Environmental pollutants and their health effects

in Myanmar

Prof. Ohnmar

Physiology Department

University of Medicine 1, Yangon

Republic of the Union of Myanmar

Environmental pollutants and their health effects in Myanmar

* Air pollution and health effects conducted in Myanmar

* Pilot collaborative research with National Institute of Environmental Studies (NIES), Japan Health effect of air pollutants: some Myanmar studies

* Some Myanmar researchers conducted studies on health effect of air pollutants.

* They focused on those exposed to dust or pollutants at the workplace.

Workers of Paper mill (Zaw Lin Thein, 2006)

Casella controlled flow personal sampler with Whatmann Glass Microfibre filter (37mm) attached to a worker

- Exposed to bamboo dust and paper dust (n=96)
- Total dust concentration (8-h TWA): 1.53 mg/m³ to 28.193 mg/m³ (TLV of 10 mg/m³ for organic dust: ACGIH 2001)
- Respirable dust: 0.45 1.74 mg/m³ (TLV of 5 mg/m³ for organic dust: ACGIH 2001)
- * Respiratory symptoms such as cough, phlegm and chronic bronchitis ++
- * % of Predicted peak expiratory flow (PEF): lower than unexposed
- % of Predicted forced expiratory flow rate (25%-75%) (FEF25-75%): lower than unexposed

Small airway obstruction

Marble stone sculpture: Carving and Refining (Hein Min Latt, 2012)

- Workers exposed to dust (calcium carbonate) released from the process of stone sculpture (n=42)
- * The process produces a great amount of fine dust particles.

* FEV1/FVC and FEF25-75%: significantly reduced in latter group

Small airway obstruction

Pump men of compressed natural gas (CNG) stations (Si Thu Tun, 2011)

CNG (methane): gas < 2 µm Acceptable limit: 7 ppm

Office staff at CNG station (n=30) Ambient CNG concentration (ppm): 846 ppm (mean)

Pump men exposed to CNG (n=30) Ambient CNG concentration (ppm): 680 ppm (mean)

- * % of Predicted FVC : 71.16 \pm 21.44 and 77.03 \pm 21.31
- * % of Predicted FEV1 : 63.41 \pm 19.69 and 65.50 \pm 18.59
- * FEV1/FVC : above 80%

Restrictive type of lung function impairment

Battery workers : from battery factory and small scale industry (Zarli Thant, 2005)

- * Exposed to lead contaminated air (n=36)
 - * Blood lead level (BLL): **48.45** ± **19.96** μg/dL
 - * 61.2%: BLL > **40** μ**g**/**dL** (OSHA, 1995; WHO, 1995)

High lead exposure

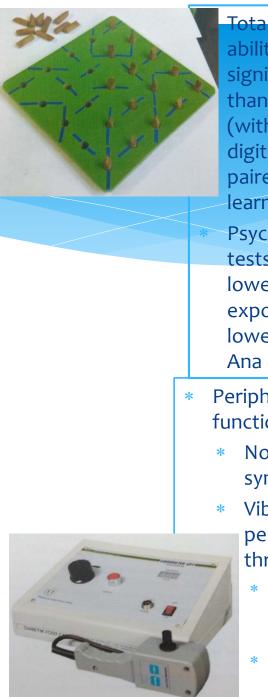
* Anaemia: 25% of participants (BLL >40 µg/dL)

Lead-exposed battery workers

Thazin Shwe, Thuya Tun Oo, Cherry Bo Htay, Ohnmar, 2016

Cognitive and psychomotor ability Peripheral Sensory function C-reactive protein, vitamin C and MDA

* Blood lead level (BLL):

