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PREFACE

The mechanism of human decision-making is very difficult to analyze,
to formulate in mathematical form and, therefore, to implement into com-
puters. Looking back the history of the study of human decision-making,
we found that several normative theories, such as optimization theory, the-
ory of games, theory of preference structure, utility theory and multiple
objective decision theory, have made only partial success in describing the
attributes of human decision-making. This simply due to the fact that
the way of human thinking is not at all normative nor rational but very
conditional in a sense that a human uses in his decision-making his whole
accumulation of experiences acquired during his entire life.

It seems to be very attractive, therefore, to decompose the human
decisjon-making precess into elementary precesses and to accumulate as
many the elementary processes as possible so that one can reconstruct
decision-making under given specified conditions by traversing over the set
of the elementary processes. The human decision-making representation of
this type, which was once only a dream, came to reality when computer
capability in hardware and in software became able to realize the scheme in
expert systems. Expert systems have drawn much interest of people in the

' decision sciences. This is one breakthrough in the mechanization of human
decision-making.

Another breakthrough came from the notion of fuzzy reasoning based
on the fuzzy set theory introduced by Zadeh. Fuzzy reasoning has a very
strong affinity with expert systems, since it offers a very good means for
converting gualitative into quantitative reasoning. The combination of the
fuzzy modeling and expert systems provides an effective way to implement
so-called intelligent decision support systems into computers.

Environmental problems are by their nature social problems since if
there is no human society, there is no environmental problem. We must de-
velop proper means to handle human decision-making within environmental
problem solving. Even in the analysis of environmental phenomena, which

is often thought to be done purely scientifically, human decision-making
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plays a very important role, since environmental phenomena are so com-
plex that no single nor multiple combination of normative scientific ways of
analysis may be able to analyze the entire scheme of the phenomena, and
therefore the use of human decision-making is indispensable.

This report intends to make a further step in the progress of the study
of human decision-making. We would be very happy if this report becomes
of any help for people who are struggling with complex environmental phe-

nomena.

Atsunobu ICHIKAWA
Dr. Eng.

Deputy Director
January, 1991
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ABSTRACT

Social phenomena related to environmental processes are governed by
complicated factors such as urbanization, aging population and interna-
tional trade. Future environmental conditions are becoming difficult to
predict by individual discipline or research. Estimation should be made by
systematically combining the skills of experts with the available numerical
data. We have developed a computer system for supporting these opera-
tions. Two new trends in systems approach are: 1) incorporating human
judgment and experience in the system, and 2) greater interactive use of
computers in a conversational manner. This system is based on artificial in-
telligence techniques as well as usual normative ones and is used recursively
to build models for predicting future environmental conditions.

First, a computer system for supporting interactive modeling is pre-
sented. This system utilizes graphical information effectively to facilitate
not only human-computer communication but also interpersonal commu-
nication. As an application, we present the process of identifying an envi-
ronmental prediction model. Tt is emphasized that this computer system
greatly reduces the burden of trial and error necessary in developing such a
model, and helps us think about the problem systematically and intensively.

Second, fuzzy modeling and simulation techniques are presented. The
fuzzy modeling technique is used for modeling nonlinear systems with the
aid of the division of the data space and the identification of membership
functions. The fuzzy simulation technique is used for reasonable scenario
inputs and interpretation of the model behavior. The proposed techniques
are applied to an urban environmental problem.

Third, a method is presented for predicting phenomena consisting of
many complicated factors by modeling the process of human thinking and
judgment. Input-output relations of the system are described in the form
of if-then rules. Then, using fuzzy reasoning, the behavior of the system
will be predicted. This method is applied to the prediction of Oxidant
concentration in the Osaka district, Japan. It is shown that this method is
appropriate for predicting phen'omena. with limited input-output data.
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Finally, an intelligent decision support system is presented. This com-
puter system aims at the systematic support of a series of tasks from sys-
tems analysis to policy analysis by the aid-of the above mentioned tech-
niques and by integrated utilization of the knowledge and judgment of
experts from relevant fields. The application presented deals with the pro-
cesses involved in analyzing environmental problems and the formulation
of a fuzzy model to estimate environmental impact of possible development
programs in Tokyo Bay, Japan.



Chapter 1

Introduction

1.1 Introduction ahd Historical Remarks

The comp.uter system that we have developed aims at the systematic sup-
port of a series of tasks from systems analysis to policy analysis by inte-
grated utilization of the knowledge and judgment of experts together with
the available numerical data. The system is planned to be used for: iden-
tifying socio-economic trends over the time span of a couple of decades,
predicting the impact of those trends on our environment under the as-
sumed scenarios, and selecting the important policy alternatives which may
influence those scenarios.

We should keep in mind that any precise models of reality will never
incorporate all human concerns. Therefore, the models should be built
interactively, involving not only the analysts but also the domain experts
and the decision makers. Their perception of the problem, the relevant data
and the model validity should be taken into account in model building so
that the model can express their goals and preferences within a defined
reliability. The interaction is essential at the planning stage as well, and it
should be dynamic because the decision makers typically learn when usiilg
a decision support system with fixed preferences.

In order to make good use of interaction, the support systern must be
intelligent. The system should have a working area in the knowledge base
system. Frameworks of dynamic knowledge utilization should be designéd
so that we are able not only to retrieve data or knowledge but also to acquire
or modify this interactively. At the modeling stage, the model is identified
in parts and associated stepwise with mental models for the object and the
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knowledge in the support system. The registered knowledge for modeling
support can be improved both in quality and quantity by the results of data
analysis or by the users’ perception. At the planning stage, the knowledge
base system should s’uggeﬁt the objective of optimization or the order of
priority in constraints. New knowledge can be obtained by considering the
gaps between the target and actual plan, or the feasibility and effects of
the plan (Nishioka, Morita, Kainuma and Harasawa, 1987).

It is difficult to formulate a practical model for a large complex sys-
tem that includes human elements, for example, the environmental, traffic,
economic or other socio-technical systems. Hence, it is essential to com-
bine the mathematical approach with the heuristic approach (Nakamori
and Sawaragi, 1987). '

Nakamori (1989) has developed a computer system that assists in model
building with recursive interaction between a man and computer. The sys-
tem consists of a combined modeling technique of algebraic and graph-
theoretic approaches, and related man-machine interfaces (Nakamori, Ry-
obu, Fukawa and Sawaragi, 1985). Although a simulation model must be
comprehensible, flexible and simple, it needs to be appropriately complex
for the purpose of decision-making.

Recently, ill-defined systems are being modeled, in which emphasis lies
on structure characterization instead of parameter estimation. In fact, Lin-
stone, Lendaris, Rogers, Wakeland and Williams (1979) identify about 100
structural modeling techniques, and develop guidelines in the choice and
proper use of seven famous tools. They define a structural model as “any
model that represents a complex system as a set of elements with relations
— nearly always in pairs — linking some or all of them; and places the em-
phasis on the geometry or structure rather than on quantitative aspects of
the relations.” Because decision-makers are generally not mathematicians
or scientists, a structural model is far more appropriate for learning expe-
rience. The structure of a system is fundamental to the understanding of
what is happening. It gives new insights into the system to decision-makers
and the modelers as well.

Structural modeling is useful for dealing with complex social and envi-
ronmental phenomena. Structural models demonstrate the interactions of

the separate elements of a system and their combined effects. Norberg and
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Johnson {1979) state that structural modeling is a technique that holds
promise as a means for examining the makeup of complex systems and also
giving insight about long-term effects of change.

Lendaris (1980} emphasizes the importance of qualitative (geometric,
topological, etc.) aspects rather than exact numerical or statistical proper-
ties of the systems being modeled. Structural modeling holds the promise of
converting a completely intuitive process of model building into a more sys-
tematic approach, and enhancing communication within a heterogeneous
group.

Lendaris (1979) also points out that the human aspects play an im-
portant role in structural modeling. The two aspects which must not be
overlooked are the three human roles and the group procedures. These roles
are 1) the method technician, 2) the facilitator, and 3) the participant. The
group procedures assist modelers in defining the elements of the system to
be modeled. '

From among the many tools of structural modeling we extract the con-
cept, for our purpose, from the Interpretive Structural Modeling (ISM) pro-
posed by Warfield (1974). Combining various methodologies, we have devel-
oped Interactive Modeling Supporter (IMS). The system consists of several
modern modeling techniques with highly interactive hmﬁan-compﬁter in-
terfaces. As an application of using IMS, we present the process of identify-
ing an environmental prediction model (Nakamori, Nishioka and Kainuma,
1988).

Fuzzy set theory also plays an important role in model building. The
concept of fuzzy set theory was introduced by Zadeh (1973), to serve as a
means of approximate characterization of phenomena that are too complex

or too ill-defined to be described in precise terms.

In model building of environmental systems, we often encounter dif-
ficulty in obtaining linear models. Fuzzy modeling is a key to express
nonlinear relations (Takagi and Sugeno, 1985). Sugeno and Kang (1988)
have developed a fuzzy modeling technique. They discuss the problems of
structure identification of a fuzzy model and formulate its processes. -

In fuzzy modeling the data space is divided into several fuzzy subspaces
and in each fuzzy subspace a linear relation is built. It is usually difficult
to-divide the data space so that we can find a suitable model. We have
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developed a support system, Visual Clustering Supporter (VCS), for this
purpose. We have also developed Controlled Fuzzy Simulator (CFS) for
controlling the input ranges. With VCS and-CFS we can obtain a suitable
fuzzy model for environmental planning (Nakamori and Kainuma, 1989).

It often happens that although we cannot obtain sufficient numerical
data to build up statistical models, we have to analyze environmental sys-
tems. ' This makes essential to use experts’ knowledge and judgment for
analyzing environmental systems. Approximate calculus of linguistic vari-
ables has been developed which could be of use in a wide variety of practical
applications (Zadeh, 1975}. -

A fuzzy controller is one example. The basic idea behind this approach
is to incorporate the “experience” of an expert into the model building.
From a set of linguistic rules that describe the operator’s control strategy,
a control algorithm is constructed where the words are defined as fuzzy
sets (Kickert and Mamdani, 1978). The controller’s heuristics take the
form of a set of linguistic decision rules that are expressed quantitatively
and manipulated by using fuzzy set theory (Procyk and Mamdani, 1979).

Wenstop (1976} explored the idea that loosely defined simulation models
of organizational behavior can sometimes yieldrmore significant information
than conventional precisely defined ones. He presented a simulation study
that shows that verbal models indeed may yield significant information
based on rather general premises. This indicates that they may, under
certain circumstances, be superior to corresponding conventional simulation

models.
Kickert (1979a) also developed linguistic modeling. This method makes

use of linguistic variables and linguistic causal relationships instead of the
numerical variables and relations that are useful in systems modeling,.

We have developed Linguistic Fuzzy Simulator (LFS) that assists in_
predicting future environmental conditions with fuzzy reasoning. LFS can
predict the changes of environmental conditions by the use of the linguistic
modeling. This type of model is very important, because it is very difficult
to predict the results of policies which have not been implemented in the
past by the numerical modeling approach. ‘

We propose a method to predict phenomena composed: of many com-

plicated factors by modeling the process of human thinking and judgment.
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Input-output relations of the.system are described in the form of if-then
rules. Then using fuzzy reasoning, the behavior of the system will be pre-
dicted. We apply fuzzy modeling to the prediction of Oxidant concentra-
tions in the Osaka district, Japan, and show that it is appropriate for the
prediction of phenomena with limited input-output data (Kainuma and
Nakamori, 1989).

It is necessary to make estimates by systematically combining the skills
of experts with the available numerical data for modeling urban environ-
mental problems. To elicit experts’ knowledge, Gordon and Helmer (1964)
proposed the Delphi method. This method has been widely used to get
expert’s intuition systematically.

Recently, imprecision in decision analysis has been modeled by using
fuzzy set theory. Kaufmann and Gupta (1988) proposed a variation of
the Delphi method under triangular fuzzy numbers. They state that a
long range forecasting problem must be considered as an uncertain but
not a random problem. The direct use of the probabilistic methods is not
suitable. The use of fuzzy numbers and fuzzy methods seems to be more
compatible and well suited.

Watson, Weiss and Donnell (1379) modeled imprecision in decision anal-
ysis by using fuzzy set theory. Fuzziness on the probabilities and utilities
used in a decision analysis implies fuzziness on the outputs. They proposed

-a method for calculating imprecise, though informative, statements about
the attractiveness of the different options in a decision tree, which depends

on the imprecision of the inputs.

Hipel (1982} suggested multicriteria modeling in order to select the more
promising alternative solutions. The various alternatives can be character-
ized according to both nonguantitative and quantitative factors or criteria,
and the fuzzy aspects of the given information can be incorporated into the
analyses.

Though the Delphi method is useful for obtaining experts’ knowledge
_systematically, it also has shortcomings. There are two main shortcom-
ings. One is that experts may assume different premises and answer a
questionnaire from different points of view. The other is that aggregated
opinion may be less reliable if opinions of different specialists are counted
equally. Using fuzzy set theory, we improved the Delphi method and col-




lected certain knowledge about future scenarios (Morita and Kainuma, 1989
and Morita, Kainuma, Harasawa and Nakasugi, 1890), This knowledge is
_ translated into knowledge data and put into the Knowledge Base (Kainuma,
Morita and Nakamori, 1988 and 1989).

Elicited knowledge or ideas are combined to develop a group product of
higher qualily than otherwise usually available. A number of tools have been
developed to assist in building and analyzing structural models (Harary,
Norman and Cartwright, 1965 and Harary, 1969). Automatic graph draw-
ing and readability of diagrams are important factors for understanding

environmental structures.

Crossing theory of multilevel digraphs has been discussed by Warfield
(1977). Lempel and Cederbaum (1966) suggested a method to determine
a minimum set of arcs of an arbitrarily directed graph. Sugiyama, Tagawa
and Toda (1981) liave proposed methods for generating a visually under-
standable drawing of a hierarchy automatically by computer. Tamassia,
Battista and Batini (1988) surveyed the methods of automatic graph draw-
ing from the point of readability.

We extract the idea from the methods proposed by Sugiyama, Tagawa
and Toda (1981) for drawing graphs automatically. This is because their
méthods are easy to implement and the results are readable. We have
modified the methods and developed Visual Structuring Supporter (VSS).

Stanciulescu (1986) presented principles of modeling and simulation
of large-scale and complex systems. He suggested mathematical-heuristic
modeling, which can be used both in simu_létion and control. Thg model
consists of two parts: 1) a standard simulation model, composed of a set
of non-linear differential equation and 2) a heuristic model, composed of
a set of logical-linguistic rules, derived from the actual process. As an
application, he studied the case of the ecological system.

We sometimes find fuzzy subspaces in which we can barely obtain lin-
ear models because of the nature of the data. To deal with these cases, we
propose a heuristic fuzzy modeling that develops a pattern or linear model
for each explained variable in each subspace. This model differs from that
of Stanciulescu in that a heuristic rule of Stanciulescu’s model concerns
parameters of differential equations, whereas our rule concerns possibility
distribution of data. In model building of environmental problems, it is dif-
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Fig. 1.1  Overview of the intelligent decision support system

ficult to formulate a mathematical model by differential equations, whereas
it is easier to obtain possibility distribution of concerned variables.-

With the developed system we have analyzed environmental problems
in Japan in the early stage of the 21st century. We obtain a fuzzy model for
predicting NO2 concentration based on several future scenarios (Kainuma,
Nakamori and Morita, 1989 and 1990).

1.2 Structure of the Support System

An interdisciplinary approach is needed to identify the structure of environ-
mental problems, because it is complicated by socio-economic factors such
as urbanization, aging population and international trade. We have tried
to identify environmental structures by utilizing experts’ knowledge and
judgment systematically. When numerical data ate available, we can build
computer simulation models and analyze environmental systems quantita-
tively. We have built a computer system for supporting these processes.

Figure 1.1 illustrates how experts, decision makers and analysts partici-
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pate in model building with Intelligent Decision Support System (IDSS).
Figure 1.2 illustrates its subsystems..

