生成抑制効果の HO_x反応性測定に基づく定量的評価. 大気環境学会誌, 58, A56-A60

梶井克純、坂本陽介、河野七瀬、佐藤圭、森野悠、吉野彩子、高見昭憲、定永靖宗:(2021) 大気中過酸化ラジカル(HO2及びRO2)の化学ダイナミクス研究-オゾン生成機構の完全理解とエアロゾル変質過程の解明に向けて-. 大気環境学会誌, 57, A2-A6

2.2 口頭発表

発表者・(暦年)・題目・学会等名称・予稿集名・頁

Sato, K., Morino, Y., Sakamoto, Y., Li, J., Kajii, Y. (2024) A smog chamber study of effects of copper(II) containing aerosol on ozone formation. 2024 International Meeting on Characterization and Identification of Atmospheric Aerosols (CIA2 2024).

Sakamoto, Y., Sato, K., Kajii, Y.: (2024) Study toward a quantitative description of peroxy radical uptake by aerosols in the atmospheric HO_x chemistry, Taiwan-Japan Workshop on Atmospheric Physics and Chemistry 2024.

佐藤圭, 黎珈汝, 坂本陽介, 森野悠, 江波進一, 吉野彩子, 高見昭憲, 梶井克純 (2024) 鉄(II)含有エアロゾルの酸性度が プロペン由来ペルオキシラジカルの取り込みに及ぼす効果. 第41回エアロゾル科学・技術研究討論会.

佐藤圭, 森野悠, 坂本陽介, Rathih Dwi Fardilah, 黎珈汝, 定永靖宗, 梶井克純 (2024) ラジカル取り込みによるオゾン低減 に生成レジームが及ぼす影響に関するチャンバー研究. 第65回大気環境学会年会.

Sakamoto, Y., Li, J., Kohno, N., Sato, K., Murano, K., Kajii, Y. (2023) Evaluation of HO_x radical suppression due to peroxy radical uptake by aerosols. 10th International Conference on Acid Deposition (Acid Rain 2020).

Sato, K., Fardilah, R.D., Li, J., Morino, Y., Sakamoto, Y., Kajii, Y. (2023) Effects of copper-doped aerosol upon the ozone formation during VOC/NO_x photooxidation. Japan Geoscience Union Meeting 2023, Abstracts, AAS07-20

Li, J., Sakamoto, Y., Sato, K., Murano, K., Kajii, Y. (2023) Uptake coefficient of HO₂ onto deliquesced inorganic aerosols with and without transition metal ions. Japan Geoscience Union Meeting 2023, Abstracts, AAS07-P29

Mikami, R., Sakamoto, Y., Sato, K., Li, J., Kajii, J. (2023) The effect of dissolved ions on uptake coefficient of propene-derived RO2 onto NaCl particles. Japan Geoscience Union Meeting 2023, Abstracts, AAS07-P28

Li, J., Sakamoto, Y., Sato, K., Kajii, Y. (2023) HO₂ uptake onto deliquesced inorganic aerosols and doping impacts of transition metal ions. Goldschmidt 2023 Conference.

Sakamoto, Y., Mikami, R., Kohno, N., Sato, K., Kajii, Y. (2023) Experimental determination of uptake coefficient of isoprene-derived peroxy radical onto deliquesced NaCl particles. Goldschmidt 2023 Conference.

佐藤圭, Fardilah, R.D., 黎珈汝, 森野悠, 坂本陽介, 梶井克純 (2023) チャンバー実験による光化学オゾン生成へのエアロ ゾルの添加効果の測定とモデル計算との比較. 第40回エアロゾル科学・技術研究討論会, 同講演要旨集, 56-57

佐藤圭, 森野悠, 定永靖宗, 黎珈汝, 坂本陽介, 梶井克純 (2023) オゾン生成曲線およびオゾン生成感度に銅添加粒子が 及ぼす影響に関するチャンバー実験. 第64回大気環境学会年会 特別集会, 同講演要旨集, 81-82

坂本陽介, 黎珈汝, 河野七瀬, 佐藤圭, 森野悠, 梶井克純 (2023) 過酸化ラジカル反応性測定が示すオゾン生成メカニズ ムの不確実性. 第64回大気環境学会年会 特別集会, 同講演要旨集, 77-78

Morino, Y., Sato, K., Sakamoto, Y., Li, J., Chatani, S., Shimadera, H., Kajii, Y. (2023) Modeling studies of the effect of HO2 uptake by atmospheric aerosol on surface ozone. The 22nd Annual CMAS Conference.