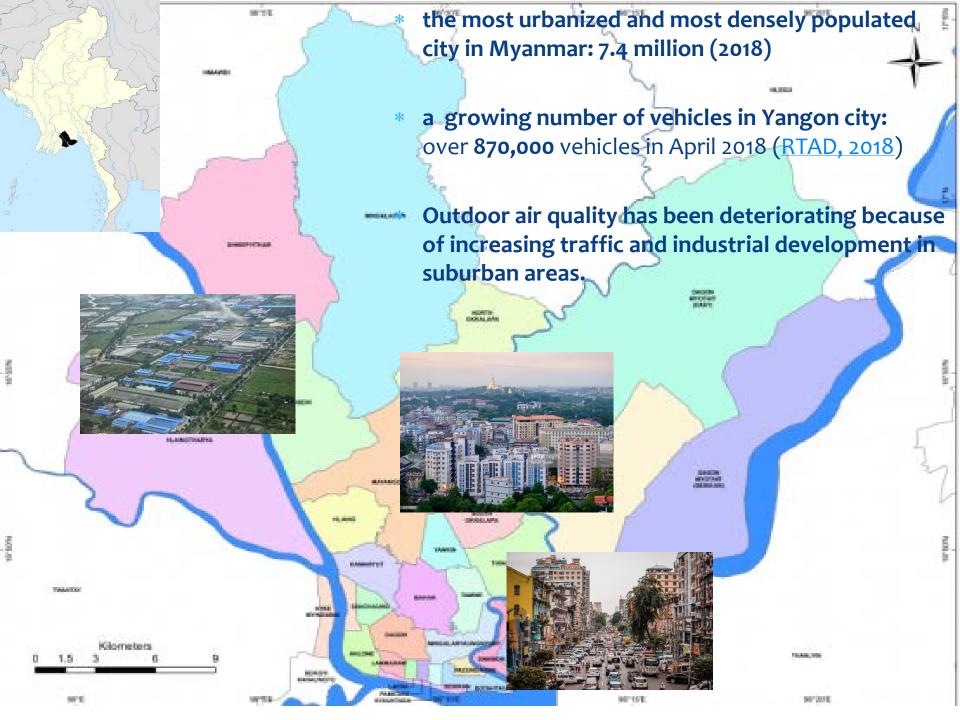

(n=28):

- * Exposed subjects: 4.25 ± 3.87 μg/dL
- * CDC reference level = $5 \mu g/dL$
- * 92.85% of lead-exposed battery: lower than 5

Low lead exposure

Lead-exposed battery workers

- Reduction in cognitive ability in attention, shortterm memory and perceptual motor ability
- Early functional impairment in large myelinated sensory fibers
- Plasma MDA: increase



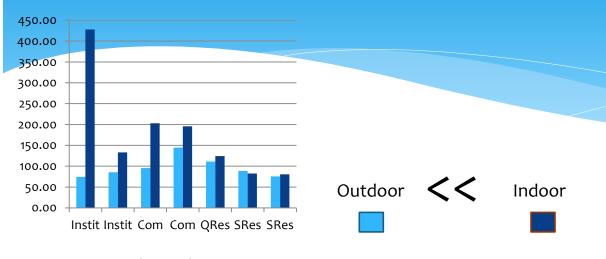
Total cognitive ability score: significantly low than non-exposed (with lower score in digit span, and paired associate learning) Psychomotor ability tests: significantly lower than nonexposed (with lower score in Santa Ana dexterity)

- Peripheral sensory function
 - No neurological symptoms
 - Vibration
 perception
 threshold (VPT)
 - Hand: 4.20±2.29
 volts vs 2.66 ±
 0.71 volts
 - Foot: 8.36±4.81
 volts vs 4.93 ±
 2.62 volts

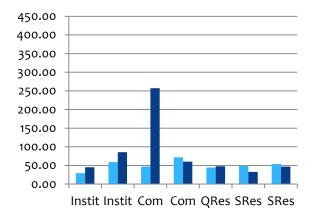
Collaborative research with NIES

Pilot project for air quality assessment in Yangon city

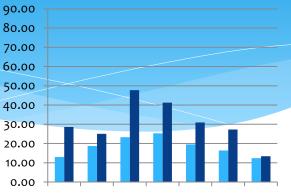
Diffusive air samplers


VOC-CX for VOCs DSD-BEP/DNPH for ozone and carbonyl compounds DSD-TEA for acid gases (NO₂, SO₂) DSD-NH3 for basic gases (ammonia)

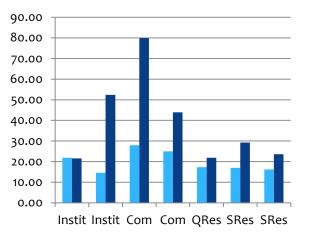
Volatile organic compounds


February (Winter)