Knowledge Base Management System (KBMS), Visual Structuring Sup-
porter (VSS) and Linguistic Fuzzy Simulator (LFS) have been developed
for identifying environmental proBIems. KBMS stores knowledge data that
contain cause and effect relations of environinental problems, and retrieves
and displays these data immediately on request in an understandable form.
V5SS is designed to cbtain effective representations of system structures by
linking knowledge data together. LFS performs fuzzy reasoning by query-
ing a user about interaction among important factors such as leisure time,
quality of life and traffic nuisance. ‘

Data Base Management System (DBMS) has also been developed for
understanding future environmental trends. The numerical data stored in
DBMS are related to socio-economic and environmental domains. Software
and the related database used in SAPIENS(Systems Analysis and Planning
on Intelligent ENvironmental information System) are explained by Nish-
joka and Naito (1984).. The time series data of the last 20 years is classified



into about 200 series of international data and more than 800 series of na-
tional data. The latter is further classified into 570 series of prefectural
data and 250 series of municipal data. This data can be easily retrieved
and displayed in the form of graphs such as maps or scatter diagrams. The
numerical data base is also accessed when developing statistical models.

Interactive Modeling Supporter ( IMS ), Visual Clustering Supporter
( VCS ) and Controlled Fuzzy Simulator ( CFS ) have been developed
for assisting in model building by using numerical dats. IMS assists in
statistical model building by using such functions as graphic representations
of the obtained model structure and selection of explanatory variables. We
sometimes encounter a case where it is very difficult to obtain a global
linear model for a nonlinear system such as an environmental system. If
s0, we divide the data space into several fuzzy subspaces and in each fuzzy
subspace we find a set of local input-output relations describing a complex
system. VCS is designed to divide the data space with stepwise clustering.
CFS is designed to set values of explanatory variables and to represent the
model behavior.

To manage different types of models together, Model Base Management
System (MBMS) has been developed. We can add up-to-date submodels to
the system whenever we develop them. Combining submodels with. future
scenarios, we can predict future environmental conditions with prescribed
confidence. '

The system runs on Sun 3/160c under UNIX. Most of the programs are
written in C language. The programs for statistical analyses are written in
Fortran. Many experts can participate in long-term simulation, looking at

the computer outputs displayed on a large screen.

1.3 Outline

Chapter 2 presents a highly user-friendly software for developing mathemat-
ical models. The system consists of several modern modeling techniques
with highly interactive human-computer interfaces. Section 2.2 gives the
functions of IMS. Section 2.3 describes an application to the prediction of
NO2 concentration. Section 2.4 gives the purpose of developing IMS and its
advantages. The system assists in model building and reduces the burden




of trial and error necessary for developing a computer simulation model.

Chapter 3 presents a fuzzy modeling technique with a visual and step-
wise clustering method, and a fuzzy simulation technique for reasonable
scenario input and interpretation of the model behavior. Section 3.2 de-
scribes stepwise modeling by the use of visual clustering technique. Sec-
tion 3.3 describes a simulation technique. An input admissible function is
defined for reasonable scenario inputs. Confidence factors and degrees of
scatter are defined to see to which degree the obtained model is suited for
sirnulation. Section 3.4 shows an application of the simulation techniques
to the prediction of NO2 concentration. Several fuzzy rules are constructed
with the developed system. - ,

In Chapter 4 linguistic fuzzy modeling is presented. Input-output rela-
tions of the system are described in the form of if-then rules. Then using
fuzzy reasoning, the behavior of the system will be predicted. Section 4.2
describes a check sheet for the prediction of Oxidant concentration. Its
result is compared with that of fuzzy reasoning. Section 4.3 explains the
method of fuzzy reasoning. Section 4.4 describes its application to the pre-
diction of Oxidant concentration. In Section 4.5 some problems that arise
in building fuzzy rules are presented and their modifications are suggested.

Chapter 5 presents the identification of environmental problems by us-
ing IDSS. Section 5.2 describes the identification process that consists of
collecting knowledge as well as numerical data, idehtifying the structure
of the problem and analyzing environmental conditions through linguistic
fuzzy simulation. Section 5.3 describes the modeling process that consists
of building computer simulation models by combining expert’s judgment
and numerical data. Section 5.4 describes the simulation process that is
useful for predicting future environmental conditions by assuming some
policy scenarios. An example is considered in Section 5.5, showing how

simulation models are built with the aid of the developed system.




Chapter 2

Interactive Modeling

2.1 Introduction

It is a hard task to identify environmental systems, because many factors
are interrelated and the future condition of each factor is somewhat un-
certain. A heuristic approach that utilizes the expert’s judgment and the
ability of the computer is needed when we have to build up a model of
ill-defined systems. This approach is helpful for resolving actual and com-
plex problems and for bridging the‘gap between the real system and the
modeling theory. .

- Checkland (1981,1983) points out the common paradigm between tra-
ditional operations research, systems engineering and systems analysis,
and calls them hard systems approaches. According to him, the common
paradigm is the assumption that we can recognize or identify the reality by
observation and analyze it by the methods in natural science. Under this
assumption, he continues, the subjectivity or perception of the observer
cannot be treated, and there are limitations in treating the complexity. He
then proposed the soft systems thinking, emphasizing the cycle of modifi-
cation or learning of the relevant people’s perception.

In this chapter presented is Interactive Modeling Supporter (IMS),
which is a highly user-friendly software to develop mathematical models

A part of this chapter was published in Trans. of the Institute of Systems, Control
and Information Engineers (vol. 1, no. 5, pp.160-168, 1988) by Y. Nakamori, 8. Nishioka
and M. Kainuma. ‘ ’ o :



in system analytic research. Interactive Modeling Support System (IMSS)
was developed by Nakamori (1989). IMSS utilizes graphic information ef-
fectively to facilitate not only human-computer communication but also in-
terpersonal communication (Nakamori and Sawaragi, 1987). This has been
improved and integrated to Intelligent Decision Support System (IDSS),
which is useful for scenario analysis and sensitivity'analysis as well as for
developing statistical models.

As an application, the process of identifying an environmental predic-
tion model is presented. It is emphasized that IMS greatly reduces the
burden of trial and error necessr.axrjr in developing such a model, and helps
us think about the problem systematically and intensively.

2.2 Functions of Interactive Modeling Supporter

The purpose'of IMS is to build up a mathematical model of a complex
system through recursive communication between experts and computer.
The system consists of several modern modeling techniques with highly
interactive human-computer interfaces. Its original version was developed
on the ‘personal computer by Nakamori (1989) and now it is implemented
on the work station as an important part of our support system.

As shown in Fig. 2.1, the inputs to the system are a set of variables,
measurement data and a binary relation, and the outputs are structural and
statistical models. The data analysis part gives understandable graphical
expressions of measurement data so that one can think of model structures
before statistical modeling. We are continﬁously elaborating this part, re-

ferring to the exploratory data analysis (Tukey, 1977).

The system includes facilities for:

o data transformation,

e structural analysis,
”c statistical modeling, and

e model verification and valide;t-ionf —
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The modeling process using the system consists of three different but in-
terdependent stages of dialogues as shown in Fig. 2.2. Of the facilities
mentioned above, structural analysis-is used in all three stages, and is the
most emphasized feature of the system.

The first stage dialogue is required for preparation of modeling. It in-
cludes input of measurement data and the initial version of the cause-effect
relation on the set of variables. Transformation of variables, data scréening,
and refinement of the cause-effect relation are also executed at this stage.

The second stage dialogue is devoted to finding a trade-off between the
measurement data and the modeler’s knowledge about dependentcies be-
tween variables. Based on the measurement data and the initial version of
the cause-effect relation, the computer continues to find a model until the
stage when further repetition would not improve the model. An analyst can
choose any of the regression methods for selecting explanatory variables.
The options include: '

¢ forward selection procedure,

¢ backward elimination procedure,
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Fig. 2.2 Structure of the interactive modeling support system

¢ all possible selection procedure, and
o group method of data handling.

Then the corresponding digraph models are drawn to facilitate under-
standing and elaboration of the obtained model. If the structure of the
model is modified, the affected parts of the model are again tested with re-
gression methods. The analyst modifies the new relation referring to these
computer models and his knowledge. The process continues repeatedly

until no change occurs or the analyst is satisfied with the modified relation.

The third stage dialogue is related to model simplification and elabora-
tion. Model simplification is based on using the equivalence relation. Model
elaboration is an application of regression analysis including the hypothesis
testing on estimated coefficients, and examinations of the explanatory and

predictive powers of the model.




2.2.1 Structural Consideration _

At the first stage, a mental image of a system is obtained by referring to

information displayed on a computer. The input to the system is denoted
by

D=(S,X,R), (2.1)

where

S = {z1,%2, - *,2m} : set of variables considered as elements of the
model,

X = {e1,az, -+, an} : set of all data points in R™,

a; = (%15, %25, " ") Tmj) : jth data point in R™,5 = 1,2, --,n, and

R = (r;) : initial version of the cause-effect (binary) relation on § x §.
Note that the set § includes all input, state and output variables, and the
relation R indicates their interconnections.

The structural consideration of the model is important for verifying
whether the model behaves in the overall fashion we intend it to, By
the structure of the model is meant the cause-effect relation between vari-
ables. To introduce the cause-effect relation, the adjacency matrix R =

(ri7), 4,5 =1,2,..-,m, is prepared; the entries are defined by

if z; never affects z;

if z; possibly affects =z;
if =; certainly affects z;
if z; is identical with =;

(2.2)

-3
-
L]
I

I R

To fill in entries of this matrix is sometimes quite difficult because the
state variables (including the intermediate ones) often influence each other
in such a manner that it is difficult to separate causes and effects. Hence,
the work requires a deep insight into the real system under study. The
burden of entering the adjacency matrix is reduced, however, by initially
assuming the validity of transitive inference (Warfield, 1974 and 1976). It
is then possible to subsequently check the resulting adjacency matrix by
drawing a digraph corresponding to it and modifying it if necessary.




2.2.2 Finding Trade-off Structures

The purpose of this step, which is the main ‘objective of the second stage
dialogue, is to find a trade-off structure between the computer model and
the mental model. First an environmental model is obtained by the meth-
ods of stepwise or all-subset regression. (See for instance Mosteiler and
Tukey, 1877). Then the corresponding digraphs are drawn to facilitate the
understanding and elaboration of the obtained model. If the structure of
the model is modified, the affected parts of the model are again tested by
the regression methods. A series of reciprocal considerations and calcula-
tions by the analysts and the computer are repeated until the structure of
the model becomes satisfactory with respect to the current problem. This

process is summarized below.
Let us define two subsets 5S¢ and 57 of S for each z; :

§i=A{=zj:rs =2},
‘S? ={z;:r; =1}..

Following the terminology in statistics, we call 57 the core variable set and
S? the optional variable set for z;. The elements of St are always chosen
as the explanatory variables for z; and those of S? are candidates. When
rii =3, :i:,- does not appear as an explanatory variable for z; and z; is
expressed only with z;. '
For each z;, if SFU S? # ¢, then the coefficients of the equation:
T = Cip + Z : éij T (2'3)
z;E5FUSY
are identified using the measurement data and a regression method. The
criterion of goodness of fit used here is the controlled determination coeffi-
cient, i.e., the square of the modified coefficient of multiple correlation:
Twlzie — 2a)?/(n ~p - 1)
iz - 2:)?/(n-1) ’

where &;; is estimates of the kth data z;, of the variable z;, &; the sample

RP=1-

(2.4)

mean of z;, n the number of data points and p the number of selected
explanatory variables (z}s). The set of selected variables (which in any
case includes all the core variables) includes the combination of candidate

variables that yields the value of R? nearest to unity.




The separate interpretation of the coefficients is quite difficult or impos-
sible. Therefore, at this step, the suitability of the structure of the model
for the purpose of scenario analysis is checked by the digraph.

2.2.3 Model Validation

In this step the explanatory and predictive powers of the model are exam-
ined by the following statistics:

e standard errors of estimated coeflicients,
e t-ratios of estimated coeflicients,

¢ standard deviation of residuals,

¢ F-ratio against a null hypothesiks,

¢ controlled determination coeflicients,

e correlation coefficients, and

e residuals and predictions.

An analyst can elaborate the computer model by adding or removing some
explanatory variables referring to these statistics. If the analyst wants the

data preprocessing, he can call the subroutines in the first stage:

e transformation of variables, and

e data screening.

It is desirable to choose proxy variables for model simplification and
elaboration if there is a chance that the variables in an equivalence class
can be connected by a linear relation. The variables are eliminated as
long as the reduction does not destroy the cause-effect relation structure

necessary for the intended use of the model.




Table 2.1 List of variables used in the modeling

Variable Symbol
! | NO. concentrations {annual average) NO.
2 | population pop. tota
3 | population density pop. dens
4 ratc of population incresase pop. chan
5 | members of households pop. hous
6 farmiand area,”kd farmland%
1 building arca, kil buildin®
8 | traffic area,/kd traflicd
9 | total industrial outputs ind. tota
10 | total industrial autputs of process type ind. proc
Il | total industrial outpuls of non-process type ind. npro
12 | commercial sales voiume® trade
13 | ennual average temperature temprat
14 | annual average wind velocity wind. vel
15 | distance from sea dic. sea
16 | distance [romn mountain dic. moun
17 | altitude altitude
18 | number of cities within 20 ka cities 20
19 | number of citics within 40 kn cities 40
20 | traffic of passenger cars™" traf, car
21 | tralfic of buses** trafl. bus
22 | trallic of small trucks*" tral. str
23 | tralfic of big trucks** - traf. bir

s perl kd * * ; translated inlo emission

2.3 Interactive Systems Approach for Heuristic
Modeling

With the system, an environmental prediction model has been identified.
The list of variables used in the modeling is shown in Table 2.1. The main
object here is to build up a model that predicts NOx concentration by other
variables listed in Table 2.1. Though it is very difficult to obtain data
without missing values, annually averaged data in 22 cities are collected
during three years, that is, 1977, 1980 and 1983. The cities are listed

in Table 2.2. Sixty-six lots of annually averaged data for each variable




.Table 2.2 List of cities

Prefecturs City

ibaraki iMito "Hitachi

Tochigi ‘Utsunomiya

Gunma *Macbashi *Tskasaki

Saitama *Kowagoe "awaguchi *Urawa 'Ohmiya "Tokorozawa "Koshigaya

Chiba "lchikawa “"Funabashi “"Matsudo "Hashiwa "“Ichthara

Tokyo “tlachioji "Machida

Kanagawa | "Yokosuka "Hiratsuks "Fujisawa ®Sagamihara

are used in the analysis, that is, 22 cities X 3 years. Interdependence
of variables is analyzed through processes of building regression models.
Relations between city activities and environmental pollution have been
studied by Moriguchi and Nishioka (1985). These results are referred to at
each modeling stage. _

First, the input data are divided into training and checking data. The
data measured in the cities from 1 to 20 in Table 2.2 are used as the
training data. The other data are used as the checking data. The training
data are used for model building and the checking data are used for model
validation. Then, referring to basic statistics and histograms of the training
data, 5 outliers are identified and removed from the set of data points. Two
dimensional scatter plots are drawn for each pair of variables and relations
are discussed among analysts.

Initial input of the cause-effect relation is obtained by the transitive
imbedding method (Warfield, 1976). Figure 2.3 shows an opening screen
for obtaining the cause-effect relation. Entries of a matrix shown in Fig. 2.3
are filled in by the number 0 or 1. The number representing a relation is
restricted to 0 or 1 at this scene, though there are four kinds of relations
in the entries of an adjacency matrix as shown in Equation 2.2. This is
because it is very difficult to clarify such a relation. At the next stage,
the relation is obtained, referring to other information such as statistics or
scatter diagrams. When an intermediate variable is pointed to, ind.proc for
example, relations between an intermediate variable and other variables are

asked by the computer and the corresponding entries of the matrix are filled
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Fig. 2.3 The opening of the introduction of a relation

in. By repeating this process, a reachability matrix is obtained. Figure 2.4
shows a reachability matrix at the first stage. Then a skeleton matrix is
calculated and a digraph model is obtained (Fig. 2.5).

Here it should be noted that the introduced relation is obtained through
the effort of trial and error and intensive discussion to modify the model
structure by using the digraph maps and visual displays of data.

At the second'stage, variables are selected by using the forward selection
method and information obtained at the first stage. At the third stage, the
obtained prediction model is examined by several statistics. The resultant
model is fairly satisfactory from the point of t-ratios and other statistics,
but the result of simulation is not satisfactory. Then we return to the sec-
ond stage, and input-output relations are reexamined. Here, the forward
selection method is adopted again. Figure 2.6 shows a system model con-
sisting of a set of linear equations. Figure 2.7 is the corresponding graphic
expression of the model structure.

