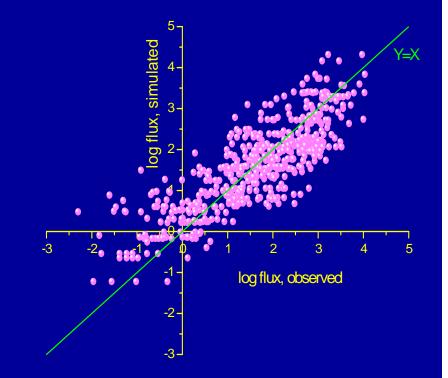

CH₄ and N₂O from rice paddies in 2006 **IPCC GLs** X Estimate of Japanese country specific N₂O emission factors Hiroko Akiyama[†], Kazuyuki Yagi[†], Xiaoyuan Yan* [†]National Institute for Agro-Environmental Sciences, Japan *Frontier Research Center for Global Change Current address: Nanjing Institute for Soil Science, China

1. CH₄ from rice paddies in 2006 IPCC GLs

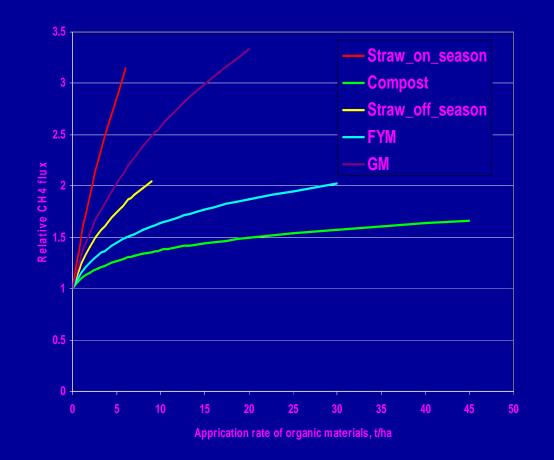
A database of methane emission from rice field



Collected over 800 field measurement data

A statistical model

 $Ln (flux) = Intercept + a \times \ln(OC) + pH_m +$ $PW_i + Water_i + Climate_k + OM_i \times \ln(1 + AOM)$


- Soil properties: soil pH, SOC
- Preseason water: flooded, short drainage, long drainage
- Rice season water: continuous flooding, single drainage, multiple drainage
- Organic amendment: rice straw, rice straw off season, green manure, farm yard manure, compost

• Climate

Statistical results: Effects of major influencing factors

Organic amendment

2006 IPCC Guidelines for National Greenhouse Gas Inventories

5.4 CH4 EMISSIONS FROM RICE CULTIVATION

EQUATION 5.4.1 CH₄Emissions from Rice Cultivation

Emissions from Rice Cultivation (Gg/yr) = $\sum_{i} \sum_{j} \sum_{k} (EF_{ijk} \bullet t_{ijk} \bullet A_{ijk} \bullet 10^{-6})$

i, j, and k: different ecosystems, water regimes, organic amendments, etc.

EQUATION 5.4.2 Adjusted Seasonally Integrated Emission Factor

 $EF_i = EF_c \bullet SF_w \bullet SF_p \bullet SF_o \bullet SF_{s,r}$

Default baseline emission

TABLE 5.11 DEFAULT CH ₄ BASELINE EMISSION FACTOR ASSUMING NO FLOODING FOR LESS THAN 180 DAYS PRIOR TO RICE CULTIVATION, AND CONTINUOUSLY FLOODED DURING RICE CULTIVATION WITHOUT ORGANIC AMENDMENTS					
CH ₄ emission (kg CH ₄ ha ⁻¹ d ⁻¹)	Emission factor	Error range			
	1.30	0.80 - 2.20			
Source: Yan et al., 2005					

2006 IPCC Guidelines for National Greenhouse Gas Inventories

5.4 CH4 EMISSIONS FROM RICE CULTIVATION

Scaling factors for water regime

DEFAULT C	TABLE 5 \mathbf{H}_4 EMISSION SCALING FACTORS FOR WATER RE CONTINUOUSLY FLOODED FIELDS (W	CIMES DURING			LATIVE TO
	Water Regime	Aggregated case		Disaggregated case	
		Scaling Factor (SF _w)	Error Range	Scaling Factor (SF _w)	Error Range
	Upland ^a		-	0	-
	Continuously flooded		0.62-0.98	1	0.79-1.26
Irrigatedb	Intermittently flooded - single aeration	0.78		0.60	0.46-0.80
	Intermittently flooded – multiple aeration			0.52	0.41-0.66
Regular rainfed				0.28	0.21-0.37
Rainfed ^c	Drought prone	0.27	0.21-0.34	0.25	0.18-0.36
Deep water				0.31	ND

