Screening Filter Materials For Enhancing Phosphorus Removal from Wastewater in Constructed Wetlands

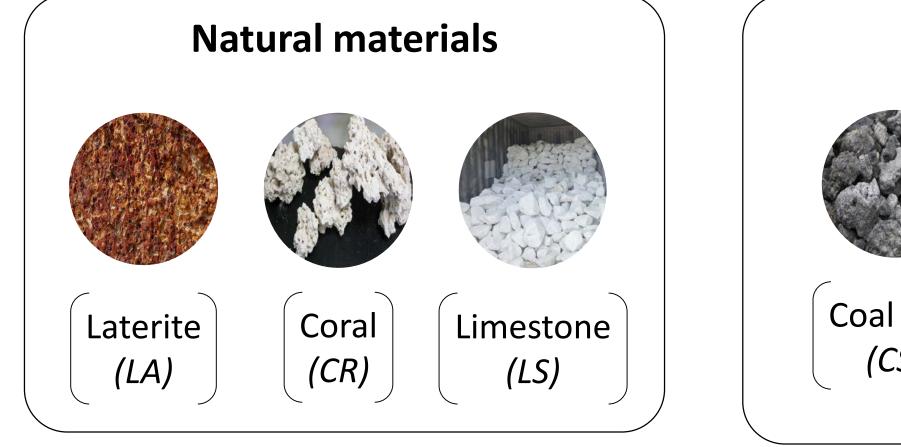
Thi An Hang NGUYEN¹, Ngoc Duy VU², Thi Thuong NGUYEN¹, Thi Thom VU¹, Huu Trung LUONG¹, Jun NAKAJIMA¹, Thi Hoang Ha NGUYEN², Hong Con TRAN², Keisuke SATO³

¹VNU Vietnam Japan University, Vietnam, ²VNU University of Science, Vietnam, ³Ritsumeikan University, Japan

Introduction

The phosphorus removal is essential to protect water bodies from eutrophication. Though the constructed wetlands (CWs) is an environmental friendly technology, its application in Vietnam is still limited, due to its low treatment performance of phosphorus. One of the reasons is the use of traditional substrates, which have low adsorption capacity of phosphorus. This study aims at searching for potential filter materials for use as substrates in constructed wetlands to upgrade the phosphorus removal efficiency. This study investigated 6 locally available materials in both raw and modified forms. The potential materials were selected using 5 main criteria and then characterized. The study also proposed the initial idea of using the selected materials in the hybrid adsorption – constructed wetland system.

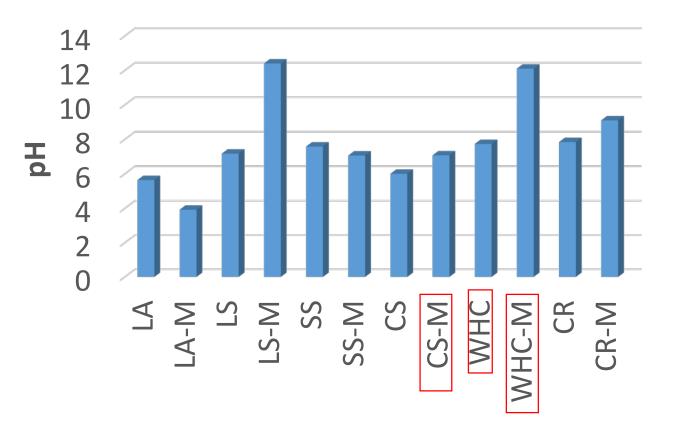
Results **Screening filter materials** Phosphorus adsorption capacity of materials (**b/gm**) / 15 17.9 in previous studies 15.7 capacity 10 **P** sorption Materials capacity Reference (mg/g)Drizo et al., 1999 0.61 Bauxite 2.43 2.8 2.18 ZhenWang et al., 2013 2.82 Zeolite 0.043 ZhenWang et al., 2013 0.227 Volcanic


Objectives

- To identify the potential filter materials for being used as substrate in CWs
- To characterize the selected filter materials
- To propose an initial idea of CW design with the selected filter materials

Materials and Methods

Materials selection


5 selection criteria: abundant availability, high adsorption capacity, good water conductivity, low cost, less side effects