* At the third stage, some statistics such as t-ratio, correlation, controlled
determination coefficient and F-ratio are calculated. Table 2.3 shows the
result of a linear relation and some relevant statistics. Table 2.4 shows
the standard deviation of residuals and the mean square error. With these
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A digraph model! corresponding to the introduced relation




NOx = 2,5067et01 -3.3672e-01 buildink -1.20980-07 ind.tota
+3.2710e-05 ind.npro +2.3460e~01 cities4l
+2.0829e-03 traf.car +2.8620e-04 traf.btr

pop.hous = 3.3246e+00 -5.15932-07 pop.tecta -5.5840e-05 pop.dens
+7.0042e-03 buildinX

buildinX

2.32432401 ~3.95689e-05 pop.tota +5.4968e-03 pop.dens

ind.npro = 2.0992e+04 +2.4290e-03 ind.tota

4.1107e+04 +5.1321e-03 pop.tota -1.3588e+00 pop.dens
=1.2967e+04 pop.hous +9,2540e+01 farmlanX
+2,366%+02 buildinX

trade

cities4l = 6.7757e-01 #3.2292e-03 pop.dens +1.8973e+00 cities20

traf.bus = 5.5582e+03 +1,2763e~03 pop.tota -1.6272e+03 pop.hous
+6,4841e+00 buildinX ~1.3082e+01 cities20
+1.2884e-01 traf.car

tréf.str =-1,1000e+03 +3.9610e-01 pop.dens +1,4023e+01 buildinX
+2.4809e+01 cities40 +1.0873e+00 traf.car

traf.btr = §4.1327e+03 +1.6459e+00 pop.dens ~1.5634e+02 buildinX
-1.6051e402 traffick +2.2359e-02 ind.proc
+6.5000e-03 ind.npro +7.9807e~01 traf.str

Fig. 2.6 A system model consisting of a set of linear equations

)
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Fig. 2.7 A graphical expression of the model structure
Table 2.3 A result of the linear regression
g=z= Current Linear Model === NOx ==z Regressand ==)> NOx
variable coefficient standard error t-ratico correlation
buildinX -.2367D4+00 0.1671D+00 «.2015D+01 0.4992
ind.tota -.1210D-08 0.4213D0-07 =-.2871D+01 -.2123
ind.nproe 0.3271D-04 0.6250D-05 ' 0.5233D+01 0.3582
citiesd0 0.2346D+00 0.5243D-01 0.4475D4+01 0.54B6
traf.car 0.,20830-02 0.6006D-03 0.3468D+01 0.2854
traf.btr 0,2862D0-03 0.2583D0-03 0.1108D+01 0.3867
eonstent 0.25070+02
Degreeas of Preedom = 4B Adjusted R-Square = 0.5914
- 8.D. of Residual = O0.6686D+01 F-Ratio = 0.1403D+402
T( 48 , 0,05 ) = 2.0106 F{ 6 , 48 , 0.05 } = 2.2046




Table 2.4 An examination of the predictive power of the model

RESULT & Regressand ==> Var|able X21 Ranking 1
Case MNumber Measurement Predictlon Standard Error
No. 61 D.1367D+04 D.1636D+04 D.28D01D+D3
No., B2 0.1207D+04 0.1293D+04 ’ 0.2758D+03
No, 63 0.1217D+04 0.1370D+04 0.2754D+03
No. 64 0.1459D+04 0.1567D+04 0.2892D+03
No. &5 0.1122D+04 0.1277D+04 0.2897D+403
+ No. 68 0.1251D+04 0.14250+04 0.29190+03
The Number of Cases = § Correlation {meas,pre) = {.089%56
Mean Square Error = 0.28210+05 Mean Absolute Error = 0.3232D+00

figures, the predictive power of the derived model is examined. Note that
much effort is needed again at this stage. The result shown in Fig. 2.6 is
actually the one that is obtained after several repetitions of these steps and

intensive discussion.

At the simulation mode, we input values of scenario variables and select
variables to be predicted. Then simulation resuits and the model structure
are displayed on the computer. Figure 2.8 shows these simulation results.
Simulation results of up to six variables can be displayed. Trends of vari-
ables such as NO,, traf.bus, and traf fic% displayed in Fig. 2.8 are ex-
amined for model validity. Figure 2.9 shows an example of the sensitivity
analysis by linear programming. The coéfficients of the objective function
shown in Fig. 2.9 are denoted By a and 8. The. a is given by the reciprocal
of the standard deviation of NO,, and the 3 is given by that of trade.
The upper limit of each variable is given by #; + o; and the lower hmlt is
given by £; — 0y, where &; denotes the mean and o; the standard deviation
of each variable. The result of linear programming is given in Table 2.5.
The model validity is examined from a different point of view from that
mentioned above at the third stage. |

As time series of environmental data are limited, we use data from dif-
ferent cities. The main purpose of this modeling is to analyze the effects
of city structure on environmental conditions such as NOx concentration
and traffic volumes. To check the obtained model, we examine whether
the mode] behaves reasonably with the checking data. Table 2.4 shows the
prediction results for the checking data. In Table 2.4, the variable traf.bus
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Table 2.5 A result of linear programming

variahle lower timit LP-~solution | mean value | upper limit
{ 1) NOx 0.3071x10% 0,3071x10% | 0,4107x10% 0.5143x10¢%
(12) trade 0.1076x1014 0.5168x10* | 0.3122x101 0.5168x10+4
(21) traf.bus 0.8099x10? 0.1760x104 | ©0.1285x101 0.1760x1014
{ 5) pop.hous 0.2957x10" 0.3107x10! | -0.3191x10" 0.3249x10!
(23) traf.btr 0.4715x104 0.8363x104 | 0.B804x10¢ 0.1290%10%¢
(10) ind.proc 0.0000x10% 0.2135%x10° | 0.1361x10¢ 0.2813x10¢
(22) traf.str 0.3836x104 0.8596%x10% | 0.6216x104 0.8596x104
( 7) buildinx 0.2082x102 0.3646x102 | 0.3000x102 0.3918x102
(19) cities4d0 0.1581x102 0.4259x10% | 0.4015x102 0.6449x102
( 6) farmlanX 0.1158x102 0.3724x102 | 0.2441x1082 0.3724x10%
( B) trafftcx 0.1534x102 0.7632x10% | 0.4583x102 0.7632x10%
(11> ind.npro 0.1039x10% 0.1039x10% | 0.3416x10°% 0.5793x10°
¢ 9) ind.tota 0.1551x10" 0.7927x10" | 0.4739x10" 0.7927x10?
(20) traf.car 0.2686x164 0.5629x104 0.4191x104 0.5796x104
( 2) pop.tota 0.2161x10° 0.3691%10% | 0.2990x10% 0.3819x10°
¢ 3) pop.dens 0.1646x1014 0.5069x104 | 0.3388x104 0.5130x104
{18) cities20 0.4640x10!" 0.1346x102 | 0.1504x102 0.2544%10%

is predicted for the cities whose data are not used for model building.
Table 2.4 shows that the correlation between the measured data and the
predicted ones is fairly satisfactory though predicted values are somewhat
greater than that of the measured ones. As the prediction model simulates
the average behavior in general, this systematic error is inevitable. To re-
duce prediction errors, the data must be divided into several subgroups and:
a simulation model derived for each subgroup. As it is usually difficult to
find the criteria for dividing the data, a heuristic approach is also necessary
for this purpose. This problem will be explained again in Chapter 3.

2.4 Advantages of Interactive Modeling

Usually, prediction models are built through recursive interactions between
man and computer or man and man. The purpose of IMS is to support
this process so as to reduce the burden of trial and error necessary in
developing such a model. The system also helps us think about the problem

_th



systematically and intensively. Let us briefly mention why this supporter
is required. It is very difficult to formulate a practical model for a large
complex systemn such as an environmental system. Even for an analyst
who has devoted much time to environmental problems, it is not easy to
build a suitable prediction model. This is because there are various kinds of
information and discrepancies in their interpretation. The relation between
analysts can be crucial to the success of systems analysis. Analysts may
approach problems from different aspects, so it is helpful if they sit at a
round table to fully discuss the problem with the aid of the supporter. The
system is also useful for analyzing information and understanding model
structures.

For decision makers, the system is useful for understanding what is
known up to date and what is not known. A simple model for understand-
ing the behavior of the environmental system can be obtained by using
the developed system. The process of modeling enables the extraction of
information that is not known before analyzing the system.

The purpose of the system is to assist in systematic thinking and-to
deepen mutual understanding. The advantages of the system are summa-

rized as follows:

o The system displays relevant data in graphic forms such as scatter

diagrams and maps. It is useful for finding outliers or collinearity
between variables.

» The system assists in structural modeling. It is useful for understand-

ing the structure of real systems.

s The system assists in evaluating the validity or the predictive power

of the model. It is useful for improving the prediction models.

¢ The modeling process necessitates concentrating on the problem. It

helps analysts to understand a real phenomena or problem.

o The system reduces the burden of trial and error necessary in model
development. Once the model is built up, planners will seldom re-
examine it because of the difficulty in running the model. However,
with the aid of the system, it will become easier to examine the model

and to modify it if necessary.

o —



2.5 Concluding Remarks

Interactive Modeling Support System (IMSS) is introduced and its appli-
cation to structuring of environmental systems is presented. The system
has been applied to various fields such as simplification of a comprehensive
model (Walsum and Nakamori, 1985) and gaming simulation for group de-
cision making (Nakamori, 1987). The systém has been improved so that
anyone can participate in model building and sensitivity analysis. The sys-
tem is a part of IDSS, which will be presented in Chapter 5. There are
other subsystems in IDSS such as Knowledge and Model Base Manage-
ment Systems. These subsystems are used for model building in various
fields. It is expected that an effective model can be built by referring to a
mathematical model as well as a knowledge model and by filling up gaps
" between them.



Chapter 3

Fuzzy Modeling and
Simulation

3.1 Introduction

In model building for the urban environment, we often encounter the diffi-
culty of structure identification and the lack of homogeneity in data. These
problems are interrelated. The difficulty of structure identification is ag-
gravated by the lack of homogeneity and vice versa, so that the problem is
complex. To deal with this type of problem, we have developed a model-
ing support system to use objective information and subjective knowledge
effectively. ,

In this chapter we propose a fuzzy modeling technique with a visual and
stepwise clustering method, and a fuzzy simulation technique for reasonable
scenario input and interpretation of model behavior. The processes are

summarized as follows:

(1) In the process of fuzzy modeling, we introduce a degree of date division.
An input space is divided into several fuzzy subspaces according to

this criteria and with the aid of the computer display of a clustering
process.

A part of this chapter was published in Trans. of the Institute of Systems, Control

and Information Engineers (vol. 2, no. §, pp.166-174, 198%8) by Y. Nakamori and M.
Kainuma. '



(2) An input admissible function that expresses an effective range of an
input of a developed model is proposed to simulate future environ-
mental conditions.

(3) For .evaluating linear models, a confidence factor is introduced. The
- confidence factor is calculated by using a membership function and
expresses the frequency of past occurrences of the combination of

input values.

(4) A degree of scatteris introduced to express the model validation. From
the simulation result with fuzzy inference and statistical inference,
the future environmental condition is analyzed. The fuzzy relation
is expressed in a linguistic formula to aid understanding of the ob-
tained results. Through these processes, fuzzy simulation supports
the understanding of the model and the actual system.

In modeling and simulation processes, four subsystems are utilized. In-
teractive Modeling Supporter (IMS), a part of which is explained in Chap-
ter 2, assists in building linear models with structural modeling and sta-
tistical modeling. We have developed Visual Clustering Supporter (VCS)
and Controlled Fuzzy Simulator (CFS) to assist in fuzzy modeling, These
support systems assist in modeling and simulation of a large-scale system.
Model Base Management System {(MBMS) is also developed to analyze
a mathematical model and a knowledge model and to add an up-to-date
model to the system.

We present an application of the propo;sed techniques to an urban en-
vironmental problem. The relations between urban activities and an envi-
ronmental condition are analyzed and fuzzy models have been constructed
by the use of the developed system. The results of 8 mathematical model
are interpreted and then expressed in linguistic formula to assist in under-

standing.

3.2 Piece-wise Linear Modeling

Fuzzy modeling enables nonlinearity of a complex system to be expressed
and numerical data to be converted to knowledge data systematically. By



the use of fuzzy set theory, we can express human thinking in linguistic
formula. It helps to encourage experts to participate in model building.

In this section we introduce stepwise modeling by the use of visual
clustering technique.

3.2.1 Fuzzy Modeling

According to its original definition (Takagi and Sugeno, 1985), a fuzzy
model is described as follows. Consider a system with multiple inputs,

say 21,3, -, %, and multiple outputs, say y1,¥z2, +,¥q- A fuzzy model
consists of several fuzzy rules such as

Rule L': if zis A}, zp 18 A}, ..., 2, is A},

then ¥l =clg+ iz + ciamy + oo + &S,z (3.1)

i _ 1 t i
Yy = €0 + Cq1T1 + quzz +: CarZry

where Aj-’s are fuzzy sets, y,‘;’s the outputs of Rule L¢, and cij’s are coeffi-
cients of the linear model. . '
Given input values zj., Ta., ..., £»«, the prediction of output y. is

calculated by

o ..
Ei:l w‘y;c*

?—1 w‘ H ‘I.U" = H Ai’(zj*), k = 1, 2’ . .q, (3.2)

j=1

Vhs =

where p denotes the number of rules, Aj,-(zj,.) the membership grade of ;.
to the fuszy set A%, and yj, the prediction by Rule FAR

The identification of a fuzzy model using input-output data is divided
into two parts: structure identification and parameters identification. The
structure identification consists of premise structure identification and con-
sequent structure identification. The parameters identification also consists
of premise paramei;ers identification and consequent parameters identifica-
tion. The consequent parameters are the coefficients of linear equations
(Sugeno and Kang, 1988).




The most important feature of a fuzzy model is that it behaves as a
nonlinear model though it consists of a set of linear equations. The main
tasks in the fuzzy modeling are:

¢ division of the data space into fuzzy subspaces,
¢ identification of membership functions, and

e statistical modeling with selection of explanatory variables.

We have developed VCS for supporting such operations by the use of visual
clustering and stepwise modeling. The above tasks are mutually dependent,
and very difficult if we follow the traditional analytical approach. One can
introduce some criteria in carrying out those tasks, but the final result
depends heavily on the capability and expefience of the individual modeler. -
This is the reason why we have developed an interactive and intelligent

environment in model building.

3.2.2 Degrees of Data Division

The most important practice in fuzzy modeling is to divide the data space
into fuzzy subspaces. For this purpose we introduce degrees of data division.

To describe stepwise fuzzy modeling, we need the following

Notations.
o I = {z1,%3,---,2,} : set of explanatory (input or past state) vari-
ables.
o O = {r41,Tr42, ", Tm} . set of explained (state or output) vari-
ables.
e X; = {zi1,ziz, ", Tin }: sequence of measurement data for z;, i =
1,2,---,m.

e m;,0;: sample mean and standard deviation of the data set X;, i =

1,2,---,m.
o a; = (£1j,T2j," ,Tmj} : jth data point in R™, j =1,2,--- n.



e X={a,,a,, - a, }: set of all data points in R™.

¢ S; = {si1, %2, --,8in }: sequence of standardized data for z;, i =
1,2,.--,m.

o B; = (815,825, -, 8mj) : jthr standardized data point in R™, j =
1,2,..-,n.

¢ S={PB. 08, - Bn}: set of all standardized data points in R™.

First we introduce the range in which we build a fuzzy model by

Definition 3.1: (support set).

Let B; be the range of variable z; (i = 1,2, .-, m) determined by its
nature, and defined as wide as possible. Define the support set A; of the
variable z; by

A; = [m" —tog, mi + ta,'] n B;, i=1, 2,:-,m, (33)

where ¢ is a real number to be designated and m; is'the sample mean of
the data set. The support set A of all variables in R™ is defined by

A:Al}(AzX"‘XAm._ (34)

We call the support set A the data space.
Next we introduce a criterion in dividing the data space by

Definition 3.2: (degrees of data division).

Divide the set S; (i = 1,2,---,r), where z; is an explanatory variable,
into two subsets S}, S? by some clustering method, the Ward method for
instance {Oosumi and Yanazawa, 1977}, and correspondingly divide S into
5! and S? by the following formula:

if S;jESt-k then BJ‘ESk, k=1,2j=1,2,-,n (3.5)

The degree of data division with respect to an explanatory variable z; is
defined by '

T - Ny

d; =
ny + ng

lles — C,“sz, i=1,2,-1,r, (36)



where n;, is the number of elements in S* (k = 1,2), and ¢; the center of
gravii:y of the elements in S* (k = 1,2).

