Enteric methane emission models for diverse beef cattle feeding systems in South-east Asia: A meta-analysis

T.P. Tee^a, Y.M. Goh^a, M.H.M. Zainudin^a, S.C.L. Candyrine^a, K. Sommart^b, K. Kongphitee^b, W. Sumamal^c, I. Phaowphaisal^c, R. Namsilee^c, W. Angthong^c, S. Sunato^c, O. Keaokliang^c, K. Maeda^d, N.V. Thu^e, T.T. Trung^e, N.T.K. Dong^f, A. Purnomoadi^g, M. Kurihara^h, A. Jayanegaraⁱ, K. Higuchi^h, Y. Kobayashi^h, F. Ohtani^h, H. Abe^h, F. Terada^j, H. Kumagai^k, H. Matsuyama^l, I. Nonaka^h, N. Takusari^h, N. Shiba^h, K. Hosoda^h, T. Suzuki^{d,h}, Y. Kamiya^h, T. Nishida^m, K. Hayasaka^h, M. Shibata^h, M. Wangⁿ, Z.L. Tanⁿ, R. Wangⁿ, E. Kebreab^o, H.J. van Lingen^p, A.N. Hristov^q, J.B. Liang^a
^a Universiti Putra Malaysia, ^b Khon Kaen University, Thailand, ^c Ruminants Feeding Standard Research and Development Center, Thailand, ^d JIRCAS, Japan, ^e Can Tho University, Viet Nam, ^f Tay Do University, Viet Nam, ^g Diponegoro University, Indonesia, ^h NARO, Japan, ⁱ IPB University, Indonesia, ^j Tohoku University, Japan, ^k Kyoto University, Japan, ^l Yamagata University, Japan, ^m Obihiro University Japan, ⁿ Institute of subtropical

Agriculture, China, ^o University of California, Davis, USA, ^p Wageningen University &

Research, the Netherlands, ^q The Pennsylvania State University, USA

<u>Abstract</u>

Prediction models for enteric methane (CH₄) emissions from beef cattle proposed by various groups may not perform with similar accuracy for the low- and middle-income countries in South-east Asia (SE-Asia) because beef cattle in these countries are raised under different climatic conditions with diverse feeding systems, and have different CH₄ emission characteristics. The objectives of this study were to: i) predict CH₄ emission (g d⁻¹ animal⁻¹), yield [g kg⁻¹ dry matter intake; DMI) ⁻¹], intensity [g kg⁻¹ average daily gain) ⁻¹], and CH₄ conversion factor (Ym) using an intercountry database of individual animal records from SE-Asia; ii) evaluate the impact of different dietary forage contents (all-, high- and low-forage) representing the diverse feeding systems on CH_4 emission, yield, intensity and Ym in SE-Asia; and iii) cross-validate equations from this study with published data. A total of 398 individual animal observations of beef cattle from SE-Asia were used for this analysis. Linear models developed by incrementally adding covariates revealed that CH₄ emission model using only DMI fitted to all data had a root mean square prediction error (RMSPE) of 16.9%. Subsets containing data with 100% forage in the diet (all-forage), 50-85% (high-forage) and < 50%(low-forage) had an RMSPE of 16.5%, 14.7%, and 17.4%, respectively. Linear multiple equation based on DMI and dietary NDF concentration (DMI + NDF C, RMSPE = 15.2%; alldata) improved prediction accuracy over that of DMI alone. The DMI + NDF C models for allforage (RMSPE = 14.6%) and high-forage subsets (RMSPE = 13.3%) except for low-forage (RMSPE = 16.4%), improved the precision and accuracy of CH_4 emission prediction. Methane yield and CH₄ emission intensity could not be reliably modelled with the current database. The present study provides improved CH₄ prediction models for beef cattle managed under diverse feeding systems in SE-Asia and affirmed that region-specific models are needed to reliably predict beef cattle CH₄ emission at national or regional levels, particularly for low- and middleincome countries.

<u>References/ Publications</u>

Anim. Feed Sci. Technol. 294:115474. doi: 10.1016/j.anifeedsci.2022.115474