

How to challenge Climate Change? Integration between adaptation and mitigation

Akimasa Sumi
Prof. Emeritus
Institute for Future Initiatives
Univ. of Tokyo

IPCC Special Report Global Warming of 1.5°C

At Paris Conference, developing countries strongly requested.

October,2018

(IPCC SR1.5 FAQ1.2より)

- 2015 Big Changes
- Sendai Framework(Disaster Prevention)
- Sustainable Development Goals(SGDs)

Paris Agreement

Various issues around us!

- There are many, many issues.
- Issues are not independent.
- Solutions are dependent on a society.
- Many stakeholders with different viewpoints and values.
- When action is taken, social agreement is necessary.
- How?

Linkages among three systems

Resource-circulating society

What is an "interaction"?

- Exchange of "Something"
- Energy
- Matter or substance
- Information
- Interactions of physical quantities are governed by physical laws!

Methodology in a Classical Physics

- Complicated System → Simplification
- Understand mechanism
- Exclude various factors
- Limit domain
- Space Boundary Condition
- Temporal Steady or periodic

Radiation Balance(Energy Flow)

Radiation Balance on the Earth

TEMPERATURE (°K)

Fig. 1. The left and right hand sides of the figure, respectively, show the approach to states of pure radiative and thermal equilibrium. The solid and dashed lines show the approach from a warm and cold isothermal atmosphere.

Radiative-convective Equilibrium Model

Fig. 16. Vertical distributions of temperature in radiative convective equilibrium for various values of CO₂ content.

Science and Technology for Society(STS)

A Linear Model

Interactive Model

Science and Technology

Society Issues Stake-holders

Modern Issues,

- Simple Principles does not work for individual cases.
- Especially, society issues
- Personal interests, and conflicts

How to tackle these issues?

- (1) Modelling Simulation
- (2) A Big Data Data science and AI
- (3) Indexing
- Quantitate Estimate vs Qualitative
- Communication and Platform

- High-end Super Computing
- Cloud Computing
- Big Data and SNS Networking
- We can treat a complex system as a whole?

Climate System

- Many different components (physical, chemical, biological systems and so on)
- Many sub-systems with different characteristics!
- Coupled system
- Mutual Interaction

Climate System

Introduction of other subsystems and couple them

- Interaction is a key process!
- Time-scale is different
- Horizontal-scale is different!
- Coupler system is developed!

NWP	ENSO	Global	Ice age
Days	A few Years	Warming 100 years	1000years
Atmosphere	Atmosphere	Atmosphere	Atmosphere
	Ocean	Ocean	Ocean
		GHG and LCLC	GHG and LCL
			Ice Sheet

Further expansion to Human Activity

(*仮 あるいはMIROC-INTEGとか。MIROC5.0をベースにしたバージョン)

Climate (Land S. Model MATSIRO)

Soil temperature Soil wetness etc

森林火災

によるCO2排出

肥料投入

Water Remode **H08**

Water Use of Agriculture and **Industry Pollution**

農作物収量

温室効果ガス

収支

Eco-System VISIT

森林伐採

C, N distribution between atmosphere, land and plants

Crop Model PRYSB12

Crops, Bio-Energy, N-burden etc.

Land Use Model TELMO

Land Use and Land Cover Change due to human activity

How to handle a heterogeneous interaction?

Different time-scale

Relationship between adaptation and Mitigation

Integration of mitigation options and adaptation options

出典:環境省環境研究総合推進費S8資料

Increasing vulnerability, exposure, or severity and frequency of climate events increases disaster risk

Mitigation and Adaptation

- Mitigation reduce carbon emission
- Individual technologies
- Systematic thinking way is important!
- Integration of individual technologies
- Design of Society
- Regional planning city and village

Data Platform

CLIMATE CHANGE ADAPTATION PLATFORM, JAPAN

Adaptation for the future.

HOME About this site

Climate Change Adaptation

National Adaptation Plan of Japan

Impact & Adaptation

Let's Adapt!

International Action

Featuring Japan's pioneer companies in the field of Adaptation Business.

- Capacity Building of local government designing adaptation plan
- UT-NIES collaboration with Indonesian agencies

Index

- GNP
- GDP Production
- Sustainability Index
- Inclusive Welfare Index(IFI) etc.

Inclusive Welfare Cycle IWI Index Evaluation

Summary

- For an integration study, integration by using a model is one possible way.
- A huge data
- Increase of computer power and AI
- Agent-based Model for human-behavior
- How to make a judgement?
- Index like a NDP or IWI