The degree of data division, d;, indicates how separated the two clusters
are with respect to an explanatory variable z;. For each input variable, the
degree of data division is calculated by Equation 3.6. The larger the degree

of data division is, the more separated the two clusters are.

3.2.3 Stepwise Modeling

It is dangerous to make a decision by the above criterion only, because d;
tells how separated the two clusters are, but not how the data are scattered
in each cluster. We are now developing a criterion taking account of lin-
earity in data in each cluster. But, for the present, we decide the division
using the above criterion and looking at two-dimensional scatter plots to
see how data are divided and scattered.

The developed systemn VCS has a facility to display such two dimen-
sional scatter plots. By‘displa.ying various pairs of scatter plots, and re-
ferring to the degree of data division, the input space is divided into two
fuzzy subspaces.

.Figure 3.1 shows an example of computer display of scatter plots with
VCS. In this figure two dimensional data space ( pop.dens and traf fic%)
is divided by the variable traf fic%. This figure shows not only how the
data are divided with the variables pop.dens and traf fic%, but also how
other data are scattered and divided. .

With the system VCS, two dimensional scatter plots can be easily ob-
tained and the data space can be divided. We divide the data space into
two fuzzy subspaces. One input variable is considered at a time for fuzzy
modeling or construction of a knowledge model. With the system VCS the
data space can be divided into two to five clusters. Each cluster is displayed
with the same mark, which indicates that data are contained in the same
cluster. Looking at such a display it is possible to find outliers that will be
removed from the data set. It is also possible to move a data point from
one cluster to another.

If we make a decision that the data space should be divided with respect

‘to an explanatory variable z;, then we construct fuzzy subspaces by
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Fig. 3.1  Data division by the visual clustering supporter

Deflnition 3.3: (fuzzy subspaces). .
Divide X into X! and X? corresponding to the division of §:

if B; € S* then a; € X*, k=1,2,j=1,2,---,n. (3.7)
Define two fuzzy subspaces corresponding to X * by
A¥ = A x o x AP X X A, k=12 (3.8)

where Al and A? are the fuzzy sets with the support set A;.

From this we obtain premises of two rules:
e L1 if-z,- is A}, and
o L¥: if z; is A}

Corresponding to these premises, we develop two linear models with the aid
of IMS. The obtained submodel corresponds to a consequent part of a rule.
Then back to the process of clustering, the input space is divided into three
clusters. One part of the subspace is again divided into two subspaces. At



this time, degrees of data division and scatter plots are also referred to.
It may be that the same variable is used to divide the data space as in
the previous stage. Again submodels are constructed with the aid of IMS.
This process is repeated until sufficient model accuracy is obtained. Model
accuracy is judged by several elements such as model structure, statistics

and simulation result.

3.3 Fuzzy Simulation and Knowledge Model Con-
struction

At the simulation stage it may sometimes occur that input values cannot
be decided independently. We have developed a system to control input
values, called the Controlled Fuzzy Simulator (CFS).

3.3.1 Membership Functions

With the aid of the system VCS, the data space is divided into several
fuzzy subspaces. In each subspace a membership value is determined for
each variable.

We identify the membership function with a kind of possibility distribu-
tion function referring to several lots of information, including distribution
of the data and model validation. In the following, we adopted such a trape-
zoidal function: 1 for the data from the first quartile to the third quartile,
0.5 at the minimum and maximum data points. We cannot say that this is
the best membership function, since there are possibly several other mem-
bership functions. We take another definition of membership functions in
Chapter 5. We decide its shape heuristically. We denote the membership
function of a variable z; in the kth fuzzy subspace A* by A;F(zj) .

3.3.2 Input Admissible Functions

Suppose that we obtain a submodel consisting of p rules with the set of

explanatory variables I = {21, 23, --,2,} and the set of explained variables



0= {3r+1’ LEES PR ”m}-
We define how the submodel produces estimates of the variables in O

when all values of variables in I are given, by

Definition 3.4: (nonfuzzy estimates).

Given values of inputs zy.,22., - -, .., satisfying

P
ZA:::(E’:*) > 03 i=1,2;"'11‘; (3.9)
k=1

]

the estimates of variables in O, denoted by z¥, (7 =r + 1,7+ 2,.--,m)
based on Rule L* are given by the simple data fitting.
Define the relative degrees of belief of Rule L* by

Ly Ab(in)
—k =1 7 \%ix
= - k=1,2,---,p. 3.10
T (e Abz)) (810
Then the final estimate is given by
P
zie=y Wk, jErilir42,.,m (3.11)
k=1

Usually, the variables in I are not strictly independent of each other
in the environmental system. We have developed a stepwise procedure
to fix values of some important explanatory variables taking account of

correlations between variables. We introduce

Definition 3.5: (input admissible function).
We say that an explanatory variable z; (i = 1,2,---,r) is active if it

has received a real number, say z;., such that

iA{.'(z;,.') > 0. (3.12)
k=1

Let I, denote the set of active variables, and let I = I — I;. One can
define the set I, arbitrarily. When I, = ¢ (i.e., Iz = I), we define the
input admissible function for z; € Iz by



1 ,
wJ(zJ) = ; Z A?("':J)! 1= 1y2; sty T (313)
k=1 .

When I, # qb and Iz # ¢, we define the input admissible functionforz; € I
by

vr_, wk A%(z;)
wi(z;} = kip < w' =] Az). (3.14)
k=1 zi€la

where z;. is the fixed input for z; € I,. We call the set { z; | w;(z;) >0}
the input admissible range for z; € I, and wy(z;.) the input admissibility
at 2; = z;,. Note that wj{z;) does not depend on the order in which we
determine the values of z; € I,,.

Looking at these functions, we can fix values of some important ex-
planatory variables one after the other. For the variables in I, the random
numbers are generated within their admissible ranges. Thus a simulation
is carried out by fixing scenario values for some explanatory variables and
generating random inputs for the rest.

An example of the scene by our simulator is shown in Fig. 3.2. The
explanatory variables are placed on the left with the input admissible func-
tions drawn in a discrete form. The circles above the functions indicate
that the scenario values are fixed for those variables throughout the simu-
lation. The input admissible functions for other variables are calculated by
Equation 3.14.

It may sometimes occur that the maximum value of the input admissible
function does not reach 1 at the initial stage. This happens when the data of
the variable is well divided into several fuzzy subspaces. As for the variable
traf fic%, the data are neatly divided into two clusters. The maximum
value of the input admissible function of the variable traf fic% is not 1, as
is shown in Fig. 3.2. Figure 3.2 is explained in more detail in Section 3.3.4.

Referring to the input admissible function, the scenario variables are
fixed one after the other, where the scenario values are chosen so that
Equation 3.12 is satisfied. The closer the value of w;(z;) is to 1, the more
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Fig. 3.2  Scenario analysis by the controlled fuzzy simulator

often the variable z; actually occurred in the past. Note that the value
w;(z;) does not depend on the order specified. If the variable z; is highly
correlated with the variable z;, and if the value of the variable 2; is fixed,
the input admissible function w;(z;) is modified so that the input range
becomes very narrow. On the other hand, if the variable z; is independent
of the variable z;, the input admissible function w;(z;) is not influenced

by the value of «;.

3.3.3 Confidence Factors and Degrees of Scatter

To evaluate linear models, we introduce the confidence factors and degrees

of scatter of the estimates as follows:

Definition 3.6: (confidence factor).

Denote by z;, the fixed value for z; € I,, and by zj {I = 1,2,--+,N)
the generated random inputs for z; € Iz. For z; € I, put za = zi. (=
1,2,---,N). Let z; be the nonfuzzy estimate of the variable z; € 0 (j =




r+1,7r+2,- -, m), using the procedure in Definition 3.4, based on the set
of input values { zy;, 3, ',z }. The confidence factor of the estimate
zi (j=r+1,7+2,---,m) is defined by

= ITi-1 wi(za)
max{[Ii=, wi(za)}’
The w;(z;} is defined by Equation 3.13 or Equation 3.14. In Equa-

tion 3.15, every input admissible function is considered. There are two

¢ [=1,2,,N. (3.15)

main reasons. One is that even if the variable is not selected as an explana-
tory variable of z;, it may influence on it. The other is that the model is
composed of simultaneous linear equations with (m — r) unknowns. Each
variable is interrelated, and it is very difficult to distinguish direct and in-
direct effects. For a set of input variables, a confidence factor is assigned,
that is, a confidence factor does not depend upon the explained variable
z;. A confidence factor indicates how often a set of input variables has oc-
curred in the past. It does not indicate the predictive power of the model.
The predictive power can be better explained by the degree of scatter.

Definition 3.7: (degree of scatter).
Define the weighted average Z; and degree of scatter s; of the estimates

z; (I =1,2,---, N) over the total simulation run as follows:
_ TNazp
zj:_E—ﬁ_s j=T+1,T+2,"-,m, (316)
N z.12
o {zg—&;
sj:zl-i If\,’l ;) , J=r4+lr42,-,m (3.17)
El:l G

Note that the derivation of confidence factor is a similar idea to obtain
a membership function of an output of a fuzzy system with multiple inputs
by using the max-prod composition.

3.3.4 Construction of Knowledge Models

The simulation result is shown on the right in Fig. 3.2. The estimated

values and confidence factors (z;;, ¢;) are drawn with 21 x 7 levels. Here,



the range of each variable is divided into 21 levels such that the levels 1,
11 and 21 correspond to m — 3o, m and m + 3¢, respectively, The range
is controlled by assigning the number ¢ introduced in Definition 3.1.
With the system, the simulation result is interpreted as follows:
if x; is in Level L; and z; is in Level L;, - -,
then z, is in Level L, and z is in Level L, - -
Here, premise variables consist of those whose values are fixed. Consequent

variables consist of those whose degree of scatter is below a specified value.

3.4 Application to Environmental Prediction

In Chapter 2 the IMS is introduced and applied to model building of en-
vironmental systems. Variables such as shown in Table 2.1 are used and
their relations are analyzed. The variables are measured in the cities listed
in Table 2.2. The 17 variables listed in Table 2.1 are classified intc in-
put, intermediate and output variables and simultaneous linear equations
are obtained and solved to predict future environmental conditions. At the
modeling stage, it is very difficult to identify cause and effect. The objective
of the model was specified and the structure of the model was identified.
There were some variables in the input variables whose behavior was very
difficult to control. Here we call input variables scenario variables, that is,

we input scenario values and predict future trends of other variables.

3.4.1 Construction of Fuzzy Rules
We have developed three models and compared them.

(1) Model 1

We have built a model for NO,, using data listed in Table 2.1 and
named it as Model 1 and a corresponding rule as Rule L°. The explanatory
variables of Model 1 are listed in the row of Rule L® in Table 3.1. The
models for other variables developed in Chapter 2 are not explained here.
These models are obtained with the structural modeling and the forward

. selection method.




Table 3.1 Fuzzy rules and submodels for NO,

Model | Rule | Explanatory variables | Correlation
o | ind.proc ind.npro
1 L citiesd0  traf.car 0.5816
buildin% ind.tota
L' | ind.proc cities20 0.7655
2 citiesd)  traf.btr
buildin% ind.tota
L? | ind.proc cities20 0.6414
traf.str  trafbtr
buildin% ind.tota
L! | ind.proc cities20 0.7655
cities40  traf.btr
traffic% ind.proc
3 L?® | ind.npro cities20 0.7582
traf.str
pop.tota pop.dens
L* | traffic% ind.tota 0.6333

traf.str  traf.btr




Table 3.2 Degree of data division

. . Degree of data division

Scenario variables Step 1 Step 3
Population 61.49 39.88
Population density 59.02 45.88
Land use for farmland 59.58 40.38
Land use for traffic 71.05 31.98
Total industrial shipment density 53.15 61.55
Urban industrial shipment density 53.20 32.93
Number of cities within 20 km 52.83 73.62
Traffic of passenger cars 58.94 37.14

We used the data in 22 cities whose names are listed in Table 2.2.
In dealing with such different cities, we face the following dilemma. To
evaluate effects of city structure, data in different types of cities should
be taken into account at the same time. However, it is very difficult to
clarify this type of difference in a single linear model. This is why we have
developed a fuzzy modeling technique. With the developed system, a data
space is divided into several fuzzy subspaces and a fuzzy model is obtained
for simulation.

(2) Model 2

Eight scenario variables are selected out of 17 variables. These variables
are listed in Table 3.2. We have to decide which variable is taken as a key
variable to subdivide the data space. The decision is made based on the
degrees of data division defined by Equation 3.6 and the degrees of scatter
defined by Equation 3.17. First, the degrees of data division are obtained
for scenario variables that are listed in the column of Step 1 in Table 3.2.
Data averaged over three years are used in clustering so that date in the
same city belongs to the same cluster. In identification of membership
functions and model building, annually averaged data are used.

The largest degree of the data division is 71.05, which is shown in Ta-
ble 3.2. It is the degree of the variable, land use for traffic. The data space
is divided into two subspaces, Al and A2, by land use for traffic. There
are six cities,in AL, that is, Kawaguchi, Ichikawa, Yokosuka, Hiratsuka,

— 45 —




Fujisawa and Sagam.ihafa. The other 16 cities belong to A2, Though the
numbers of the cities does not balance, clustering results by VCS show
fairly good results. We use traf fic% as the first premise variable. The
premises of the fuzzy rules are as follows:
L' traf fic% is big, and
. L*: traffic% is small.

The model composed of Rule L! and Rule L? is called Model 2. With
IMS, consequent models are identified. The rows with L! and L? in Ta-
ble 3.1 show the explanatory variables for Model 2. The correlations are
0.7655 and 0.6414, which are better than those of Model 1.

(3) Model 3

We subdivided the data space in group A2. The data averaged in three
years are also used to obtain the degrees of data division. The results
are listed at the column of Step 2 in Table 3.2. The largest one is that
of number of cities within 20 km, the next one is that of totel industrial
shipment density, and the third is that of population density. With the
system VCS the results of clustering are displayed. We find that if we
divide the data by number of cities within 20 km, one group lies in a corner
and the other group is scattered widely. If we divide the data by total
industrial shipment density, one data pbint with a very large value belongs
to one cluster and all other data belong to another cluster.

The third largest degree of data division is that of pop.dens. The clus-
tered result of cities based on traf fic% and pop.dens is shown in Fig. 3.3.
This is fairly satisfactory. The number in Fig. 3.3 shows the city number
in Table 2.2. We use population density as the second precedent variable
to obtain three fuzzy rules as follows:

LY: traf fic% is big,
L2 traf fic% is small and pop.dens is small, and
L*: traffic% is small and pop.dens is big.

This model is called Model 3. Group A2 is divided into groups A3
and A4. For each group a model is identified. The rows with L1, I3 and
L* in Table 3.1 show the explanatory variables for Model 3. In Model 3,
group A2 is subdivided. Seven cities belong to group A3, that is, Mito,
Hitachi, Utsunomiya, Maebashi, Takasaki, Kawagoe and Hachioji. Nine
cities belong to group A4, that is, Urawa, Ohmiya, Tokorozawa, Koshigaya,
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Funabashi, Matsudo, Kashiwa, Ichihara and Machida. We cannot further
subdivide the data space because of the number of data. We proceed to

the simulation stage with these models.

3.4.2 Fuzzy Simulation

The premise of the rule is identified as a trapezoidal membership function

as follows.

1 . Zig — 2z
Newm-Ta) ot + 2wiz—=i )

1
1

Ai(zi) - _gt B s jzi
0 i4 id

+

2Ti4—Tin
2ziq—zis)

if 22y — 2 < @i < T2

fay <2y <2zis

if 2ia <2 < 2244 — i3

if2; < 225 — 2o OF 22{4 - 243 < T4,
(3.18)

where, zi1, 2i2, i3 and 2,4 are the minimum, the first quartile, the third
quartile and the maximum of the data set of the variable z;. Membership
functions for traf fic% and pop.dens are illustrated in Fig. 3.4. The result



10 12

A4 =

1000 2000 3000 4000 5000 600

pop.dens (parsuns/kma)

Fig. 3.4 Membership functions for traf fic% and pop.dens

of fuzzy simulation by Model 3 is shown in Table 3.3. The level in Table 3.3
indicates an averaged level. The range is between m; — 3o; and m; + 3o;.
The maximum level is 21. ‘ _ -

At each resuit, the variable whose degree of scatter is ¢ indicates that
the value is fixed at that level. For other variables, the value is set by
generating random numbers 100 times.

The variables whose degree of scatter is below six are used as consequent
variables. Through these processes, we get knowledge models as shown in
Table 3.4. Some scenario variables are included in consequent variables.

