Thailand's Uncertainty Assessment

Savitri Garivait, JGSEE

WGIA 7

July 7-10, 2009 Mayfield Hotel Seoul, Korea

What are we doing? How do we process? ... (1)

- Conducting the GHGs emission inventory for the Second National Communication (SNC)
- Uncertainty assessment is based on a simplified method of determining data source of uncertainties.
 - Assumptions and methods
 - Input Data (Activity Data and Emission Factors)
 - Calculation errors
- Currently: uncertainty assessment for each key category included in the inventory
- Next step: uncertainty assessment for each sector and then for the entire inventory

What are we doing? How do we process? ... (2)

Source of data

- National statistics agencies, international organizations publishing statistics (e.g. IEA, OECD, etc.)
- Sectorial experts, stakeholder organizations, national experts, international experts
- IPCC Database
- Reference libraries (national and university libraries), scientific and technical books journals, articles in environmental books, and reports.
- Web search for organizations & specialists
- National Inventory Reports from Parties to the United Nations Framework Convention on Climate Change
- Others

Preliminary lessons learnt ... (1)

- In many cases empirical data are not available, and so need to use well-informed judgments from experts
- Possible biases: availability bias, representativeness bias, anchoring and adjustment bias, motivational bias, managerial bias...
- However, using formal expert elicitation protocols DID NOT ALWAYS solve the problem! => Solution: welldocumented data in order to constrain expert judgments

Preliminary lessons learnt ... (2)

Example of using expert judgment for waste sector

Industrial Wastewater	Fxn1	Unc. (%) Ex	2 Unc. (%	Fxn3	Unc. (%) Ex	rp4 Unc. (%)	Exp5 Unc. (%)	Exp6	Unc. (%)	Fxn7	Unc. (%)	Exp8	Unc. (%)	xn9 l	Inc. (%)	Ave MCF	SD (Unc. (%))
MCF for Anaerobic covered lagoon Technologies	0.8	. ,	0.8	0.6	. ,	0.75	0.6	0.7	/	0.6	50		70	1	100	0.71	11.51
MCF for Upflow Anaerobic Sludge Blanket (UASB) Technologies	0.9		0.8	0.6		0.85	0.8	0.85		0.8	50	0.8	80	0.9	100	0.80	12.48
MCF for Anaerobic Filter Technologies	0.8		0.8	0.6		0.85	0.6	0.75		0.8	50	0.8	80	0.9	100	0.73	12.45
MCF for Anaerobic Tank Technologies	0.8		0.8	0.5		0.7	0.6	0.7		0.7	50	0.8	80	0.9	100	0.68	12.41
MCF for Anaerobic Pond Technologies	0.6		0.6	0.5		0.65	0.4	0.6		0.3	50	0.3	70	0.8	100	0.56	11.34
MCF for Anaerobic digester Technologies	0.8		0.8	0.6		0.8	0.6	0.75		0.7	50	0.8	80	0.9	100	0.73	12.43
MCF for Septic Tank Technologies	0.4		0.6	0.4		0.5	03	0.7		0.4	50	0.5	80	0.9	100	0.52	13.44
MCF for Stabilization Pond Technologies	0.2		0.3	0.2	(0.35	0.4	0.25		0.1	50	0.5	70	0.7	90	0.28	11.18
MCF for Polishing Pond Technologies	0		0.1	0		0	0.3	0.3		0	50	0.2	60	0.4	90	0.12	10.12
MCF for Aerated Lagoon	0		0.1	0		0	0.1	0.25		0	50	0.1	50	0.2	100	0.08	9.16
MCF forActivated Sludge	0		0.1	0		0	0	0.15		0	50	0	100	0.1	100	0.04	13.67
Oxidation Ditch Technologies	0		0.1	0		0	0.25	0.2		0.2	50	0.1	80	0.3	90	0.09	11.92
MCF for Constructed Wetland Technologies	0.4		0.2	0		0.1	0.25	0.2		0.1	50	0	100	0.2	90	0.19	13.77
MCF for Sequencing Batch Reactor (SBR) Technologies	0.1		0.3	0		0	0	0.2		0.1	50	0	80	0.1	90	0.10	11.89
MCF forDissolved air foatation				0		0		0.05		0	50	0	100	0	100	0.02	18.76
MCF forบ่อพักน้ำเสีย				0		0	0.3	0.1		0.1	50	0	80	0.4	90	0.10	14.54
MCF forบ่อเก็บน้ำเสีย				0.1		0.35	0.2	0.05		0.1	50	0.1	80	0.4	90	0.18	14.59
Domestic wastewater																	
MCF for Stabilization Pond Technologies	0.2		0.2	0		0.4	0.2	0.25		0.1	50	0.2	80	0.5	90	0.21	12.00
MCF for Oxidation Ditch,	0		0.1	0		0	0.1	0.2		0.1	50	0	100	0.1	90	0.07	13.69
MCF forAerated Lagoon	0		0.1	0		0	0.1	0.15		0	50	0	100	0.1	90	0.06	13.68
MCF forActivated Sludge Technologies	0		0.1	0		0	0	0.1		0	50	0	100	0	100	0.03	13.65
MCF for Contact Stabilization Activated Sludge (CSAS) Technologies	0		0.1	0		0	0	0.08		0	50	0	100	0	90	0.03	13.65
MCF for Two-Stage Activated Sludge Process Technologies	0		0.1	0			0	0.07		01	50	0	90	0	100	0.03	15.57
MCF for Combination of Fixed Activated Sludge(CFFAS) Technologies	0		0.1	0			0	0.075		0.1	50	0.1	80	0.1	90	0.04	13.05
MCF for Rotating Biological Contractor (RBC) Technologies	0.1		0.2	0		0.1	0.1	0.075		0.1	50	0.1	80	0.2	90	0.10	11.91
MCF for Constructed Wetland Technologies	0.4		0.2	0		0.1	0.2	0.15		0.2	50	0.2	80	0.2	90	0.18	11.97
MCF for Anaerobic filter (AF) Technologies	0.8		0.7	0.6		0.85	0.6	0.8		0.3	50	0.8	80	0.8	100	0.73	12.39
MCF forseptic Tank	0.4		0.6	0.5		0.5	0.4	0.85		0.4	50	0.6	80	0.8	100	0.54	12.28

Preliminary lessons learnt ... (3)

- Even simple uncertainty estimates give useful information
- Good QA/QC and careful consideration of methods can improve representativeness of the data (reduce uncertainty)
- Assessment of uncertainty in the input parameters should be part of the standard data collection QA/QC
- For simple estimate: use of "Approach 1" is generally sufficient to get useful information for better understanding in source and sink

Next steps ... (1)

- For uncertainty assessment of each sector and the entire inventory: use of error propagation method for combining uncertainty = choice for Tier 1
- Wherever possible Monte Carlo approach can be applied, i.e. PDF available, it will be tested and adopted if it enables a better understanding of source and sink and of the entire inventory uncertainty.

