Low carbon technology assessment and technology transfer in selected Asian countries

Dr Mara Mendes

Senior Programme Specialist, Climate Change Regional Resource Centre for Asia and the Pacific (RRC.AP)

27-28 January 2016

Regional Resource Centre for Asia and the Pacific (RRC.AP)

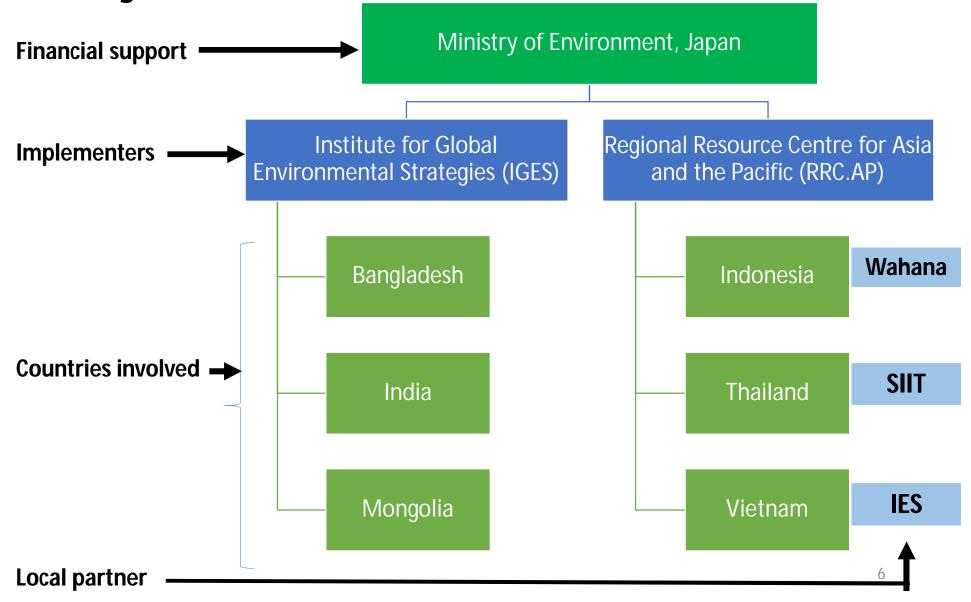
- Institute-wide within AIT
- Bridge the gap between the scientific understanding of sustainable development processes and sound policies at national and regional levels
- Secretariat for several conventions
- Activities
 - Research
 - Policy formulation
 - Knowledge management
 - Capacity building
 - Partnership and secretariat

Presentation outline

- Project background
- Technologies selected for assessment
- Project activities and progress
- Findings

Background

- Low-carbon technologies have potential to
 - Reduce GHG emissions
 - Reduce energy consumption
 - Save operating cost for the user
 - Co-benefits, such as lowering air pollution
 - New business opportunities and job creation



Background

- O&M cost is crucial
 - Investment decision in a technology should not be only based on the initial cost
 - There could be significant differences in O&M cost between technologies of different brands
 - Life cycle cost assessment provides actual information for decision makers
- Japanese low-carbon technologies
 - Japanese technologies are well known for their reliability and long lifetime
 - Suitable to reduce life cycle cost

Project structure

Technologies & countries for assessment

Bangladesh

India

Indonesia

Mongolia

Thailand

Vietnam

Steam management system Once through boiler

Industrial heat pump

Waste to energy (incinerator)

Low-carbon Technologies

High efficient (oil free) air compressor

Waste heat recovery for cement industry

Light emitting diode (LED)

cogeneration

Micro

Solar Photovoltaic

Project components

- Comparative assessments of low carbon technologies
- 2. Country condition assessments: data collection by country counterparts
- 3. SWOT assessments on the transfer of low carbon technologies:
- 4. Financial schemes assessments

Assessment for technology transfer

SWOT assessments on the transfer of low carbon technologies:

- SW Internal: self evaluations by supply side (& technology users to crossevaluate)
- OT External: data collection by country counterparts
- Comprehensive analysis of SWOT and recommendations

Proposed activities

- Technology review
- Product and supplier information assessment

Strengths & Weaknesses

Opportunities & Threats

- Country context study
- Demand-side assessment (PESTLE method)

- Analysis of collected information
- Country context analysis

SWOT analysis

Strategic recommendations

- Prioritization of technologies in different countries
- Suggestions for improvements

RAPID APPRAISAL METHOD

Desk research

Email communications

One-on-one meetings

Workshop

Work progress

Study of technology and country context Information collection from suppliers

In-country missions (one-on-one meetings)

Preliminary assessment of market potential

Stakeholder consultation workshop

Recommendations

COMPLETED

← ON-GOING →

Factors for strengths & weaknesses analysis

Aspect	Criteria		
Techno- logical	Innovativeness Reliability Durability (life span) Energy efficiency Size and weight Ease of installation Ease of maintenance		
	Operational performance		
Foonomis	Initial cost		
Economic	Maintenance cost Investment payback period		
	investment payback period		

Aspect	Criteria
	CO2 emissions reduction
- Environ	Other environmental benefit:
Environ- mental	(waste water reduction, water
	consumption reduction, better
	air quality, etc.)
	Supplier's aftersales service
	availability in the country
Business	Supplier's business experience
	in the country
	Delivery time