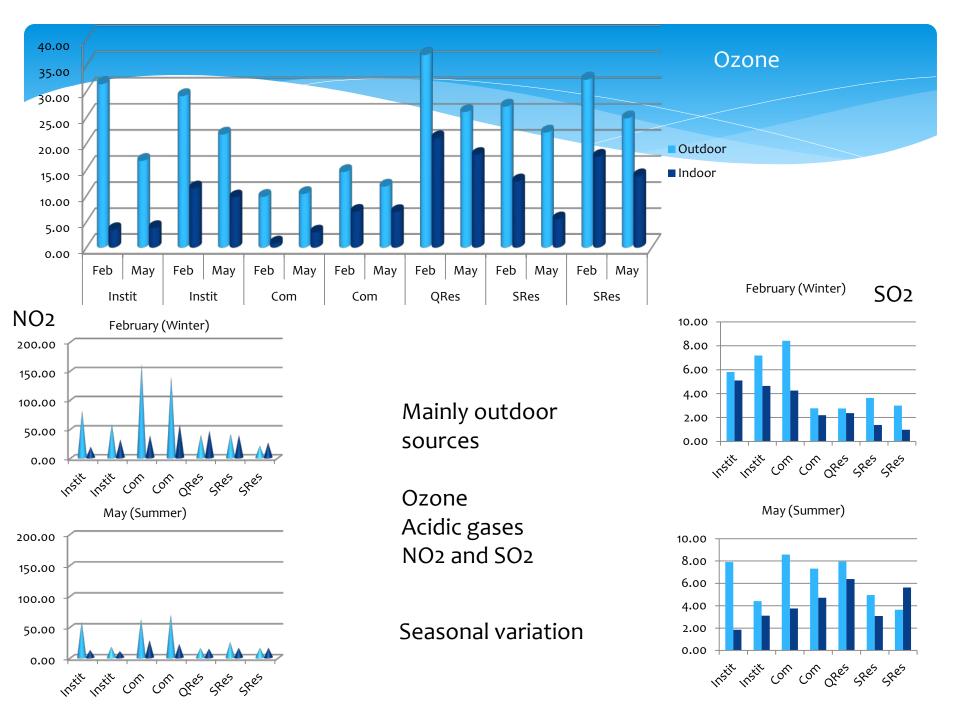
Total Carbonyls compounds


February (Winter)

May (Summer)



Seasonal variation

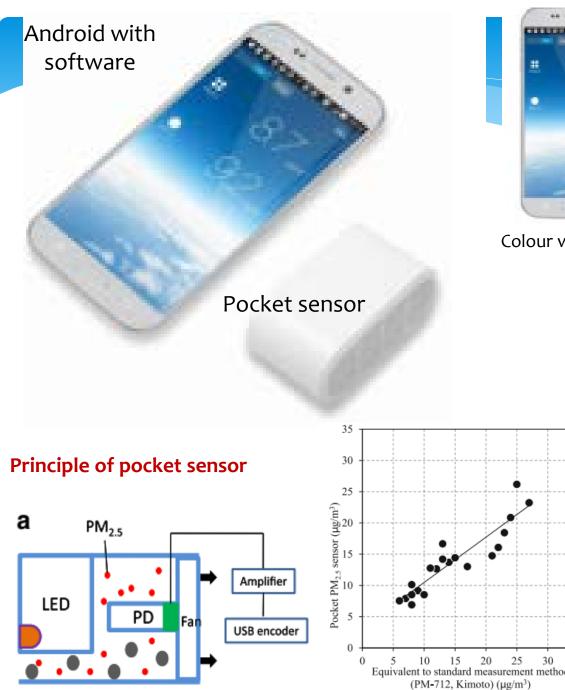

Instit Instit Com Com QRes SRes SRes

May (Summer)