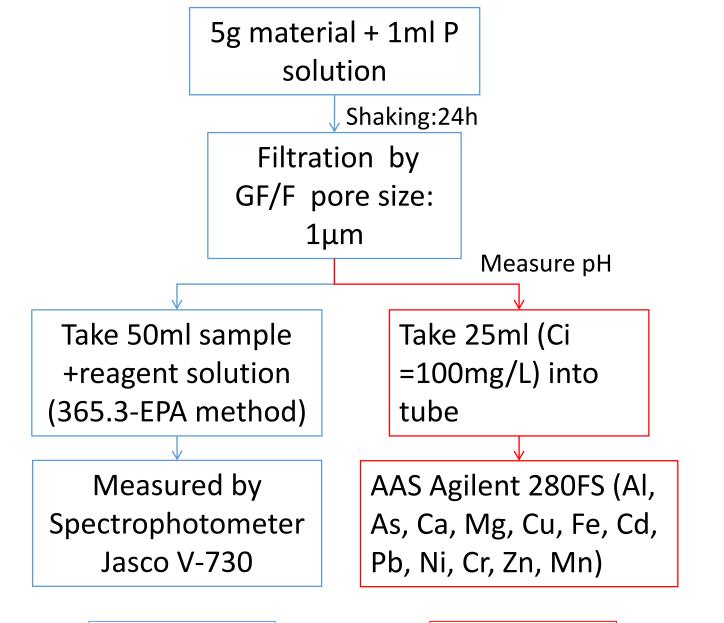
Broken		
bricks	0.594	ZhenWang et al., 2013
Sand (I-II)	0.43-0.44	Zhu et al., 1997
Sand (I-IV)	0.13-0.29	Ádám et al., 2007
Gravel		
		Manua and Davian 1002

pH of post-adsorption solution

Comparison of adsorption capacity of investigated materials (C_i = 200mg/L, shaking for 24h at 120rpm, dose 5g/125ml, T= 27°C)

Permeability of investigated materials and gravel,
coarse sand

Sample	Permeability constant (K) (cm/s)					
LA	4.7					
CS	8.5					
LS	1.2					
WHC	4.5					
WHC-M	4.6					
SS	2.2					
Gravel	1.0					
Coarse sand	0.1 - 1					
	(Size: 1.4 – 2.2mm)					


Heavy metals release in post-adsorption solutions

,	•	•								
Samples	As	Cd	Cr	Cu	Mn	Ni	Pb	Zn	Hg	Fe
WHC-M	<0,002	<0,002	<0,002	<0,002	<0,002	0,042	<0,002	<0,002	<0,0002	<0,002
WHC	<0,002	<0,002	0,005	<0,002	0,005	0,011	<0,002	0,116	<0,0002	0,475
SS	<0,002	<0,002	0,005	0,011	0,374	0,009	0,007	0,088	<0,0002	1,11
LS	<0,002	0,002	0,003	<0,002	0,013	0,003	0,012	0,108	<0,0002	0,79
			0 01 2		0 067	0 0 2 0	0 002	0 2/0		0 1 0 /

* To improve P adsorption capacity of materials

Thermal modification						
Material	Modified at					
Limestone	800°C					
White hard clam	700°C					
Coral	700°C					

P adsorption and side effects test

Chemical treatment

Material	Modified by
Laterite	$H_2SO_4 0.5M$
Coal slag	NaOH 1M, Mg 0.5M
Steel slag	$H_2SO_4 0.5M$

Permeability

Based on Darcy's Law to find permeability constant of materials

 $Q = KA \frac{\Delta h}{L}$

Q: Fluid flow (cm³/s); K: Permeability constant (cm/s); A: Cross sectional area (cm²); Δh: Difference in height of water (cm); L: Flow length (cm)

	NU,UUZ	NU,002	0,012	NU,00Z	0,007	0,023	0,005	0,540	NU,000Z	0.104	
LA	0,021	<0,002	0,006	<0,002	0,033	0,009	0,002	0,162	<0,0002	0,59	
QCVN (mg/L)	0.05	0.1	1	2	1	0.5	0.5	3	0.005	5	

