4th NIES Int'l Forum Whole Transcriptome Analysis In The Estuarine **Amphipod Exposed To Highway Road Dust**

Kyoshiro HIKI⁺, Fumiyuki Nakajima^{*}, Tomohiro Tobino[§], Haruna Watanabe⁺, Hiroshi Yamamoto[†] († Center for Environ Risk Research, NIES, Japan. * Environ Sci Center, The University of Tokyo. § Depart Urban Eng, The University of Tokyo.) mail: hiki.kyoshiro@nies.go.jp, hiki.1225@gmail.com

Introduction

- ✓ Urban road dust contains toxic chemicals (e.g., metals, hydrocarbons).
- ✓ Road dust causes adverse effects aquatic on organisms after being flushed into receiving waters by rainfall.
- \checkmark Causative toxicants in road dust are still unknown.
- ✓ Little is known about the mode of action of urban road

dust toxicity to aquatic organisms.

Objective Identify the causative chemicals of road dust toxicity to an estuarine amphipod Grandidierella japonica

- using Toxicity Identification Evaluation (TIE)
- using transcriptome analysis

Results & Discussion

Concentrations of toxic chemicals in dust

	Cr	Ni	Cu	Zn	Cd	Pb	Σ12PAHs	Nicotine
Concentration in dust [mg/kg]	163	96	150	1200	0.26	51	<1.09	8.45
Effect Range Median [mg/kg] *	370	52	270	410	9.6	218	-	-

* Effect Range Median (ERM): Major empirical sediment quality guideline [3].

10-day toxicity test & TIE^[1]

Transcriptome analysis

Road dust was lethally toxic to the amphipods.

✓ At environmental concentration levels (up to 6.8%), significant toxicity was not observed.

The resin **XAD-4** significantly reduced the road dust toxicity. \Rightarrow Organics might be the major contributors to the toxicity.

Summary of transcriptome analysis

	No. of reads (or base pairs)	
Sequenced reads	546,717,510	Long onough to be used
Total length	(55G bp)	Long enough to be used
	050 400	for ecotoxicological

chitin catabolic process were enriched in Cluster 3.

Confirmation by quantitative PCR

Davs

 \checkmark The suppression of GABA_B receptor subunit (gabbr1) in the road dust treatment was confirmed by qPCR.

✓ Metallothionein (mt)was up-regulated by road dust exposure, possibly due to metals contained in the dust.

* N50: the sequence length of the shortest contigs at 50% of the total genome length.

Differentially expressed transcripts

Conclusions

- Sediment TIE indicates that organics were the major contributors to the road dust toxicity.
- \checkmark Transcriptome analyses revealed that exposure to highway road dust affected gene expression related to molting and cuticle biosynthesis. In addition, changes in GABA signaling pathways were found in the RD treatment and recovered in XAD treatment.
- \checkmark Although the linkage between acute lethality and the transcriptome responses was still unclear, our findings would provide lines of evidence to identify the toxicants in urban road dust.

References [1] Hiki et al., 2017, Chemosphere [2] USEPA, 2007, EPA/600/R-07/080. [3] Long et al., 1995, Environ Manag [4] Kumata et al., 2002, Environ Sci Technol