3.5 Concluding Remarks

In this chapter we present the methods to divide the data space, to control
input ranges in the process of simulation, and to interpret the simulation
results. In dividing data spaces, we introduce degrees of data division and
stepwise visual clustering with the aid of VCS. There still remains the




Table 3.3 Fuzzy simulation by Model 3

Result 1 Result 2 Result 3
Variable Degrees of Degrees of Degrees of
Level Sgcatter Level Sgc:ztter Level Sscratter
pop.tota 15.0 0.0 11.1 6.3 13.6 13.8
= | pop.dens | 14.1 5.4 7.0 0.0 17.0 | 0.0
21 farmlan% 9.2 33 11.3 11.3 12.1 8.8
; traffic% 19.0 0.0 7.0 0.0 8.0 0.0
.2 | ind.tota 125 20 10.9 1.5 13.6 13.1
g | indnpro | 15.8 8.1 11.5 3.3 10.2 3.3
& | cities20 14.0 0.0 10.2 49 1.0 0.0
traf.car 148 10.3 10.1 5.3 11.8 12.7
NOx 15.3 58 7.2 12.8 4.8 2.8
2% | pop.hous 5.4 29 10.3 0.3 8.3 6.8
8 | buildin% | 12.1 0.6 4.7 1.2 7.2 11.8
8 | indproc | 12.4 4.1 10.5 1.3 13.2 7.5
o | trade 13.2 6.7 104 2.4 9.7 10.5
& | citiest0 | 127 15 9.8 15 11.0 0.0
a | traf.bus 12.6 0.9 10.7 13.9 11.7 10.0
& | trafstr | 146 7.9 8.5 1.9 11.1 7.3
traf.btr 5.4 16.5 7.0 0.7 10.5 5.0
Table 3.4 Translation of simulation results
Result Variables in if-close " Variables in then-close [Level]

Scenario variable

Scenario variable

Explained variable

pop.tota [15]
traffic% [19]
1 cities20 [14]

.ind.tota (13]

pop.dens (14]
farmlan% [ 9]

NO=x (15]
pop.hous [ 5]
buildin%  [12]
ind.proc (12)
cities40 {13]
traf.bus [13]

pop.dens [ 7]
traffic% [7

ind.tota [11]
ind.npro [12]
cities20 {10]

pop.hous [10]
buildin% [ 6]
ind.proc 1]

3 traffic% [ 8]
cities20 [11]

2 traf.car [10] | trade [10]
traf.str [ 9]

traf.btr [ 7]

pop-dens [7] | indnpro  (10] | NOx [ 5]

cities40 [11)
traf.btr (11]
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problem of defining membership functions. For the present, we define them
case by case, examining the distribution of data. In building submodels,
there is also a problem of handling data that belongs to several clusters.

In a simulation process, inpul admissible function is introduced. With
this function, effective input ranges are taken into account and input values
can be controlled. We have to further study the calculation method of the
input admissible function. Since it takes much time to recalculate the
input admissible function, we do not change it in case of random inputs.
The simulation result is given with the confidence factor, which is effective
for model validation. '

The translation from the simulation result to knowledge data is consid-
ered. The input admissible function, the confidence factor and the degrees
of scatter give useful information for their transformation.

In model building, it is important that analysts discuss the problem
with each other. The developed computer system assists discussion by
giving information and showing simulation results.



Chapter 4

Linguistic Fuzzy Modeling

4.1 Introduction

There are many complicated factors such as social activities, meteorologi-
cal factors and topography, which make it difficult to predict future envi-
ronmental conditions. Statistical prediction models have been studied by
many researchers. However, there are some cases where statistical models
alone do not lead to satisfactory resuits when we have to pfedict 'future
environmental conditions with limited data.

In model building of environmental systems, we have to predict a high
concentration more correctly than a low one for planning countermeasures.
Linear regression models may be appropriate for predicting values around
a median, but they are inappropriate for predicting peak values. Also,
the prediction formula must be explained reasonably, which is sometimes
difficult with regression models because of collinearity.

Recently, the concept of fuzzy set theory was introduced by Zadeh
(1973). An approximate calculus of variables has been developed and used
in a wide variety of practical applications (Zadeh, 1975 and Holmblad and
Ostergaard, 1982). The linguistic modeling approach based on fuzzy set
theory has received much attention; several applications are found in the
social sciences (Kickert, 1979b and Wenstop, 1979).

A part of this chapter was published in Trans. of the Institute of Systems, Control
and Information Engineers (vol. 2, no. T, pp.231-240, 1949) by M. Keinuma and Y.
Nakamori, ' .
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In this chapter, we propose a method to predict phenomena composed of
many complicated factors by modeling the process of human thinking and
judgment. Describing input-output relations-of the system'in the form of if-
then rules, the behavior of the system is predicted using fuzzy reasoning. To
improve the model, we adjust the parameters of the membership functions
by the use of the nonlinear optimization technique.

We apply linguistic modeling to the prediction of Oxidant concentration
in the Osaka district, Japan. The data measured in the Osaka district for
the period from June to August from 1975 to 1977 are used and an Oxidant
prediction model has been developed using meteorological data. It is shown
that linguistic modeling is appropriate for the prediction of phenomena with
limited input-output data, and the obtained model is particularly useful for
predicting peak values.

4.2 Criteria for the Prediction of Oxidant Con-
centration

Let us briefly introduce a practical method to predict Oxidant concentra-
tion at a high level (Mizoguchi, Ochiai, Naito and Uchida, 1979). Levels of
Oxidant concentration are classified into three groups: Level 0 for concen-
tration less than 10 pphm, Level 1 for between 10 pphm and 15 pphm, and
Level 2 for 15 pphm or higher. A check sheet is normally used to predict
into which level Oxidant concentration falls. The data for the period from
June to August for three years, 276 days in total, are used. The data of
Oxidant concentration were measured at 19 measuring points in the Osaka
district. The level of the day is decided by the highest Oxidant concentra-
tion for the period from 6:00 A. M. to 8:00 P. M.. As the values of Oxidant
concentration are missing for 3 days out of 276 days, we use data of 273
days. Meteorological data, such as duration of sunshine, weather and wind
velocity, are also used to predict the levels of Oxidant concentration.
Because of the mechanism of Oxidant generation, Oxidant level is very
low during bad weather. The relation between the hours of sunshine and the
level of Oxidant concentration is shown in Table 4.1. As hours of sunshine

increase, days of Level 2 also increase. However, even on sunny days, there




Table4.1  Cross table between the duration of sunshine and the level of
Oxidant concentration

Shining _ :
Levelours 0 h 0.1;;.5 0.6-2h.0 2.1-h5.0 5,1.h Total
0 3077101 17| 22 | 73 [152

: 0 2 7 51 11 5 9 77

2 0 0 0 6 | 38 | 44

Table4.2  Cross table between the weather (from 6:00 A. M. to 6:00 P.
M.) and the level of Oxidant concentration

¥eatherigaining al- | Raining,but Rainless | Total
Level most All Day|Not All Day

0 7 22 64 66 15 9

1 1 17 59 77

2 o 12 32 44

are some days which fall into Level 0. We cannot say that a level depends
only on hours of sunshine. When the duration of sunshine is less than 0.5
hours, 40 out of 42 days fall into Level 0, which is shown in Table 4.1.
The relation between the weather and the level of Oxidant concentration
is shown in Table 4.2. When it rains almost all day, 22 out of 23 days fall

into Level 0. We can say generally that when it rains almost all day, the
day falls into Level 0.

As we have seen above, when the duration of sunshine is less than 0.5
hours orit rains most of the day, the day is classified into Level 0. Following
these criteria, 45 out of 273 days are classified into Level 0.

Next, we consider the relation between the atmospheric pressure gra-
dient and wind velocity of the upper layer. The pressure gradient in the
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Fig. 4.1  Relation between the pressure gradient and the level of Qxi-
dant concentration

Osaka district is calculated with data at five points, that is, Osaka, Maizuru,
Shionomisaki, Nagoya and Kohchi. The pressure gradient is closely related
with wind velocity and its direction. Figure 4.1 shows the relation between
the pressure gradient and the level of Oxidant concentration. Scatter plots
of pressure gradients are distributed in an oval shape, from the north-west
quadrant to the south-east quadrant. Points in Level 0 are distributed
mainly in the area where pressure gradients are greater than 1.5 mb in the
north-west and south-east quadrants, and 0.8 mb in the south-west quad-
rant. Keeping these factors in mind, we can classify the pressure gradient
into five levels: Level 0, Level 0-1, Level 1, Level 1-2 and Level 2. These
are illustrated in Fig. 4.1.

The relation between the maximum wind velocity of the upper layer
and the level of Oxidant concentration is shown in Table 4.3. As wind
velocity increases, the level of Oxidant concentration decreases. When the
wind velocity of the upper layer is greater than 10 m/s, 47 out of 57 days
fall into Level 0, as illustrated in Table 4.3,

Figure 4.2 is the check sheet for the prediction of Oxidant concentra-
tion based on the above criteria. Table 4.4 shows criteria associated with

Fig. 4.2.  Comparison between the measured values and the predicted



Table 4.3 Cross table between the maximum wind velocity of the upper
layer and the level of Oxidant concentration

Wind Ve-

ocity m/s n/s m/s | Missing
Total

Level 0-4.9 5.0-9.9110.0- Values
0 21 5 4 4 7 30 152
1 28 3T 8 4 77
2 22 20 2 0 44

0
0
by criteria:Flce. 4, o]
value of vind v
oeity i3 missi
criteria: criteria:
Table 4,401 Table 4.4(2)
o i 2z 0 1 2

Fig. 42  Check sheet for the prediction of Oxidant concentration




Table 4.4 Decision tables for the prediction of Oxidant concentration

.(1) When wind velccities of upper layer

are obserbed.

Level of Wind Velocity
0 1 2
L . %)
g w C 0-1 0 0-1 1
22 ) )
<T
w Ta) 1 0-1 1 1 -2
o © L
O (%)
el : o 1'2 1 1_2 2
U.c ' .
: o D
2 n v 2 1 2 2

(%) Use the following criteria:
® high when highest temperature & 35C,and
@ low when highest temperature < 35%T.

(2) When wind velocities of upper laver

are missing.

D+ @ + ®UH

-2 -1 0 1
1
o 1 el 01 0] 0 0 1
padi
Tae 1 0 0 1 2
LTy L3
o 0 L
T 1-2 0 1 1 2
o 9O @©
> £ =
Sea| 2 0 1 2 2
{x) Add the corresponding number when the

following conditions are satisfied:

@ -1 when shining hours & 2 hours,

@ -1 when highest temperature =225°C, and
@ -1 when highest temperature & 35°%C.




Table 4.5 Results of Oxidant predictions

{a) Check sheet.

dicted -

Measur 0 l 2 Totll
0 98 (0.63) 40 (0.26) 17-co.11y 182
1 10 €0.13)] 31 (0.40)] 36 (0.47) 77
2 0 (0 6 (0.14)] 38 (0.86) b
(b} Multi-regression model.
edicted

Measurs 0 1 2 Total
0 76 (0.633 45 (0.3?8 o (m 121
1 17 (0.23) 56 (0.777] © (D) 73
2 0 54 (1) (YD} 64
(¢) Fuzzy model.
edicted

Maasurs 0 1 2 Total
0 107 ¢o. 70| 3% 0.23)| 10 (0.0 152
1 15¢0.19)] 45 €0.58)| 17 (0.22) "
2 2(0.05)| 20 (0.45)] 22 (0.50) b4

ones with this check sheet is shown in Table 4.5 (a). The goodness of fit is
defined by
Ni—j

Pij = )
2 n;

i,j=1,2,3, (4.1)
where n; denotes the number of data in level i, and n;,; the number
The
goodness of fit is shown in parentheses in Table 4.5. Although data such as

duration of sunshine, weather and highest temperature have to be predicted

of times when the data in level i is predicted as that in level j.

in advance, such data can be predicted more precisely by using physical

and/or statistical models.

Regression analysis is also applied to the prediction of Oxidant con-

centration. On 35 days, the data of wind velocity of the:upper layer were
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Fig. 43 Measured Oxidant concentration versus predicted ones by the
multi-regression model

missing. The obtained linear prediction model is as follows:

Y =76.4+0.33 X, -2.2 X, +21. X3—-13X,
' +0.025 X5 — 0.76 X, (4.2)

where Y denotes Oxidant concentration, X; duration of sunshine, X, level
of weather (0: rainless, 1: raining, but not all day, and 2: raining almost all
day), X3 level of atmospheric pressure gradient classified with Fig. 4.1, X,
wind velocity of the upper layer observed with a pilot balloon, X5 temper-
ature, and Xg wind velocity at the ground. Figure 4.3 shows scatter plots
with measured Oxidant concentration and predicted ones by Equation 4.2.
Comparison between the measured values and the predicted ones with the
linear model is shown in Table 4.5 (b). The controlled determination coef-
ficient is 0.49, which is fairly satisfactory for an environmental prediction
model, but Equation 4.2 cannot predict the values at high concentration.

4.3 Linguistic Modeling for Oxidant Prediction

Fuzzy controllers have been introduced by Mamdani (1974) and Mamdani
and Assilian (1975) for the control of complex processes, such as industrial
plants, especially when no precise model of the process exists and most of



a priori information is available only in qualitative form.

The intuitive control strategies used by trained operators may be viewed
as the fuzzy algorithm (Zadeh, 1973), which provides a possible method for
handling qualitative information in a rigorous way. Input-output relations
of the system are described in the form of if-then rules. Then, using fuzzy
reasoning, the behavior of the systern will be predicted. An example of
such a fuzzy rule is as follows: '

if z, is very small, and =4 is large,

(4.3)
then z is a little high,

where such words as “very small”, “large” and “a little high” are fuzzy sets.

These rules are of the form:

Rule L : if ¢y is Ayj, ®ais Aoy, ..., 2y i8 Amj,
(4.4)
then z 1s Cj,
where z; (i = 1,2,--+,m) are input variables, and z is an output variable.
Ai;,C; (1=1,2,---,m; j = 1,2,.-,n) are fuzzy sets, m is the number of

input variables, and n is the number of rules. Given input values z;., the
prediction of output z, is calculated by a set of n rules.

First, the truth value of the premise of the jth rule is calculated as
follows:

Wy = A1j(21-=)®Azj(EZ*)®“'®Amj(3m*), i=1,2,---,n, (4.5)

where ® denotes a mini operator or product according to cases. A;;(z;) (i =
1,2,---,m; j = 1,2, -,n) are membership functions of the fuzzy set A;;.
A;;(z;,) is the truth value of a given input 2;..

The result of fuzzy reasoning with the jth rule is given by
Ci(z)=w; x Cj(z), §=1,2,"--,n. (4.6)
The c.ombined membership function C* is defined by
C*(2) = m;;x E5(z). (4.7)
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Finally, the prediction z, is given by the center of gravity of the membership

function C*(z), namely,

_ _ J2xCr(2)d(2)
TTTCH(2)d(z)

(4.8)

Figure 4.4 iﬂustrates fuzzy reasoning. The membership function derived
from the jth rule C;(z) is shown in Fig. 4.4 with slanted lines. The com-
bined membership function C*(z) is shown on the right in Fig. 4.4. Re-
sultant prediction z, is shown as the center of gravity of the combined

membership function with a bold line.
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Fig. 4.5  Fuzzy sets of Oxidant concentration

4.4 Application to the Prediction of Oxidant Con-
centration

It is sometimes difficult to predict environmental conditions at high val-
ues with a regression model. A check sheet has been practically used for
environmental prediction. Since a check sheet can be viewed as a collec-
tion of if-then rules, fuzzy set theory can be applied to improve the check
sheet. We express rules in the form of if-then rules and predict Oxidant
concentration with fuzzy reasoning.

Examples of rules are:

Rule 1:  If the duration of sunshine is short,
then O=xidant concentration ts low or very low.

Rule 2:  If the duration of sunshine is long and the weather is bad,
then Ozidant concentration is low or very low.

Rule 8:  If the duration of sunshine is long, the weather is not bad,
' “the level of pressure gradient is large,
and the wind velocity of the upper layer is strong,
then . Ozidant concentration is a little high.