=> Heavy metals release were lower than permissible levels

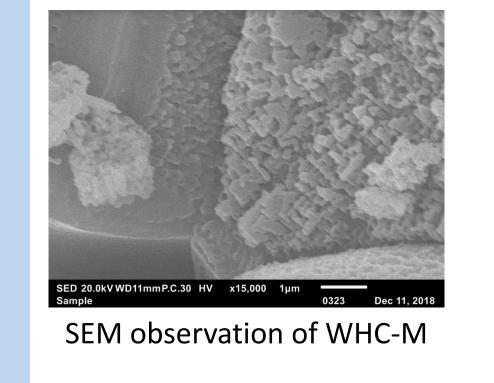
100

75

50

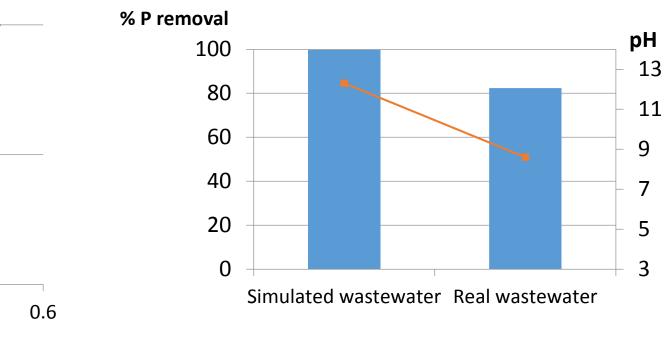
removal

ط


%

Characteristic of WHC-M

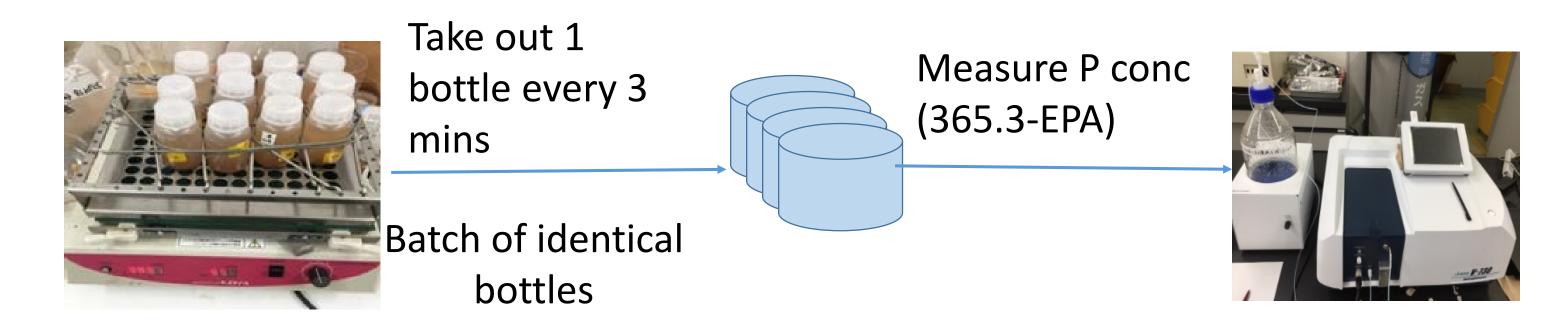
Distribution of WHC in


Northern Vietnam

Proposed CW design

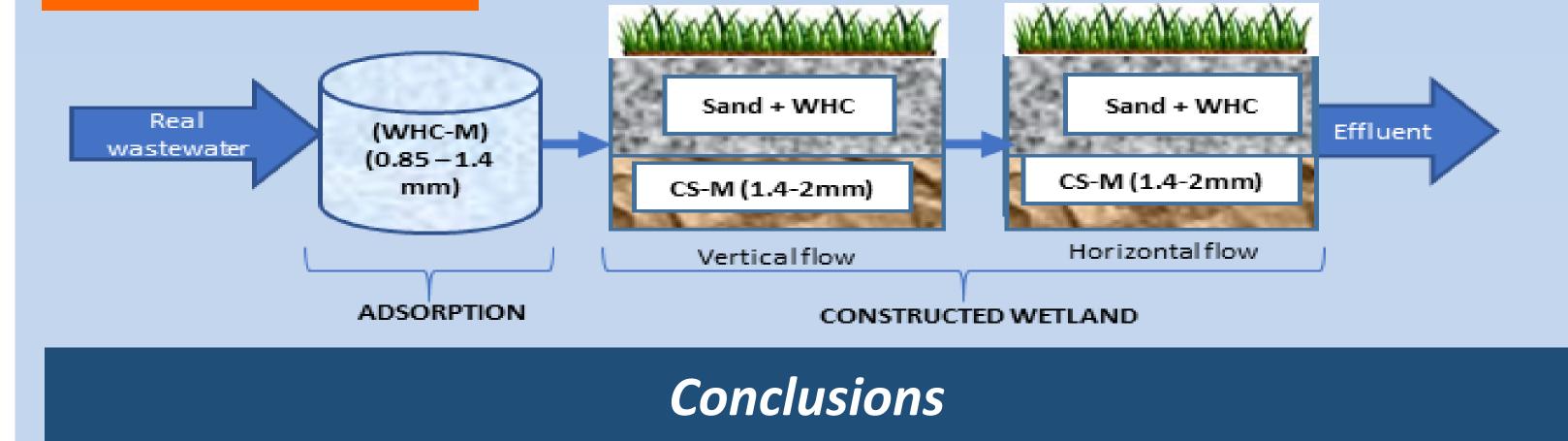
Quantity of WHC in coastal provinces in the north and north central region

Quantity (ton/year)									
Province	Lowest	Highest	Average						
Quang Ninh	0.6	60	9.2 ± 1.8						
Thai Binh	30	700	137.5 ± 20.5						
Nam Đinh	10	1000	144.7 ± 20.5						
Thanh Hoa	3.5	200	46.5 ± 5.5						
Ha Tinh	2.5	250	35.7 ± 7.2						


P adsorption capacity of WHC-M by real wastewater and simulated wastewater

----> Adsorption test

Side effects test


Kinetic batch experiment

3 g of granular materials is added with 75 mL of synthetic P solution ($C_i = 200 \text{mg/L}$) for phosphorus adsorption over time

Contact Information

Corresponding author: Dr. Nguyen Thi An Hang Affiliation: VNU Vietnam Japan University (VJU) Email: nta.hang@vju.ac.vn Mobile phone: (+84) 98 898 5148

0.4

Time (h)

Kinetic test of WHC-M

- Among investigated materials, WHC-M shows the highest P adsorption capacity while CS yields the highest modification efficiency.
- Optional modification of WHC is 700°C, 3h.
- CS, WHC, WHC-M seems to be suitable for being used as the substrate in CWs.
- Initial design of CWs combining adsorption and CWs is proposed.