

WGIA22 16 July 2025

A nationwide soil carbon calculation system for Japanese agricultural land

Yasuhito SHIRATO
Institute for Agro-Environmental Sciences, NARO

National Agriculture and Food Research Organization

Contents

Japan uses the IPCC Tier 3 modelling method to calculate CO₂ emissions or removals derived from changes in soil carbon in agricultural land.

- Introduction: Soil carbon sequestration and climate change mitigation.
- Validation and modification of soil C model.
- Development of a nationwide calculation system.
- Use of the system for National Inventory Report (NIR) and Nationally Determined Contribution (NDC).
- Web-based decision support tool by using model.
- Importance of primary data: long-term experiments.

Soil carbon sequestration & climate change mitigation

- "Carbon" accumulated as dark-colored "soil organic matter": Important index of productivity.
 - Size of soil C pool is huge.

Storing C in soils has huge potential to mitigate increase in atmospheric CO₂ and contribute to sustainable food production.

"The 4 per 1000 initiative" for soil C sequestration.

Soil C model: useful tool for future prediction and spatial evaluation

Rothamsted Carbon (RothC) model

- One of widely used soil C models developed in UK.
- Simpler structure has advantage for model modification.

CENTURY model is used for Forest

• Similar structure. RothC is simpler.

Long-term experiments for model validation

Performance of RothC in non-volcanic upland soils

(Shirato & Taniyama, 2003)

But in Andosols.....

The model underestimated the SOC.

Andosols have high C concentration

How to modify the RothC for Andosols

Active Al or Fe derived from volcanic ash forms stable complex with humus → Slow decomposition

 Changing HUM (humus) decomposition rate constant.

by dividing with a factor(F), which changes with the amount of active Al or Fe.

F=2.50 Alp + 1.20 (Alp: Pyrophosphate extractable Al)

In soils with much Al-humus complex, SOC decompose slowly.

2. IOM (Inert Organic Matter)=0

Modified model for Andosols

with measurement data.

(Shirato et al., 2004)

What happen in paddy soils?

The model underestimated SOC, as expected (slower decomposition because of anaerobic condition)

How to modify the RothC for paddy soils?

- The model underestimated SOC, as expected (slower decomposition because of anaerobic condition)
- ➤ We can slow down the decomposition rate of C in rice growing period.
- How about in non-rice growing period?
 Paddy soils have different microorganism composition (e.g.

Smaller proportion of fungi, which play major role in decomposing lignin or cellulose, than bacteria)

→ decomposition may slower than upland soils, too.

Decided to modify the model by...

- 1.Changing the decomposition rates of the RothC during the submergence period (summer) and the period without submergence (winter), separately.
- 2. Find out the optimum combinations of the decomposition rate.

Modified model for paddy soils

0.2 and 0.6 times slower decomposition rate, in rice growing season (submerged) and another period, respectively.

Good agreement with measurement.

Validation and modification of the RothC: Japanese version

→ Nationwide soil C calculation system by using 3 versions

Nationwide calculation system of soil C

Contribution to Japan's NIR and NDC

 NIR: RothC model calculation is used for CO₂ emission/removal derived from changes in the amount of soil C in cropland & grassland from NIR 2015. Chapter 6. Land Use, Land-Use Change and Forest Rothamsted Carbon Model (RothC) Crop residue Climate: Monthly average temperature, participation, and evaporation from DPM RPM water surface Soils: Soil clay content, depth of surface soil, default value of carbon content, and HUM BIO Management: Carbon input from crop IOM residue, farmyard manure, and presence or absence of vegetative cover RPM: Resistant Plant Material Monthly soil carbon HIM: Humified OM Figure 6-5 Roth C model

 NDC: Cropland & grazing land management: 7.9 Mt-CO₂* removal in 2030 by increasing organic matter input to soils.

^{*}Intended Nationally Determined Contributions (INDC): Greenhouse Gas Emission Reduction Target in FY2030 (Ministry of Foreign Affairs of Japan)

Web-based decision-support tool visualizing soil C and GHGs emission

How it works

Asian Network of long-term experiments

Primary data (long-term experiments) is important.

Models cannot be developed without measurement data.

Since 2017

- Most of studies published on long-term field experiments are from Europe and north America. Not many from Asia.
- Networking long-term experiments in Asian countries can be valuable.
- Enormous variation in climate, soil type, and cultural practices.

Summary

- Japan uses IPCC Tier 3 modelling method to report CO₂ emission/removals from changes in agricultural soil C.
- The RothC model was validated and modified.
- A nationwide soil C calculation system was developed.
- This calculation system is used for NIR and NDC.
- A web-based decision support tool was developed.
- Primary data (e.g. long-term field experiments) are basis for all above.
- Soil C sequestration contribute both climate change mitigation and food security. These models and tools can help to widely disseminate mitigation options.