(4.9)

Table 4.6 lists eight initial rules for predicting Oxidant concentration.
Membership functions are also shown in Table 4.6. Figure 4.5 illustrates
fuzzy sets of Oxidant concentration. For representing Oxidant levels, five
fuzzy sets are used, that is, “very low”, "low”, “a little high”, “high”, and

"very high”. A membership function that expresses a combination of two



Table 4.6 Rules for the prediction of Oxidant concentration

If-close Then-close
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fuzzy sets, for example “high or very high”, is defined by

 Aij(2) U Aie(z) = min{ Ajj(z:i) + Aie(zi), 1} (4.10)

The predicted result by using these rules is shown in Table 4.5 (c}. The
linguistic model is better than the check sheet for Level 0, but for the points
in Level 2, the check sheet is better. Also the linguistic model is better than
the regression model for Level 2.

4.5 Modification of Predi_ction Models

The result of linguistic modeling in Table 4.5 (c) is not so satisfactory,
because there are two days when the linguistic model mistakes the data in
Level 2 for that in Level 0. We modify fuzzy rules from three points of view.
They are the subdivision of rules, modification of fuzzy sets in consequence,

and the parameter optimization of the membership functions.

4.5.1 Subdivision of Rules

There are some points where the data in Level 2 are not correctly predicted
with the linguistic model as shown in Table 4.5. Table 4.7 shows times and
weight of failure for each rule. The value at the upper row indicates the sum
of the truth value of the premise. The value at the lower row in parentheses
indicates the times to be applied. Rule 8 is mainly applied to the case when
the linguistic model mistakes the data in Level 2 for that in Level 0. Rule
7 and Rule 8 are mainly applied to the case when the linguistic model
mistakes the data in Level 0 for that in Level 2. Rule 8 is subdivided as
follows.




Table 4.7 Times and weight of failure for each rule

Rule No.
Measura 1 2 3 4 5 B 7 8

> Predicte

13.21]14,.58] 2.8 | 3.77

Level 0 -»Levell (28) | (26) | (D) N

Lovel 0 »>Level? 8.77¢42.27
' QDO
5.39 3 1.54 3 2
L i
evel i =Levell (6) 3) W . e
1.5 [13.96
Level 1 »Level?2
(3 { (1s)

Level 2 »Levell

1.27}2.27] 6.31|7.81
(4) (&) [ (1) | (16)

Level 2 >Levell

Rule 8 —1:  If the duration of sunshine is a litile long, the weather is not bad,
the level of pressure gradient is large,
and the wind velocity of the upper layer is strong,
then Ouzidant concentration is a little high.

Rule 8 —2:  If the duration of sunshine is long, the weather 1s not bad,
the level of pressure gradient is large,
and the wind velocity of the upper layer is strong,
then Ozidant concentration is high.
(4.11)

These rules are illustrated in Table 4.8; the predicted result with these

nine rules is shown in Table. 4.9 (a). Although the goodness of fit lowers
from 0.70 to 0.67 for the data in Level 0, it increases from 0.50 to 0.77 for
the data in Level 2.

Figﬁre 4.6 illustrates scatter plots between measured values of Oxi-
dant concentration and predicted ones with the subdivided linguistic model.
This model is better than the linear model, because it can predict the data
in Level 2 more correctly. '
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Table 4.8 - Parts of subdivided rules for the prediction of Oxidant concen-

tration
If-close Then-close
Rule : ,
No. Shining | Level of | W¥ind Ve- Oxidant Con-
Hours Weather Atmo_Pres_ lﬂiity of centrations
Gra uL (n/s) (pphm)
¢ little [io¢ pad large strong a litte high
8 i lgne
AN N\ pd e N\
105 18 L1t [T [IENED h T
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8-2
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Fig. 46 Measured Oxidant concentration versus predicted ones by the
fuzzy model with subdivided rules




Table 4.9

models

(a) Fuzzy madel(with subdivided rules).

Results of Oxidant predictions with three modified linguistic

edicted

Measurs 0 1 2 Total
0 102¢0.67)] 38 €0.25)| 12 (0.08) 152
1 13 (0.17)] 33 €0.43)] 21 (0.40) 77
2 0 (0) 1000.23)| 34 €(0.77) b4

(b) Fuzzy model(with modified fuzzy sets, using

normalized fuzzy reasoning).

Measui:ECtad | 0 1 2 Total
0 101 (0.66)| 32 €0.21)) 19(0.13)| 152
1 13 (0.17)] 30 €0.39)| 34 (0.44) 77
2 0 (0) 4 (0.09) 44

40 (0.91)

(¢) Fuzzy model(with modified membership functions),

edicte

Measurs 0 1 2 Total
0 101(0.66) 32 (0.21)| 19 (0.13) 152
1 13(0.17)] 31 (0.40)] 33 (0.43) 77
2 g (o) 4 {(0.09)] 40 (0.91) b4




Table 4.10 Parts of modified rules for the prediction of Oxidant concen-
tration

" (a) Modification af rules(before norsalization)

if-close Then-close
Rule Shining Level of | ¥ind ve- |Oxidant con-
Ne. Veather tatw_Pres_| locity affcentrations
Hours ¥ ™
Gra UL " {ass) (pphu)
T—1 ‘ll::tl' not bad largs veak very high
7—2 loneg not bad | large veik :::: :‘;:h
{b) Modification of rules{after normalization)
If-ciose Then=claose
Rule Level of | ¥ind ve~ |Cxidant con-
No. Shining
Waathor |pta_Pres.| locity of|contrations
Hours s 't
Bra UL " {e/s) {ppha)
1itele high
R th or
lone not bad lares veak very high
7—-2 long not bad laren veak vary hith

t Atmospharic Pressure Gradient
it Uppar Layer

4.5.2 Modification of Fuzzy Sets in Consequence

We have thus far made rules intuitively, referring to the check sheet. In
this section, we modify fuzzy sets by using the measuring data. There are
many combinations of the five fuzzy sets. We leave the rules from 1 to 4
unchanged, as these rules are obvious {see Table 4.6). For the remaining
four rules, we subdivide the rule with duration of sunshine and get eight
rules. We define the total goodness of fit as follows:

? = p11 + p22 + pas. (4.12)

A part of the rules is illustrated in Table 4.10 (a) as the rules before nor-

malization. When the duration of sunshine is long and other conditions
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are the same, the value of Oxidant concentration is usually higher than
that when the duration of sunshine is short. The result of Table 4.10 (a)
contradicts this observed phenomenon. This is because by the reasoning
with Equations 4.5-4.8, the result is sensitive to the following value.’

fc',-(z) d(2). (4.13)

The result of fuzzy reasoning with the jth rule is now modified. Instead of

Equation 4.6, the following normalized equation is used.
- w; C(2)

Cj(z) = m (4.14)

Modified fuzzy reasoning is shown in Fig. 4.7. Now we explain briefly this

modified fuzzy reasoning. Suppose B
- [a@da =1, (4.15)



for the integrated value of a fuzzy set “a little high”. Then the integrated

value of a fuzzy set “high or very high” is
e =15, (4.16)
And the integrated value of a fuzzy set “very high” is

' ngr(z) d(z) = 0.5. {4.17)

As shown in Fig. 4.4, the result of fuzzy reasoning with Rule 1 and Rule 2 is
greater than that with Rule 1 and Rule 2’, which contradicts the observed
phenomena. A fuzzy set of “high or very high” is more sensitive than that
of “very high” in the calculation of center of gravity with Equation 4.8.
As shown in Fig. 4.7, the result of modified fuzzy reasoning with Rule
1 and Rule 2 is less than that with Rule 1 and Rule 2'. Table 4.10 (b)
shows a part of the modified rules after normalization. Fuzzy sets in the
consequence are coincident with the observed phenomena. The result is
shown in Table 4.9 (b). The total goodness of fit with modified fuzzy sets
is 1.96, which is better than that of the linguistic model, 1.86.

4.5.3 Parameter Modification of Membership Functions

Parameters in premises in Tables 4.6, 4.8 and 4.10 were given by experts,
looking at the distribution of data. For example, the fuzzy set “duration of

sunshine is short” is given by the following function:

1 if 0<z<05b
short(z)={ -3z+3% if 05<z <2 (4.18)
0 if 2<=z

Now we optimize parameters that characterize membership functions.
Figure 4.8 shows fuzzy sets on duration of sunshine. The duration of sun-
shine is expressed with three fuzzy sets, that is, “short”, “a little long” and
“lonyg’. Parameters ¢y, g2, and g3 shown in Fig.4.8 are determined with the
nonlinear optimization technique. We set ' '

<@g - . - - (4.19)
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and maximize the total goodness of fit defined by Equation 4.12,

The Simplex method for unconstrained minimization was devised by
Spendley, Hext and Himsworth (1962). Box has modified this method to
find constrained minima, and termed his constrained Simplex method the
“Complex” method (Box, Davies and Swann, 1969).

In the Complex method, k > 4 (the number of variables + 1) points
are used to form a configuration. The objective function is evaluated at
each of these points and the vertex of smallest function value determined.
This worst point is replaced to increase the value of the objective function
iteratively. It can be expected that there is a point on the produced line
joining the rejected point and this centroid, where its value of the ob jective

function is greater than that of the rejected point. Q. is expressed as

Qor =(1+ @) Qo - a @, (4'20)

where Q, denotes the worst point, Qg the centroid of the remaining vertices,
and Qo. a new point. a is an empirical parameter.
Various cases, calling for different treatments, arise as follows (Box,

Davies and Swann, 1969):

(1) If this trial point satisfies all the constraints and is not the worst

point in the new configuration, the whole process is repeated.

(i) The trial point happens to be the worst point in the new con-
figuration, in which case a move halfway towards the centroid is
made instead of the basic iteration of over-reflection, where by

over-reflection is meant the point on the produced line joining



the rejected point and this centroid, but a times as far from the
centroid as the reflection of the rejected point.

{iii) If the trial point moved halfway towards the centroid happens

to be the worst point again, the point is laid aside.

(iv) If the trial point does not satisfy some constraint, that variable
is reset just inside the appropriate boundary (by an amount of,
for instance, 0.0000001) to give a further trial point.

(v} If no trial point improves the objective function, we stop the

iteration.

Suitable empirically determined values for a and k aresaidtobe a = 1.3
and k = 2x (the number of variables). k (> (the number of variables)
+ 1) points have been found necessary to prevent the configuration from
collapsing prematurely into a sub-space. The use of the over-reflection
factor a > 1 enables the Complex to expand whenever possible, while the
moves towards the centroid allow the Complex to contract when necessary.

Accordingly, we set a = 1.3 and k& = 20. As initial points, 20 sets of
three variables were obtained randomly. The worst point is removed from
the vertex of configuration and a new point is added to increase the total
goodness of fit.

Modification of the Complex method

Any iterative minimization may converge to a local minimum instead
of the required global minimum. In this case, points are converged where
the goodness of fit is p = 1.6. The goodness of fit is worse than that of
the fuzzy model with modified fuzzy sets where p = 1,96. This is because
a small change of a parameter does not usually change the goodness of fit

when fuzzy reasoning is used. Then we add another criteria for iteration

(vi} If the number of the remaining points becomes less than (the
number of variables) + 2, the removed points will be included

again to give further trial points.
The obtained parameters are as follows:
@1 =04, g2=18, g3 =100, and p=1.98. (4.21)



The estimation result using these parameters is shown in Table 4.9 (¢).
There does not exist great difference between this result and that of the
fuzzy model with modified fuzzy sets. This shows that we can obtain the
fuzzy model by experts as well as by the optimization technique. '

4.6 Concluding Remarks

A proper model can be built with regression analysis if we can obtain
sufficient data. However, it is very difficult to obtain satisfactory results
with a regression model if the number of data is limited. We tried to
make a prediction by modeling and incorporating the process of human
thinking and judgment. The data in Level 2 can be predicted correctly
---with a linguistic model, but not with a linear model. As 2 linguistic model
is expressed in terms of fuzzy sets, a model can be obtained even if we
have no numerical data. It is practically applicable to any case, as long
as suitable knowledge is obtained. We have also studied the method to
modify a membership function and showed that parameter optimization is
applicable to this case. '

In order to improve the total goodness of fit, it is very important to
extract human knowledge and to construct effective rules. It is expected
that computer graphics will help this task, which will be presented in the
following chapter.



Chapter 5

Intelligent Decision Support
System for Environmental
Planning

5.1 Introduction

It is obviously far beyond the capabilities of individual disciplines as well as
individual researchers to predict environmental problems in the early part
of the 21st century. To cope with such a problem, we have developed a
computer system, the main feature of which is integrated utilization of the
knowledge and judgment of experts in relevant fields.

Coupled with progress in systems science and methodology, advances
in digital computer technology have produced great progress in the field
of decision support systems (Sage, 1981, Gruver Ford and Gardiner, 1984
and Wang and Courtney, 1984). Artificial intelligence technology has also
had a great influence in this field (Zadeh, 1973 and Sage and White, 1984).
User-friendly man-machine interfaces and heuristic modeling techniques are
useful tools for modeling large-scale and complex systems (Nakamori, 1989).

Tools to elicit {experience-based) intuitive or inner, personal knowledge
or ideas are surveyed by Lendaris (1979). Elicited knowledge or ideas are
combined to develop a group product of “higher quality” than otherwise
usually available. A number of tools have been developed to assist in build-
ing and analyzing structural models (Warfield, 1974 and Lendaris, 1980).

"A part of this chapter was published in IEEE Trans. Sys., Men and Cybern. {vol. 20,
no. 4, pp.777-790, 1990) by M. Kainuma, Y. Nakamori and T. Morita.




Techniques applicable to machine construction of digraph maps are given
by Warfield (1977) and Sugiyama, Tagawa and Toda (1981).

The purpose of developing Intelligent Decision Suppért System (IDSS)
is to combine such methodologies systematically with experts’ knowledge
and to clarify current and future environmental problems. The system is
used recursively to build environmental models for predicting future envi-
ronmental conditions.

In this chapter we present the processes to use the intelligent decision
support system: the identification process, the modeling process and the
simulation process. The identification process consists of collecting knowl-
edge as well as numerical data, identifying the structure of the problem
and analyzing environmental conditions through linguistic fuzzy simula-
tion. The modeling process consists of building computer simulation mod-
els by combining experts’ judgments and numerical data. The simulation
process consists of predicting future environmental conditions by assuming
some policy scenarios.

As an example, we analyzed environmental problems and obtained a
fuzzy model for predicting NO2 concentration based on several future sce-

narios about Tokyo Bay development programs in Japan.

5.2 Identification of Environmental Problems

The purpose of this section is to explain identification processes for envi-
ronmental problems in Japan in the early f)art of the 21st century. Using
the Delphi method, scenarios of future environmental trends were collected
and stored in the system. Then relations between socto-economic activi-
ties and environmental problems were identified in the form of graphs by
using such knowledge and Visual Structuring Supporter (VSS). To further
investigate the structure, we have simulated interaction among important
factors by Linguistic Fuzzy Simulator (LFS). :

5.2.1 How to Collect Experts’ Knowledge

There are many complicated relations between socio-economic trends and

environmental problems. There are socio-economic trends such as coming




Table 5.1 A scenario of traffic nuisance

Traffic Nuisance

Result of Survey , Approved Scenario

Trend 1: Increase in Income Pessimistic $cenario; 86%

— Result of the 2nd survey —7| With theincrease inincome per capita, people will demand a
much greater variety of goods. It will become important for
Persons the transportation industry to transport small quantities of
20'& || goods quickly and punctually, rather than transporting large
81| amounts of goods at low cost. Because of such a situation,
i traffic volume will incresse throughout the whole country.
10? Traffic for leisure will also increase with the increase in in-
3
E

-

(Line graph)
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come. Although people will have much greater concern for
the living environment and traffic nuisance, it will become
very difficult for authorities to take effective countermea-
sures, Consequently, with the incrense In income, traffic
nuisance will become worse.
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of information-intensive society, aging population, international trade and
Tokyo Bay development. There are many environmental problems such as
traffic nuisance, water pollution, solid waste problem and city amenities.
We expressed such cémplicated relations by an 80- to 200-word scenario, as
shown in Table 5.1. More than two hundred such scenarios were prepared.
To check the validity of the scenarios, we used the Delphi method, which
has been widely used in various fields to elicit experts’ knowledge (Gordon
and Helmer, 1964).

We asked experts to check whether each scenario was reasonable or not
and to add a new scenario, if necessary. We asked them again, showing the
previous result. Nearly one hundred scenarios were approved and translated
into knowledge data.

5.2.2 What Are Knowledge Data ?

Figure 5.1 illustrates knowledge data. To explain knowledge data, we will
take the scenario that describes how the increase in personal income per
capita will affect traffic nuisance. We call the essence of the scenario the

‘proposition’. An example of a proposition is as follows: ‘As income per




Knowledge Base

FIELD | Traffic Nulsance CODE!BQIIOS 1

RELATION |

AUTHOR [§. Nishioks pare [01731/89
MODIFIER | T. Morita DATE | 03/23/890
PROPOSITION

Ay personal income pet capita increnses, traflic
nuisance will become worse.

