

Monitoring of PM_{2.5} Concentration in Yangon City, Myanmar: Collaborative Research between NIES and University of Medicine (1), Yangon, Myanmar

Tin-Tin WIN-SHWE¹, Ei-Ei-Pan-Nu YI², Win-Yu AUNG², Nay-Chi NWAY², Thet-Hnin WAI², Zarli THANT², Cherry MAUNG², Kyu-Kyu HLAING², Mayuko YAGISHITA¹, Yang ISHIGAKI³, Daisuke NAKAJIMA¹, Ohn MAR²

¹Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan ²Department of Physiology, University of Medicine 1, Yangon, Myanmar;

³Graduate School of Informatics and Engineering, University of Electro communications, Tokyo, Japan

Background and Aim

- Air pollution is a worldwide environmental health problem.
- There is limited study assessing PM_{2.5} in Yangon city, Myanmar.
- Previous local studies performed were concerned about PM₁₀ and used fixed monitoring. It is essential to do research on air pollution for air quality management improvement.
- The highest values in the morning might be due to the smog since the study period was winter and the smoke from burning dried leaves, from tea/food shop using log/charcoal stove.
- The lowest concentrations in the afternoon might be due to loss of semivolatile PM due to higher temperature.
- The evening rise may be due to smoke from vehicle exhaust from higher traffic flows.
- The present study aimed to assess distribution of PM_{25} in different Townships of Yangon.
- This study is a collaborative work between Department of Physiology, University of Medicine 1, Myanmar and National Institute for Environmental Studies (NIES), Tsukuba, Japan.

Method

• Pocket PM_{2.5} Sensors (Yaguchi Electric Co., Ltd., Miyagi, Japan) were utilized for measurement of concentrations PM_{25} .

Fig 1. Principle of Pocket PM_{2.5} Sensor Module (adapted from Yang et al., 2017) LED-Light Emitting Diode, PD-Photodiode, USB (Universal Serial Bus).

• The highest concentration in Hlaingtharyar Township could be due to emission from factories and vehicles from highway roads.

Fig 2 (a). Pocket PM_{2.5} Sensor, a smart phone with android system, (b) color variations for level of $PM_{2.5}$ concentration and (c) recording $PM_{2.5}$ at the starting point for 8 tracks.

Fig 3. Location of Kamaryut Township, Yangon, Myanmar

Results and Discussion

Table 1, PM_o, concentrations of seven Townships

- Regarding 8 tracks within Kamaryut Township, PM₂₅ values varied along with the immediate environment where the investigators walked.
- The highest range of 67.8 281.8 μ g/m³ was recorded at the site of road repairs were being made, areas where dried leaves were being burned, generator operating and renovation of football field.

- This is the first study to quantify the regional distribution of PM_{25} .
- The PM_{2.5} level in Yangon city has reached the noticeable level.
- PM_{2.5} concentrations tends to be worse at places close to busy roads, and food shops and vary between different areas with different conditions of the same Township at the same time.
- Pocket $PM_{2.5}$ Sensor was found able to record the real time $PM_{2.5}$ concentration and used for evaluation of distribution of $PM_{2.5}$ in local or specific areas easily and effectively.

2.5					
	Morning	Afternoon	Evening		
Township	(7:00 h)	(13:00 h)	(19:00 h)	Population	Remark
	(µg/m³)	(µg/m³)	(µ g /m³)		
Hlaing	$117 \pm 38^{\Delta}$	38 ± 11*	94± 35*	160,307	Residential area
Hlaingtharyar	$164 \pm 52^{\Delta}$	$31 \pm 15^{*}$	$100 \pm 35^{\bullet}$	687,867	Industrial area
Kyimyindine	$104 \pm 69^{\Delta}$	31 ±12*	71± 27•	111,514	Semi-residential area
Kamaryut	$91 \pm 37^{\Delta}$	$30 \pm 14^{*}$	60± 22*	84,569	Semi-residential area
Pazundaung	78 ± 29∆	$35 \pm 23^{*}$	67 ± 30	48,455	Residential area
South			77 1 004		
Okkalapa	$121 \pm 35^{\Delta}$	66 ± 48 [~]	//±29♥	161,126	Commercial area
Tamwe	$130 \pm 102^{\Delta}$	39 ± 21*	69± 27*	165,313	Residential area

Future Plan

• Our future plan is to detect individual exposure screening of $PM_{2.5}$ concentration in highly contaminated area using pocket PM_{2.5} sensor and to investigate whether association exists between PM_{2.5} concentration and health risk in Myanmar.

Data are presented as mean \pm SD, ANOVA with post-hoc: \triangle morning Vs afternoon, \bullet morning Vs evening, *afternoon Vs evening, significant level (p < 0.001)

No conflict of interest