Why Are Air Pollutants Toxic?

Shinichi Enami National Institute for Environmental Studies

	Background			
0 due to <i>PM</i> ^{2.5} 0 000 000 000 00000 0 0000 000 000 000	Why is PM _{2.5} toxic ? Because PM _{2.5} is so small, reaches ELF, and produces ROS therein.	PM2.5	PM2.5	PM2.5
ortality (10 ⁻ et al. (2004, GB, 10 ⁻ silva	What happens if OH-radicals are formed in ELF ?	Antioxidants,	И соон	ELF Ξ.0Η ~0.1-0.5 μm

Fig. 1 Literature estimates of global premature mortality attributed to outdoor air pollution by fine particulate matter (PM_{2.5}). Red color indicates Global Burden of Disease review articles.

~4 million people die every year due to PM_{2.5}

Surfactant proteins will be oxidized. However, we don't know how.

- ELF = Epithelial Lining Fluid
- ROS = Reactive Oxygen Species (e.g., OH-radicals)

Blood Epithelium Endothelium

Fig. 2 Inhalation of PM_{2.5} induces OH-radicals in epithelial lining fluid (ELF). ELF contains antioxidants, lipids and surfactant proteins.

References:

- S. Enami et al., "Acidity enhances the formation of a persistent ozonide at aqueous ascorbate/ozone gas interfaces" Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 7365.
- M. Shiraiwa, S. Enami et al., "Aerosol health effects from molecular to global scales", Environ. Sci. Technol., 2017, 51, 13545.

Simulation of OH-radical oxidations of human surfactant protein B at the air-ELF interface

Fig. 3 Schematic diagram of present method. Water microjets containing SP-B₁₋₂₅ are exposed to gaseous OH-radicals, generated by photolysis of O_3/H_2O gas mixture.

- **In-situ** photochemical generation of OH-radicals
- Direct detection of **interfacial** (~1 nm) intermediates within $<10 \ \mu s$
- Under **ambient** pressure and temperature

SP-B₁₋₂₅ microjets in $O_2(g)/H_2O(g)/N_2(g)$ mixtures (gray), or exposed to ~500 ppmv $O_3(g)$ in $O_2(g)/H_2O(g)/N_2(g)$ mixtures in the presence (red) of 40 mJ 266 nm pulses. B) Spectra of $[SP-B_{1-25}+4H^+]^{4+}$ and its oxidation products in the 730–760 Da range.

Fig. 5 Reactant (A) and products (B, C) mass spectral signal intensities from aqueous 43 μ M SP-B₁₋₂₅ microjets exposed to $O_3(g)/O_2(g)/H_2O(g)/N_2(g)$ mixtures at $[O_3(g)]$ ~600 ppmv, irradiated with 266 nm laser beams as functions of laser energy (in mJ pulse⁻¹). Background (before pulsing at 266 nm) products signals were

$SP-B_{1-25}: F_{1}P_{2}I_{3}P_{4}L_{5}P_{6}Y_{7}C_{8}W_{9}L_{10}C_{11}R_{12}A_{13}L_{14}I_{15}K_{16}R_{17}I_{18}Q_{19}A_{20}M_{21}I_{22}P_{23}K_{24}G_{25}$

Fig. 6 OH-radicals selectively oxidize two cysteines and one tryptophan of SP-B₁₋₂₅ at the air-water interface.

Sink !

7 PM_{2.5}-induced OH-radicals degrade the tensioactive Fig. properties of SP-B. This mechanism may partly explain why PM₂₅ is "toxic".

Reference: S. Enami and A. J. Colussi, "OH-radical oxidation of lung surfactant protein B on aqueous surfaces", Mass Spectrom. (Tokyo), 2018, 7, S0077.

subtracted.