EVENT 1
CAPTION CONTENT REFERENCE DATA BASE
Increase | | Personal Income per capita will be| [Bank of Long-Term Fund: Income| | MDSOL
in much higher in the escly part of the| |and saving in Japan: Monthly Report,| | M0802
income | | 21et century. Apr.,1985 {in Japanese). M0a03
INDICATOR SAME SIMILAR CAUSE-EFFECT KEY WORD
Income THEND Incresse | [891113-1] [891100-1 INCOME
VALUE Medium | INVERSE LIVING
CERTAINTY|High | | ]
EVENT 2
CAPTION CONTENT REFERENCE DATA BASE
Variety | | Consumern will demand a variety of | | K. Iwats: Economic Incentives for Auto-| |M0301
of goods in both time and in place. mobile Pollution Control; Environmental | | M0303
“Goods Research Quarterly, No.71, 61/70, 1088.
INDICATOR SAME SIMILAR CAUSE-EFFECT KEY WORD
Items of Mer-|TREND Incresse | | ] [p01108-1 CONSUMER
chandise VALUE Medium | INVERSE GOODS
CERTAINTY{High || |
EVENT 3
CAPTION CONTENT REFERENCE DATA BASE
Teaffic Transpoct services change from low:| | Ministry of Transportation: A long-{ |M0501
Service | [0 tO high quality (high epeed and| |range plan for transportation; Govern-| |M0511
punctuality). ment of Japan, 1987 (in Japanese}.
Fig. 5.1  An example of knowledge data




capita increases, traffic nuisance will become worse.’ Then we analyzed the
scenario and extracted several events and their relations as follows: ‘In-
crease in income’, — ‘Needs for a variety of goods’, — ‘Change of traffic ser-
vice’, — ‘Increase in traffic volume’, — ‘Worsening of traffic nuisance.’ Be-
gides such relations, other items of information such as information sources

and related data base numbers are stored as knowledge data.

Knowledge Base Management System (KBMS) can find interesting knowl-
edge data with key words and display this data immediately on request.

5.2.3 How to Identify System Structures

Several events and their relations are written in knowledge data. There
are some other relations between events stored in different knowledge data.
These events are linked together by V58. The supporter can display these
_ relations in the form of digraphs where vertices correspond to events and
edges correspond to relations among these events. It is recognized empiri-
cally that drawings of the digraphs are useful as a visual aid to understand
overall images of the structures of the complex systems. Sugiyama has
developed methods for generating a visually understandable drawing of a
hierarchy automatically by computer (Sugiyama, Tagawa and Toda 1981).
We adopted these methods and modified them so as to express “similar”

and “inverse” relations.

Figure 5.2 illustrates such an example. This graph is obtained by link-
ing the event ‘Worsening of traffic nuisance (Traffic Worsened)’ to other
related events. We find that ‘Information Industry’, ‘Land Price Increase’
and ‘Production of many kinds of goods (Multi-Production)’ affect traffic

nuisance in addition to the event, ‘Increase in Income’.

VS8 has several other functions besides drawing such a structure. We
can open an ‘event’ subwindow to find a detailed explanation of an event.
Cause and effect of an event can be examined by the functions of the
‘uppe':r’ and ‘lower’ search. The ‘layout’ function draws the structure in a

more compact form to look at the whole structure in one frame.
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Fig. 5.2  An example of the environmental system structure



5.2.4 Analysis of System Structures

Though the process of simulating interaction between events is important in
understanding the system structure, it is usually difficult to obtain sufficient
numerical data to build statistical models. LFS has been developed to assist
in building prediction models using experts’ knowledge and the method of
fuzzy reasoning.

The concept of fuzzy set theory was introduced by Zadeh (1973). A
linguistic model consists of several fuzzy rules such as

rule L* : if 2, is A'f, Ty 18 A’;,--'-, T, 18 Af,
“then z; is A;‘-’, j=r+l,74+2,--.,m, (5.1)

where z;(: = 1,2,---,7) and z;(j = r+1,742, -, m) are input and output
variables, respectively. A% (i = 1,2,.--,m; k = 1,2,---,p) are fuzzy sets
such as low, medium and high. The integer p is the number of rules. LF$S
performs fuzzy reasoning by referring to knowledge data or querj(ing a user
about fuzzy relations.

Figure 5.3 shows an example of a linguistic fuzzy simulation. We can
choose several important events from among those displayed in Fig. 5.2.
Such items of information as indicators, initial values and relations are
assumed initially to be those stored in the knowledge base. These data are
displayed in the ‘setting’ subwindow. We can add, modify, or delete these
data interactively. We can assign a control function to each variable. We
prepared four functions, a step, unit, linear and logarithmic function for
control functions. When we point to a panel of each function, a subwindow
is opened for setting parameters. We can also change relations interactively
with the aid of the ‘relation’ subwindow. The result of fuzzy reasoning is
shown in the ‘prediction’ subwindow.

As an example, we simulated interaction among indicators such as in-
formation industry, fuel price and traffic npuisance. When fuel price rises
steeply, traffic nuisance is improved slightly. As time goes on, it gets worse
again with urbanization and an increase in service industries. We can ana-

lyze the environmental problems by illustrating such interaction with LFS.



Setting of Linguistic Fuzzy Simulation
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Fig. 5.3 A result of linguistic fuzzy simulation




5.3 Modeling of Environmental Systems

In Section 5.2 we analyzed environmental problems only with experts’
knowledge and judgment. In this section we explain the processes of build-
ing computer simulation models by combining experts’ judgments and nu-
merical data. Three subsystems have been developed for assisting in model
building, namely, Interactive Modeling Supporter (IMS), Visual Clustering
Supporter (VCS) and Controlled Fuzzy Simulator (CFS). -

5.3.1 Heuristic Fuzzy Modeling

In model building of environmental systems, we often encounter difficulty
in obtaining linear models. To cope with such a case, we divide the data
space into several fuzzy subspaces and in each fuzzy subspace we find a
set of local input-output relations describing a complex system (Sugeno
and Kang, 1988). The most important feature of a fuzzy model is that it
can express nonlinear relations by combining fuzzy rules developed in each
fuzzy subspace.

We use the same notations defined in Chapter 3.  Suppose we have
a set of explanatory variables I = {2,232,--+,2.} and a set of explained
variables O = {z,,1, %742, " ", Tm}.

It is desirable to extract a linear relation in each subspace. It is, how-
ever, very difficult to do so, because we have to build (m — r) equations
to explain behavior of variables in the set O, and some of the elements
in O are explained by not only variables in the set I but also those in O.
Moreover, some of the state variables in O become explanatory variables at
the next time step. Because of such a complex situation, it is very difficult
to divide the data space so that we can find linear models.

In the following we adopt a stepwise process explained in Chapter 3.
We divide the data space into two fuzzy subspaces with the aid of VCS.

Suppose we obtain premises of two rules:
e L': if z; is A}, and
o L?: if z; is AL
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Fig. 5.4  The process of fuzzy modeling

Corresponding to these premises, we develop two pattern models by defining
membership functions and two linear models with the aid of IMS. Figure 5.4

shows these processes schematically. Now we give

Definition 5.1: (membership functions).

Let us define the characteristic functions:

1, z; € A; .
xi{zi) = i=1,2,-.-,m. (5.2)
03 T e A-t'

Let us put

T*={z;; € Xila; € X5 €{1,2,--,n}}, i=1,2,--,m; k= 1,2,
(5.3)
and let ¢, ¢% and ¢/ be the first, second and third quartiles of the data
set TF. We define the membership function Af(z;) of the variable z; to the

fuzzy subspace A* as follows:




2;~g )?
inf{ eap(— i), xil(s) b, = < ah,

A¥(z)) = - - (5.4)
inf{ ezp(- pirois), xi(z) b => d,

where {; and ¢; are tuning parameters.

We identify the membership function with a kind of possibility distri-
bution function and define the pattern model by

o Pattern Model. L*: if z; is A%, then

z; is A;F [the membership function is A?(::j)], j=r+1,r+2,---,m.
. (5:5)

On the other hand, we develop a linear model in each fuzzy subspace,

ie.,

o Linear Model. L*: if z; is Af, then

z_,-:c?n-{—z c?lm, 'j=1'+1,1'+2,---,m. (5.6)
I#3

IMS offers several statistics to check goodness of linear ‘models, such
as standard errors and t-ratios of estimated coefficients, and the standard
deviation of residunals,

However, as it is dangerous to check goodness of linear models only
by statistics, we have developed CFS to evaluate them by examining how

estimates are distributed. Let us introduce

Definition 5.2: (confidence factor of estimates).

Let us generate many, say N, random numbers z; such that 4%(zy) >
o= 1,2,---,N_) as input values for z; (i = 1,2,+--,7). Let z';, be the
estimate of variable z; (f =r + 1,7+ 2,---,m) by the linear model of the
rule L* with the set of generated values { zy;, 231, -, 2r } Let us define
the confidence factor of the estimate z?,.by



k_ f=1 Ab(za)
cy

~ max{[[i-y AF(za)}’ =l (&7)

Note that all estimates z_’;, have the same confidence factor for the I-th set
of random inputs. The confidence factor indicates how the combination
of input values occurred in the past. It is different from that defined in
Equation 4.15 which is used when checking the model behavior with several
rules. This factor is used when checking a rule.

We examine goodness of linear models by plotting (z;ﬁ, cf‘), [=1,2,---,N,
and comparing them with pattern models using computer graphics, and
then decide which model we should adopt in each rule. We can fix values of
some important explanatory variables throughout the simulation to reveal
any special cases that may occur in the future.

Now, we summarize the algorithm of the first stage of heuristic fuzzy
modeling. In principle, we divide the data space into two fuzzy subspaces
and develop a pattern or linear model in each subspace. Then we repeat
this process in each fuzzy subspace as long as we can obtain good models;
of course the word good is used here somewhat subjectively.

Algorithm 1: (heuristic fuzzy modeling: stage 1).

Step 1. Develop a linear model with IMS, using all data. If a good model

is obtained, then stop.
Step 2. Define the data space (support set) in R™.

Step 3. Divide the data space into two fuzzy subspaces, referring to de-

grees of data division and looking at scatter plots.

Step 4. Develop a pattern model in each subspace by defining membership

functions.

Step 5. Develop a linear model in each subspace with IMS and carry out
simulation to evaluate it.

Step 6. Determine the final model in each rule between pattern and linear
models. If a good model is obtained in each subspace, then stop.
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Otherwise, repeat the process from Step 3, treating each subspace as
the whole data space.

5.3.2 Modification of Fuzzy Models

Suppose we obtain a submodel consisting of p rules. We explain how the
submodel produces estimates of the variables in heuristic fuzzy modeling.

Now we give

Definition 5.3: (estimates of heuristic fuzzy models).

Given values of inputs 2., Za., -, Zr., satisfying
P
ST AMzL) > 0, i=1,2,-0,, (5.8)
k=1

the estimates of variables in (J, denoted by a:;?_ (j=r+l,r+2--,m),
based on the rule L* are given by the simple data fitting in the case of a

linear model, and by

& _ Jr i 43(2;) ds;
a Jn Af(”:r’) dz; '

=1,2,--,p (5.9)

in the case of a pattern model. Define the relative degrees of belief of the
rule L* by

T_, A¥=z) :
-~k i=1 1\
_ , k=12 p. 5.10
ST, e AXwe)] (5:10)
Then the final estimate is given by

P

2=y @k, jEr+lri2,,m (5.11)
k=1

Now we summarize the algorithm of the second stage of heuristic fuzzy

modeling, which uses several criteria defined in Chapter 3.

Algorithm 2: (heuristic fuzzy modeling: stage 2).




Step 1. Fix the values of input variables one after the other referring to the
input admissible functions. If the set of active variables I, becomes
the whole set I, then set N = 1 and goto.Step 4.

Step 2. For the variable z; € I,, put

g =2, {=1,2,--- N. (5.12)

Step 3. For the variable z; € I3, generate N random numbers 2;, i3, -+, Tin

from the distribution:

(g = i)
pi(zi) 7 (5.13)

g wi(z;) dz;’

Step 4. Calculate the estimates and their averages over the rules:

o estimates: z%, j=r+1,r+2,-.- m{=12,---,N; k=

i
1:21"')P:

» averages: 2j, j=r+1,7+2,---,m; I=12,---,N,
according to the procedure in Definition 5.3.

Step 5. Calculate the confidence factors ¢; ({ = 1,2, . , V'), the weighted
averages Z; over random numbers, and the degrees of scatter s; (j =
r+1,r+2,...,m) according to Definitions 3.6 and 3.7.

Step 6. Plot the points

o (zj,c1), j=r+1,r+2,-,m I=1,2,---N,

. (ij:sj)) j=7'+1,1_'+2,--',m,
in order to evaluate the model behavior.

Step 7. Repeat the process from Step 1 to 6 several times and if necessary,
modify the parameters in membership functions or build heuristic

rules consisting of pattern or linear models.




5.4 Simulation of Environmental Systems

In Section 5.3 we explained the processes involved in building computer
simulation models. In simulation processes we have to take different models
together and set the values of explanatory variables by referring to possible
policy options or constraints in carrying out the plans. The model base
management system stores up-to-date submodels and combines such models
with future scenarios for predicting future environmental conditions.

Note that explanatory variables are not independent in the usual case.
Therefore we carefully choose explanatory variables which should be in-
cluded in I,, the set of active variables. Moreover, as mentioned in Sec-
tion 5.3.1, the same variable can be included in both the sets I and O,
representing its states at subsequent time steps.

To make the discussion clear, we introduce some notations. Let I(t)
and O(t) be the set of explanatory and explained variables at time t. They
are decomposed as follows:

Ity=c@se-1), ce)N\St-1)=4¢, (5.14)
o) = Sty Jr(e), SHNOYE) =¢, (5.15)

where C(t), S(t) and Y (¢) are the control, state and output variables, re-
spectively.

Some of the variables in I{t) can take fixed values at time ¢t and others
can take random values within their input ranges which will be defined
later. Let I,(t) be the set of active variables: this means that their values
are fixed by the feedback control or manual control in the case of control
variables, and by the result of simulation in the case of state variables. Note
that even control variables can take their values randomly in the defined
ranges.

We introduce the input distributions at each time step for the variables
in f3(t) (= I(t) — I.(t)), taking account of the states at one-step before and
the input admissibility that is related to the confidence of the model. Now
we introduce ‘ '

Definition 5.4: (input distribution).



Consider the discrete time sequence t = 0,1,2,:-, and at each time
step t, define the data set Ti(t) for z; € Iz(t) by

X, t=0 orz; €C(t),
Tit}y = \ (5.16)
{m;hw:z?“")wfl\’}v t>0andz; € S(t),

where X; is the measurement data set for z;, and zj; is the I-th estimate
for z; at t — 1. Let g¢;;, ¢z and g3 be the first, second and third quartiles
~ of the set T;(t), respectively. We define the input distribution of a variable
z; € Ia(t) by -

inf{ea:p(-—z(::;_;:; ), wi(z:)}, =i < @,
filzi) = (5.17)
mf{ea:p i(_q_)_f) wi(z:)}, i 2 i,

(g3 —9iz)

where w;(z;) is the input admissible function introduced in Definition 3.5,
- which.are changed by the values of variables in I,(t). If ¢;1 = ¢iz or gia = ¢ia,
then we put gy = gi1 — € OT ¢;3a = giz + €, where ¢ is a positive small number.
We call the set { z; | fi(zi) > 0 } the inpui range for.a:,- € Iy.

The algorithm for dynamic fuzzy simulation is given as follows:

Algorithm : (dynamic fuzzy simulation).

Step 1. Set £ = 0. Fix the values of explanatory variables as z;. one after

the other in their input ranges for some important variables in I(t).

Step 2. Calculate the input distributions of variables in I4(t) by the pro-
cedure in Definition 5.4.

Step 3. For the variable z; € I4(t), put
il = Tiwy l=1,2,"',N. .‘ (518)
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Step 4. For the variable #; € I;(t), generate N random numbers z;;, 23, - -, TiN
from the distribution:
fil=:)

pi(z:) = Tz )de: (5.19)

Step 5. Calculate the estimate

z_,;h j=r+hr+2,-m =12, N; k=1,2,---,p,

according to the procedure in Definition 5.3.