Rathi Dwi Fardilah, 黎珈汝, 坂本陽介, 森野悠, 江波進一, 梶井克純, 佐藤圭 (2023) 二次有機エアロゾル粒子および有機 無機混合粒子による HO₂ ラジカルの取り込み係数の測定. 第28 回大気化学討論会, 同講演要旨集, O3-02

森野悠, 佐藤圭, 坂本陽介, Jiaru Li, 茶谷聡, 梶井克純: (2023) 数値モデルによる HO₂ 取込係数の分布推計. 第 28 回大 気化学討論会, 同講演要旨集, P-41

Li, J., Sakamoto, Y., Egami, K., Lyu, X., Mikami, R., Sato, K., Yoshino, A., Takami, A., Sadanaga, Y., Nakashima, Y., Kato, S., Kajii, Y. Suburban photochemistry in Tsukuba: Measured and calculated OH reactivity in summer 2022. 第 28 回大気化学討論会,同講 演要旨集, O3-01

佐藤圭 (2023) チャンバー実験による O_x 生成機構の解明について. 令和4年度 関東地方大気環境対策推進連絡会 微小粒子状物質・光化学オキシダント調査会議 講演会.

宮武宏輔, 坂本陽介, 梶井克純, 佐藤圭 (2022) スモッグチャンバーを用いたオゾン生成の NO_x および VOCs に対する 感度実験. 日本地球惑星科学連合 2022 年大会, 同講演要旨集, AAS11-P12 三上陸太,坂本陽介,佐藤圭,河野七瀬,Li,J.,梶井克純 (2022) レーザー誘起蛍光法を用いた NaCl 粒子へのプロペン由 来過酸化ラジカル取り込み係数測定.日本地球惑星科学連合 2022 年大会,同講演要旨集,AAS11-P11

坂本陽介, Li, J., 河野七瀬, 中山智喜, 佐藤圭, 梶井克純 (2022) エアロゾルへの有機過酸化ラジカル取込による対流圏 オゾン生成抑制効果の HO_x 反応性測定に基づく定量的評価. 第 63 回大気環境学会年会 特別集会, 同講演要旨集, 3A1300-2

佐藤圭, 宮武宏輔, 森野悠, 坂本陽介, 今村隆史, 梶井克純 (2022) 模擬大気を用いたスモッグチャンバー実験での NO_x および VOC に対するオゾン生成感度. 第 63 回大気環境学会年会, 同講演要旨集, 3A1045

Li, J., Sakamoto, Y., Sato, K., Kajii, Y. (2022) OH/HO₂ uptake coefficient onto various polydisperse aerosols detected by combining laser-pump and laser-induced fluorescence. iCACGP-IGAC Joint Conference 2022.

Li, J., Sakamoto, Y., Sato, K., Murano, K., Kajii, Y. (2022) Uptake coefficients of OH and HO₂ radicals onto polydisperse aerosols determined by combining laser-pump and laser-induced fluorescence. 第 27 回大気化学討論会,同講演要旨集, S3-03.

坂本陽介, Li, J., 河野七瀬, 佐藤圭, 梶井克純 (2022). 湿潤条件における無機エアロゾルへのイソプレン由来過酸化ラジ カルの取り込み係数決定因子の考察. 第 27 回大気化学討論会, 同講演要旨集, O2-11

佐藤圭, 森野悠, 定永靖宗, 宮武宏輔, 坂本陽介, 今村隆史, 梶井克純 (2022). チャンバーを用いた O₃ 生成感度計測とレジーム判定装置の検証. 第 27 回大気化学討論会, 同講演要旨集, O3-15

宮武宏輔, Li., J., 佐藤圭, 森野悠, 坂本陽介, 梶井克純 (2022) 合成模擬大気とスモッグチャンバーを用いた光化学オゾン生成実験と詳細反応モデルによる再現性検証. 2022 年度大気環境学会近畿支部研究発表会.

梶井克純,坂本陽介,河野七瀬,佐藤圭,森野悠,吉野彩子,高見昭憲,定永靖宗 (2021) 大気中過酸化ラジカル(HO₂及び RO₂)の化学ダイナミクス研究-オゾン生成機構の完全理解とエアロゾル変質過程の解明に向けて-. 第62回大気環境学 会,同講演要旨集,81-82.

国立環境研究所研究プロジェクト報告 第 149 号 NIES Research Project Report, No.149

(SR-149-2024)

オキシダント生成に関連する水素酸化物ラジカルの多相反応に関する研究 (所内公募型提案研究) 令和 3~令和 5 年度 A study of multiphase chemistry of hydrogen oxide radicals relevant to tropospheric ozone formation

FY2021~2023

 令和6年11月発行
編 集 国立環境研究所編集分科会
発 行 国立研究開発法人国立環境研究所 〒305-8506 茨城県つくば市小野川16番2
E-mail: pub@nies.go.jp

Published by the National Institute for Environmental Studies 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan November 2024

無断転載を禁じます

国立環境研究所の刊行物は以下の URL からご覧いただけます。 https://www.nies.go.jp/kanko/index.html