* Toluene & hexane

* Formaldehyde & acetaldehyde

Basic gas: Ammonia

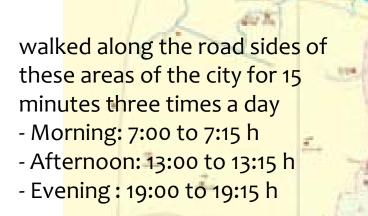

Outdoor	Instit	Instit	Com	Com	Qres	Sres	Sres
Winter	26.67	51.08	57.96	42.95	36.95	37.03	32.78
Summer	110.68	112.62	140.56	143.00	109.62	117.03	120.62
Indoor	Instit	Instit	Com	Com	Qres	Sres	Sres
Winter	98.81	53.86	92.55	81.50	48.58	30.84	81.36
Summer	272.40	165.99	228.98	159.23	135.19	160.35	215.70

- * Indoor > outdoor
- * Sources: Animals, residents and household goods such as bathroom cleaner, floor cleaner and glass cleaner
- * Summer > winter

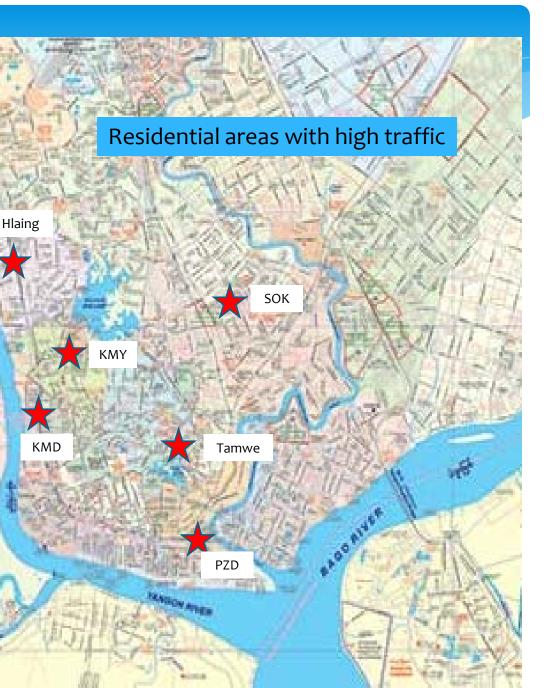
Phase II

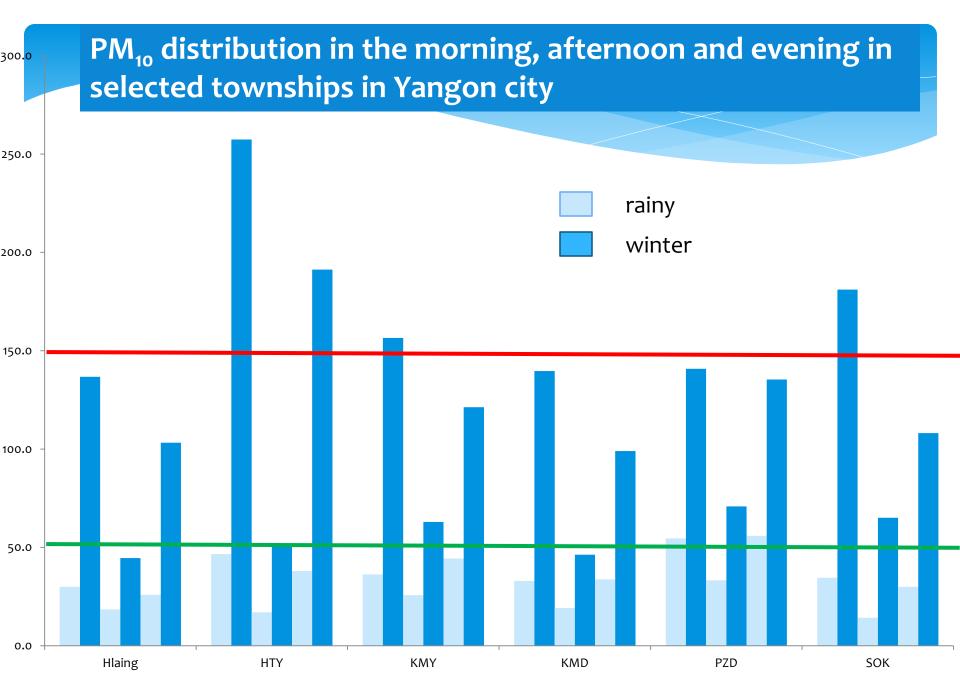
Pilot survey on $PM_{2.5}$ and PM_{10}

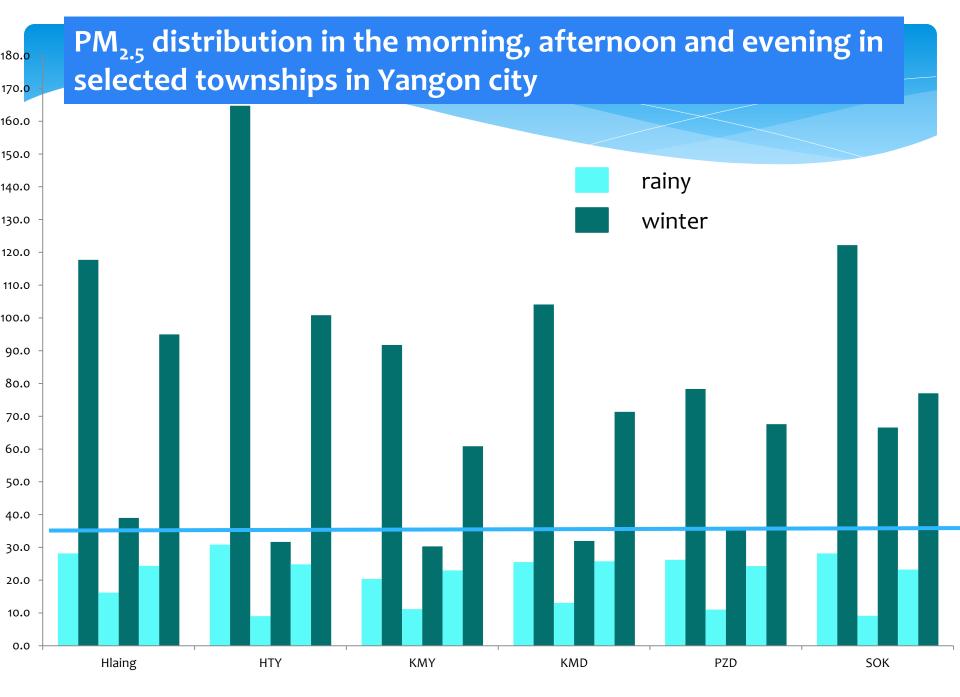
Temporal and Seasonal variation



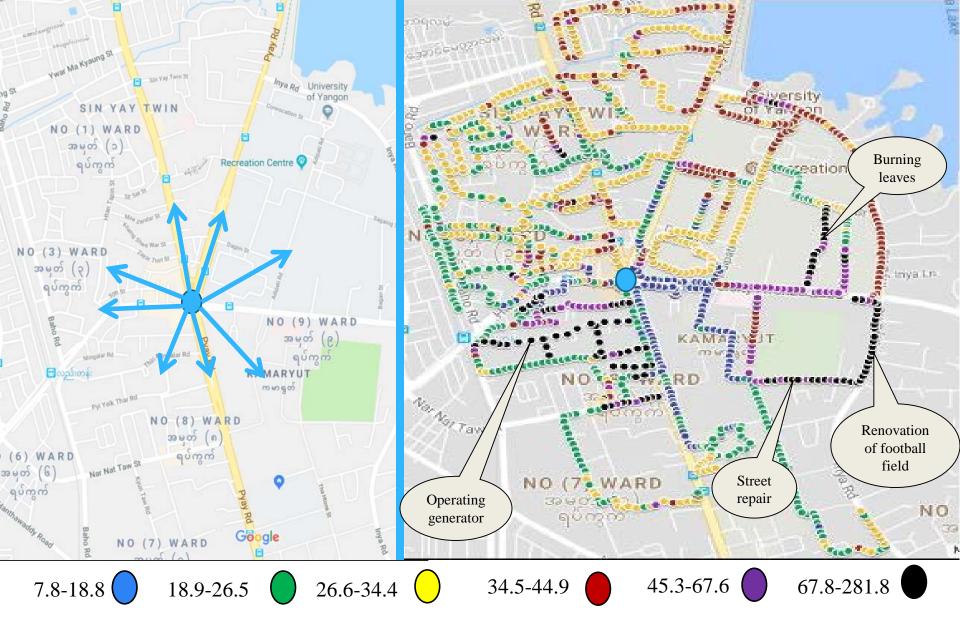
Colour variation showing different PMs levels