Step 8. Calculate the average values zj of :c;?, {k =1,2,---,p}) over the
rules by

Tho wf"*‘@z .
zj= =22l =L wf = [ Af(za), 1=1,2,--,N.  (5.20)
k=11 i=1

Step T. Let t =t + 1. Modify the sets Ti(t) and /a(t). Repeat the process

from Step 2 until the specified terminal time step.

5.5 Case Study on Tokyo Bay Development

Tokyo and its surroundings form one of the biggest metropolitan areas in
the world and its population is expected to increase by about three million
in ten years. Industrial activities will also grow rapidly in this area. There
are many Tokyo Bay development programs to supply offices and houses
- for promoting such progress. The purpose of this section is to estimate the
environmental impacts of Tokyo Bay development programs by modeling
air pollution concentration.




Table 5.2 List of variables in Submodel 1

Notation Meaning

NO2 NO2 concentration (ppb)
[yearly mean in the area]

bay dist Distance from Tokyo Bay (km)
[to the center of the area]

pop_day Population density in the daytime (persons / km?)
fin the area & neighbors}

ind_proc Industrial shipment density (10* yen / km?)
[in the area & neighbors]

ind_city  Urban industrial shipment density (10* yen / km?)
[in the area & neighbors| -

trade Density of the wholesale and retail sales {10* yen / km?)
(in the area & neighbors]

traf . den Weighted traffic density (10*/km? h)
[in the area & neighbors]

ind squ  Land use for industry (%)
[in the area & neighbors]

trafsqu  Land use for traffic (%)
[in the area & neighbors]

5.5.1 Model Structuring

Referring to system structures analyzed in.Section 5.2, model structures
were discussed among experts, decision makers and analysts. The devel-
oped model consists of two submodels. Submodel 1 estimates the aver-
age concentration of nitrogen dioxide (N Oi), the weighted traffic density -
(traef_den), etc. in an administrative area based on the changes in popula-
tion density in the daytime (pop_day) in the area and neighboring regions.
Submodel 2 estimates the changes in population density in the daytime in
the area based on the scenarios about the increase in offices and houses
along the coast of Tokyc Bay. '

The selected variables to develop Submodels 1 and 2 are summarized
in Table 5.2 and 5.3, respectively. Figure 5.5 shows the hierarchical model
structure assumed at the beginning. Note that any variable with incoming
arcs should be explained by some of the lower level variables in terms of
a pattern or linear model. There are five and seven explained variables in

Submodels 1 and 2, respectively.




Table 5.3  List of variables in Submode] 2

Notation Meaning
popdens Population density (persons / km?)
{in the area]
popdnc  Rate of population increase (% / year)
[in the area]
pop.day Population density in the daytime (persons / km?)
[in the area]
popdinc Rate of population increase in the daytime (% / year)
(in the area)
hous.rat Land use for housing (%)
[in the area]
housinc Rate of increase of housing area (% / year)
[in the area]
off_inc Rate of increase of offices (% / year)
[in the area)
cent.dis  Distance from the center of Tokyo (km)
[to the center of the area]
pop_prop Population density (persons [/ km?)
[in the neighbors affecting the area]
pop-nc+ Rate of population increase (% / year)
[the year before] [in the area]
pop_pro+ Rate of population increase (% / year)
{the year before] [in the neighbors affecting the area]
off_pro+  Rate of increase of offices (% / year)

[the year before] . [in the neighbors affecting the area]
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Fig. 5.5  The hierarchical model structure assurmned at the beginning
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Fig. 5.6  Scatter plots of N, versus the main explanatory variables

5.5.2 Fuzzy Model Building

The main purpose of this section is to build models to estimate the influ-
ence of building new offices and houses along the coast of Tokyo Bay. For
developing Submodel 1, we divide the data space by the variable pop.day
by looking at scatter plots like Fig. 5.6 in which the same marks indicate
that the corresponding data are contained in the same cluster. In prac-
tice they are distinguished by different colors on the computer. We build
Rules 1_1 (pop_day is large) and 1.2 (pop_day is small) independently, using
the divided data sets that correspond to clusters A and B, respectively, in
Fig. 5.6.

We examine goodness of linear models by the proposed simulation tech-
nique. Figure 5.7 illustrates random simulation with Rule 1.1. The ex-
planatory variables are placed on the left with the membership functions
drawn in a discrete form. The simulation result is shown on the right in
Fig. 5.7. The estimated values and their confidence factors (a:},,c}) are
drawn with 21 x 7 levels. Figure 5.7 shows that all explained variables are
well estimated by linear models. We first set the tuning parameters ¢, and
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Fig. 5.7 Random simulation with Rule 1.1

t; in membership functions as 1 for all variables. We also adopted linear
models for Rule 1_2.

Figure 5.8 shows a result of fuzzy simulation using Rules 1.1 and 1.2,
The simulation is carried out by fixing the values of bay_dist at the levels
7, 10 and 13, and changing the values of pop.day from level 8 to 17.

From Fig. 5.8 we can see that as population density (pop-day) becomes
higher, NO2 concentration (N O;) becomes lower when bay_dist is large,
which contradicts the observed phenomena. It is necessary to adjust pa-
rameters in membership functions and to build another rule for the case
where both pop_day and bay._dist are large. However, we have few data for
such a case. Figure 5.9 shows random simulation when both pop.day and
bay_dist are large. Here, we use the linear models developed in Rule 1.1
(pop-day is large). The estimates of the linear models for NO; and ind_proc
are smaller than those of the pattern models. We develop Rule 1.3, in
which NO; and ind_proc are explained by pattern models and others are
explained by linear models. Moreover, we change the tuning parameters
as follows: t; = 2.0 for bay_dist in Rule 1.1, ¢; = t, = 2.0 for pop-day
in Rule 1.2, and t; = 0.5 for bay.dist in Rule 1.3. Figure 5.10 shows the
simulation result after the above modification, which is fairly satisfactory.

For Submodel 2, we develop Rules 2_1 and 2.2 corresponding to two
premises: pop.incx is large and pop.inc is small. In Rule 2.1 we use linear
models for all explained variables, but in Rule 2.2 we have to use pattern
models for pop.dens, pop_prop and of f_inc. We omit here any further
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Fig. 5.9 Random simulation with Rule 1.3

explanation about Submodel 2.

Figure 5.11 is an example of the scene in simulation. Using the devel-
oped Submodels 1 and 2, we can simulate future states of explained vari-
ables by assuming some scenarios regarding Tokyo Bay development. We

are continuously developing other rules concerning our future environment.

5.6 Concluding Remarks

In order to predict the future environment, we have developed a computer
éystem, the main feature of which is integrated utilization of the knowledge
and judgment of experts in relevant fields. There are many cases when we
cannot obtain sufficient numerical data to build up statistical models. This
computer system is designed to cope with such a situation and to analyze
the environmental problems.

With this system, we identify the environmental problems and can ob-
tain a fuzzy model for estimating the environmental impact of Tokyo Bay
development programs. The system is useful as a decision support tool for
clarifying current and future issues concerning the environment, for plan-
ning an effective management program and for promoting communication

among researchers.
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Chapter 6

Concluding Remarks

6.1 Summary

An intelligent decision support system for use in environmental planning
has been developed. It consists of eight subsystems; three subsystems are
used for managing relevant data and models, two subsystems are used for
identifying environmental problems and three subsystems are used for their
modeling and simulation.

It is difficult to obtain sufficient numerical data to build up statisti-
cal models for the prediction of environmental problems. The purpose of
developing this computer system is to assist in identifying environmental
problems as well as in building statistical models that use experts’ knowl-
edge and judgment from the relevant fields.

To use experts’ knowledge effectively, we have developed a highly user-
friendly software. This system assists in model build{ng and reduces the
burden of trial and error necessary for developing a computer simulation
model.

Fuzzy modeling techniques have also been developed for modeling non-
linear systems. Confidence factors and degrees of scatter are defined to see
to which degree the obtained model is suited for simulation. The developed
computer system assists in understanding model behavior. _

- Linguistic fuzzy modeling is also an effective tool where we cannot ob-

tain a satisfactory model by statistical modeling. The developed system is



helpful for building linguistic fuzzy models.

With this system, we have analyzed urban environmental problems.
The relations between urban activities and environmental conditions are
identified and future environmental conditions have been simulated.

The system is useful as a decision support tool because it can clarify
current and future issues concerning the environment, as well as assist in
the planning of effective management programs. It also promotes commu-
nication between researchers in different scientific fields who are studying

complicated environmental problems.

6.2 Future Directions

There are a number of avenues available for the improvement and/or ex-
tension of Intelligent Decision Support System. One that is currently being
researched is a method of classifying knowledge data. There are various
kinds of knowledge data and it is very difficult to find relations among
them. We are developing methods to classify these data interactively and
to draw graphs which represent their relations.

We are also studying a method to modify graphs drawn on a com-
puter. It is recognized empirically that graphs are useful as a visual aid
to understand overall images of structures of complex systems. We have
implemented the method to draw graphs automatically. However, there
are some cases when we want to modify the results. For this purpose we
are implementing the method to change the relations and corresponding
graphs interactively. This method is also useful for classifying knowledge
data.

Another area for future research that is being examined is improvement
of algorithms. To use the system interactively, it is essential that the re-
sponse time is short. Since execution of dynamic fuzzy simulation requires
much time, we are improving some algorithms, It requires much time to
calculate input admissible ranges and confidence factors and to simulate
future environmental conditions.

For utilizing the knowledge base more effectively, we have to store as
much knowledge data as possible. One bottleneck is the conversion from a

scenario to knowledge data. It is important to develop methods of auto-
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matically interpreting scenarios and translating them into knowledge data.
For this purpose natural language expression should be studied.

We sometimes find conflicts between knowledge data. It is necessary to
clarify these conflicts and to treat them so that users do not misunderstand
their relations. Methods to detect conilicts and to interpret them should
be studied.

A problem also lies in understanding the simulation results and trans-
lating them into knowledge data. We suggested a method in Chapter 3,
where input admissible functions, confidence factors and degrees of scatter
give useful informatjon for their translation. It is necessary to develop a
method to translate the simulation results into the form of if-then rules for
storing the simulation results and making use of them.

It is also useful to further study methods of fuzzy reasoning for analyzing
environmental structures. There are many cases when we cannot obtain
sufficient numerical data to build up statistical models. Knowledge and
judgment of experts are important factors to clarify current and future
environmental problems. Methods to represent and utilize knowledge data
should be extended.

These methods, if implemented, would make the system more useful
and would encourage users to prepare more detailed and more accurate
models. This system would become more effective for clarifying the long-
term changes of environment, and reflecting it in environmental planning
processes.
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Smog chamber studies on photochemical reactions of hydrocarbon-nitrogen oxides

system—~Progress report in 1977. (1978)

Studies on the photooxidation products of the alkylbenzene-nitrogen oxides

?yste?, and on their effects oa cultured cells—HResearch report in 1876-1977.
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Man activity and aquatic environment—with special references to Lake

Xasumigaura—Progress report in 1977-1978. (1979)

4 morphological study of adults and immature stages of 20 Japanese species of
the family Chironomidae{(Diptera). (1379)

Studies on the biclogical effects of single and combined exposure of air

pollufants—Research report in 1977-1978. (1979)

Smog chamber studies on photochemical reacticns of hydrocarbon-nitrogen oxldes

system—Progress report in 1878. (1979)

Studies on evaluation and amelioration of air pollution by pilants—Progress

report in 1976-1978. (1979)

Studies on the effects of air pollutants on plants and mechanisms of

phytotoxicity. {1980}

Multielement analysis studies by flame and inductively coupled plasma
spectroscopy utilizing comouter-controiled instrumentation. {1980}

Studies on chironomid midges of the Tama River. (1980}

Part 1. The distribution of chironomid species in a tributary in relation to
the degree of pellution with sewage water.

Part 2. Description of 20 species of Chironominae recovered from a tributary.
Studies on the effects of organic wastes on the soil ecosystem—Progress
report in 1978-1974, {1980)

Studies on the biological effects of single and combined exposure of air

pollutants—Research report in 1979, (1930)

Remote measurement of air polletion by a mobile laser radar. {1980)

Influence of buoyancy on fluid motions and transport processes— Meteorological
characteristics and atmospheric diffusion phenomena in the coastal region-—
Progress report in 1978-1979, (1880)

Prepaiallog analysis and certification of PEPPERBUSH standard reference mate-
rial. {1980

Conmprehensive studies on the eutrophication of fresh-water areas-—Lake current

of Xasumigaura{Nishiura)—1978-1979. (1981}

Comprehensive studies on the eutrophication of fresh-water areas—Geomorpho-
logical and hydrometeorological characteristics of Kasumigaura watershed as

related to the lake environment—1978-1979, (1981)

Comprehensive studies on the eutrophication of fresh-water areas— Yariation

of pollutant load by influent rivers to Lake Xasumigaura—1978-1979. {1981)

Comprehensive studies on the eutrophication of fresh-water areas—Structyre of

geosystem and standing crops in Lake Kasumigaura-—1%78-1979. (1981}
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analysis of eutrophication effects on main utilization of lake water resources
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Comprehensive studies on the eutrophication of fresh-water areas-—
Deter?ination of argal growth potential by algal assay procedure—1978-197%..
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Comprehensive studies on the eutrophication of fresh-water areas—Summary of
researches—1978-1979, (1981}

Studies on effects of air pollutant mixtures on plants—Progress report in
1979-1980. (1981}

Studies on chironomid midges of the Tama River. (1981)

Part 3. Species of the subfamily Orthocladiinae recorded at the summer survey
and their distribution in relation to the pollution with sewage waters

Part 4. Chironomidae recorded at a winter survey.

Eutrophication and red tides in the coastal marine environment — Progress
report in 1979-1980. (1582}

$tudies on the biological effects of single and combined exposure of air
poliutants —Research report in 1980. (1981)

Smog thamber studies on photochemical reactions of hydrocarbon-nitrogen

oxides system—Progress report in 1979 —Research on the photochemical
secondary pollutants formation mechanism in the environmental atmosphere

{Part 1).(1982)

Meteorological characteristics and atmospheric diffusion phenomena in the
coastal region—Simulation of atmospheric motions and diffusion processes —
Progress report in 1980, (1982)

The development and evaluation of remote measurement methods for environmental
poliution— Research report in 1980, (1982)

Comprehensive evaluation of environmental impacts of road and traffic. (1982)
Studies on the method for long term environmental monitoring—Progress report
in 1980-1981. {1982)

Study on supporting technology for systems analysis of environmental policy
—The Evaluation Labolatory of Man-Environment Systems. (1982)

Preparation, analysis and eertification of POND SEDIMENT certified reference
material. (1982}

The development and evaluation of remote measurement methods for environmental
pollution— Research report In 1981, (1983)

Studies on the bialogical effects of single and combined exposure of air
pollutanis —Researeh report inm 1981, {1983}

Statistical studies on methods of measurement and evaluation of chemical
condition of soil—with special reference to heavy metals—. (1983)
Experimetal studies on the physical properties of mud and the characteristics
of mud transportation. (1983)

Studies on chironomid midges of the Tama River. {1583}

Part 5. An observation on the distribution of Chironominae along the main
stream in June. with description of 15 nex species,

Part 6. Description of species of the subfamily Orthcladiinae recovered from
the main stream in the June survey.

Part 7. Additicnal species collected in winter from the main stream.

Smog chamber studies on photochemical reactions of hydrocarbon-nitrogen oxides
system—Progress report in 1974 - Research on the photochemical secondary
pollutants formation mechanism in the environmental atomosphere(Part 2}, {1983}
Studiss on the effect of organic wastes on the soil ecosystem—Outlines of
special research project—1978-1980. (1983)

Studies on the effect of organic wastes on the soil ecosystem~—Research report
in 1979-1980, Part 1.(198%)

Studies on the effect of organic wastes on the spil ecosystem— Research report
in 1979-1980, Part 2. {1983}

Study on optimal allocation of water quality monitoring points. {1983}

The development and evaluation of remote measurement method for environmental
pollution— Research report in 1982, {1984)

Comprehensive studies on the eutrophication control of freshwaters—Estimaticn
of input loading of Lake Kasumigaura—1980-1982. {1984}

Conprehensive studies on the eutrophication control of freshwaters— The func-
tion of the ecosystem and significance of sediment in nutrient eyele in Lake
Kasumigaura— 1980-1982. (1984)

Comprehensive studies on the eutrophication control of freshwaters— Enclosure
experiments for restoration of highly eutrophic shallow Lake Xasumigaura—1980-
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Effects of toxic substances on aguatic ecosystems —Progress report in 1980-

1983. (1984}
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