Strengths and weakness factors

Name of country

Name of technology

Competing technologies in that country

of relative

Proposed factor		Impo tance (c)	e** (a)	Weakness* *(b) 0-2 points	Reason for sc	ore	(a-b),	valuat o <u>n</u>
	Innovativeness			·				
	Reliability							
	Durability							
Technologi cal	Energy efficiency	Г				Г		
characteris	Size and weight							
tics	Ease of installation		Each ind	lividual f	actor is		Relativ	_
	Ease of maintenance		assessed	d and sco	ored as		evaluation	
	Operational performance		either	"Strengt	h" or		in terms	
	Initial cost		"Weaknes	s", depe	nding on		the	OI
Economic	Equipment maintenance cost		the results.					tor
viability	Investment payback period						competi	lOI
Environme ntal	Amount of carbon dioxide emissions reduction							
characteris tics	water & exhaust)							
Business	Maintenance service providers 'availability							
reliability	Business experience in that country							
	Delivery time						13	<u>, </u>

Opportunity and threat factors

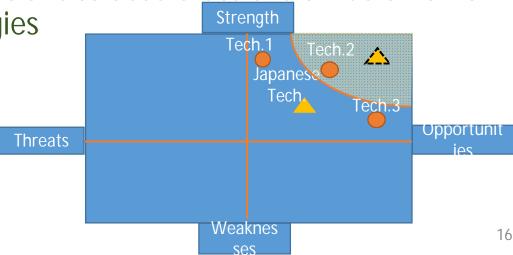
PESTLE Analysis

Marketing principles: tool to track environment where the technology is operating or to be launched.

FACTORS:

- P Political the extent to which a government may influence the economy or a certain industry
- E Economic economy's performance that directly impacts a company and have resonating long term effects
- S Social social and cultural environment of the market
- T Technological innovations in technology that may affect the operations of the industry and the market favorably or unfavorably
- L Legal laws and policies that affect the market
- E Environmental influence or are determined by the surrounding environment.

Factors for opportunities & threats


	Domestic and geopolitical stability
Political	Diplomatic relations with Japan
	Presence of strong incentives and policies
	Market size and economic growth (including population, etc.)
_	Presence and strength of competition
Economic	Current energy prices (fuel, electricity for commercial) and trend
	Financial strength and purchasing power of end users
	Attitude toward Japanese products (Japanese brand power)
Social	Tolerance for long investment payback periods
	Cultural suitability of product use
Technological	Presence of infrastructure for product use
	Ease of hiring local engineers (design, construction, maintenance)
	Ease of local procurement of refrigerants, oils, and parts, etc.
Legal	Presence and strength of customs duties
	Specifications (harmonic content with international standards)
	Regulations (energy saving, environmental regulations)
	Standards (labelling, MEPS***, IBR)
	Presence of protection for intellectual property rights
Environmental	Natural environment (temperature, humidity, water quality, air
Environmental	quality, disaster frequency, etc.)

Technology mapping

- Technology mapping can be performed based on SWOT analysis, helping to
 - Set of recommendations to reduce weaknesses & threats
 - Set of recommendations to enhance the strengths & opportunities

Strategic interventions to accelerate the diffusion of low carbon technologies

Preliminary findings

Needs assessment

Targeted technologies	High potential to very high potential			
Industrial heat pump	Thailand			
High efficient air compressor	Thailand, Vietnam			
Micro co-generation	Thailand			
Solar power generation (Eco-house)	Indonesia			
Waste heat recovery (Cement waste heat power plant)	Indonesia, Vietnam			
High efficient lighting system (LED)	Vietnam			

Case: LED in Vietnam

Light Emitting Diode

Opportunities and Threats

- ➤ Market Potential of Japanese technologies
- With a growth rate of 15-20 % per year, LED has high demand in Vietnam in street and residential sector
- Unreliability and lower life (5000 hrs.) of present products in market
- Willingness of country for adaptation of efficient LED (US\$ 12,000,000 budget for streets lighting in Ho Chi Minh City by 2017)
- Competition from local producers such as Rang Dong and Dien Quang
- ➤ Investment decision of users in Japanese technologies
- Initial Cost as issue as expensive Japanese products and expect support in investment

Light Emitting Diode

Opportunities and Threats

- ➤ Accelerating diffusion of Japanese technologies
- Positive attitude towards Vietnamese people and willing to pay extra
- ➤ Market Strategy
- National Strategy like 'Green Proposal for Public Lighting' can provide financial support on Japanese LED technology to compete with other technology
- ➤ Policy Perspective
- No specific incentives or policy to support LED but has banned the production of some non efficient bulbs
- Awareness towards energy efficiency but not towards benefit of reducing operating cost, coordinated awareness program required

Findings & recommendations

- High initial cost is an issue for low carbon technologies
 - Need develop country and technology specific studies / demonstration on life cycle cost
 - Need awareness about life cycle cost (policy makers & technology users)

Findings & recommendations

- Payback period is important factor
 - End of subsidies to fossil fuels and fossil fuel based electricity generation
 - Review of electricity tariff to incorporate climate change related costs
 - Need incentives for RE & EE
 - ESCO

Findings & recommendations

- Customs and import taxes: opportunity
 - All three countries can reduce import tax for RE & EE
- Existence of local partners / after sales services: important factor for technology user
- Local content policy is an issue raised in Indonesia

Acknowledgement

Asian Institute of Technology

- Mara Regina Mendes
- Hiromi Inagaki
- Yousre Badir
- Anis Zaman
- Shobhakar Dhakal

Institute for Global Environmental Strategies

- Kentaro Tamura
- Rabhi Abdessalem
- Mika Tachibana
- Mihoko Yoshida
- Masahiro Suzuki

Thank you!

Mara Regina Mendes, PhD
Senior Programme Specialist, Climate Change
Regional Resource Center for Asia and the Pacific (RRC.AP)
mara.mendes@rrcap.ait.asia