Table 1 Specification of Pocket PM_{2.5} Sensor (Yaguchi Electric


	Corp.)						
	No	ltem	Parameter				
	1	Measurement parameters	PM2.5,PM10				
	2	Measurement range	0.0-999.9 µg /m3				
	3	Rated voltage	5 V				
	4	Rated current	60 mA ± 10 mA				
	5	Sleep current	< 4 mA laser and fan sleep				
	6	Temperature range	Storage environment: - 10 ~ + 50 * C				
			Work environment:- 20~+60 °C				
	7	Humidity range	Storage environment: max 90% Work environment: max 70%				
	8	Air pressure	86 KPa - 110 KPa				
	9	Corresponding time	1 \$				
	10	Serial data output frequency	1 Hz				
	11	Minimum resolution of particle	< 0.3 µm				
	12	Counting yield	70%@0.3 μm 98%@0.5 μm				
	13	Relative error	Maximum of ± 15% and ± 10 µg/ m3 25 °C. 50%RH				
3: od		Provide and a first					
	14	Product size	42.5 × 32 × 24.5 (mm)				


Winter: January 2018 Monsoon: September 2018

HTA



Temporal variation: PM_{2.5} & PM₁₀

Both PM_{2.5} and PM₁₀ in the morning and in the evening during winter season (although 15 minute quality) are found to be much higher than 24-hour health based standards.

Pilot survey on PM_{2.5} and PM₁₀ in Yangon city

Real time assessment with spatial variation

Location of sampling area (Hledan Junction) in Kamayut Township, Yangon, Myanmar.

Conclusion

 Outdoor air was being contaminated with traffic-related pollutants, resulting from the greater traffic volume in recent years.

Recent relaxation in vehicle import regulations causes noticeable influx of motor vehicles in Yangon;

registered vehicles has largely increased from approximately **480,000** vehicles in 2013(<u>RTAD, 2013</u>) to over **870,000** vehicles in April 2018 (<u>RTAD, 2018</u>).

Conclusion

* Indoor air quality varied with

- indoor characteristics of the building
- indoor human activities
- ventilation.

 It is also noted that gases with health concern such as toluene and formaldehydes are identified in indoor air

Conclusion

 The PM₁₀ and PM_{2.5} level in Yangon city has reached the noticeable level, especially during rush hour in winter season.

Within townships, air quality, particularly in relation to concentrations of PM_{2.5} tends to be worse close to busy roads, and construction sites.

On-going research

Indoor air quality: PCB (polychlorinated biphenyl)

- in 5 locations using diffusive air sampler (DSD-CX)
- monthly for one year (May 2018 to April 2019)
- * Sample collection: still in progress

Outdoor air quality: O3 and NO2

- * in 3 locations:
 - Heavy traffic (Tamwe Tsp: Furniture shop),
 - Moderate traffic (KMY Tsp: um1)
 - Low traffic (HTY Tsp: FMI city),
- * for 5 days
- * Sample collection: completed
- * Analysis: still in progress

Our future plans

To detect individual exposure screening of PM_{2.5} concentration in highly contaminated area using pocket sensor

- To continue PM air quality assessment (with fixed station and mobile equipment)
 - for 24-hour average as well as annual data
 - in other locations in Yangon city
 - in other major cities in Myanmar
- To investigate whether association exists between PM_{2.5} concentration and health risk in Myanmar.
- * Individual exposure to some hazardous pollutants by using personal samplers
- * Formaldehyde exposure to Faculty members working in Medical university

Acknowledgements

- National Institute of Public Health, Japan (NIPH)
 - Dr. Naoki Kunugita
 - Dr. Shigehisa Uchiyama
- National Institute of Environmental studies, Japan (NIES)
 - * Prof. Chiho Watanabe
 - * Dr. Daisuke Nakajima
 - * Dr. Tin Tin Win Shwe
 - * Dr. Takehiro Suzuki

Acknowledgements

University of Medicine (1), Yangon, Myanmar Rector Prof. Zaw Wai Soe

• All the staff who participated in air sampling at selected locations