Scaling factors for preseason water regime

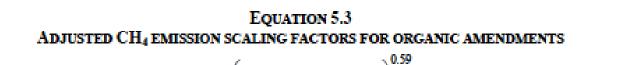

Water regime prior to rice cultivation (schematic presentation showing flooded periods as shaded)	Aggregat	ted case	Disaggregated case		
	Scaling factor (SF _p)	Error range	Scaling factor (SF _p)	Error range	
Non flooded pre- season <180 d	P		1	0.88 - 1.14	
Non flooded pre- season >180 d	1.22	1.07 - 1.40	0.68	0.58 - 0.80	
Flooded pre- season (>30 d) ^{a,b}	12		1.90	1.65 - 2.18	
^a Short pre-season flooding periods of less than 30 d are not ct ^b For calculation of pre-season emission see below (section or Source: Yan <i>et al.</i> , 2005		f SFp			

TABLE 5.13

2006 IPCC Guidelines for National Greenhouse Gas Inventories

5.4 CH4 EMISSIONS FROM RICE CULTIVATION

Scaling factor for organic amendments

$SF_o = \left(1 + \sum_i ROA_i \bullet CFOA_i\right)^{int}$

TABLE 5.14 DEFAULT CONVERSION FACTOR FOR DIFFERENT TYPES OF ORGANIC AMENDMENT					
Organic amendment	Conversion factor (CFOA)	Error range			
Straw incorporated shortly (<30 days) before cultivation ^a	1	0.97 - 1.04			
Straw incorporated long (>30 days) before cultivation ^a	0.29	0.20 - 0.40			
Compost	0.05	0.01 - 0.08			
Farm yard manure	0.14	0.07 - 0.20			
Green manure	0.50	0.30 - 0.60			

* Straw application means that straw is incorporated into the soil, it does not include case that straw just placed on the soil surface, nor that straw was burnt on the field.

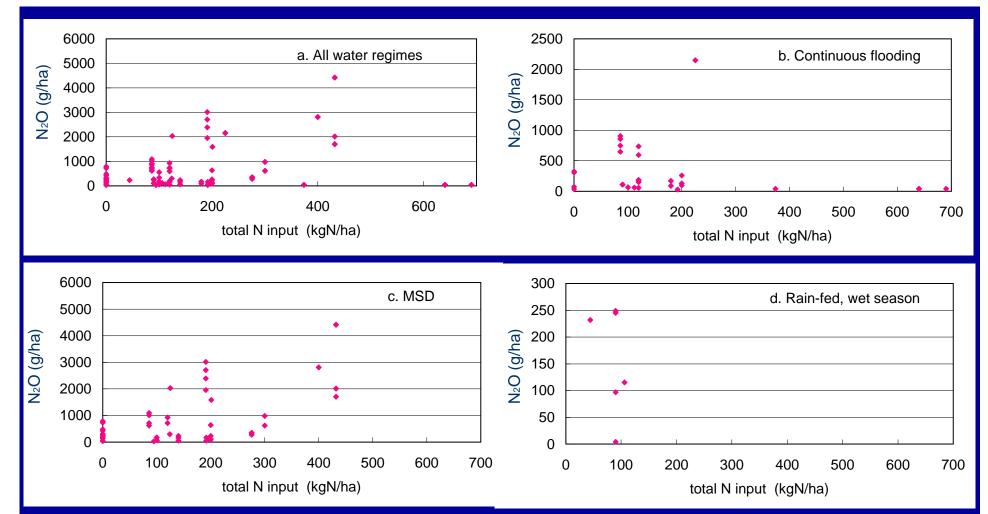
Source: Yan at al., 2005

2. N₂O from rice paddy fields in 2006 IPCC GLs

Materials & Methods:

- Collected results of N₂O emission from rice fields published in peer-reviewed journals before 2004
- After excluding some extreme data (e.g., atypical field management), 113 measurements from 17 sites were used.
 - China (8 sites), India (1 site), Indonesia (1 site), Japan (4 sites), Philippines (2 sites), USA (1 site)

Classification of water regime

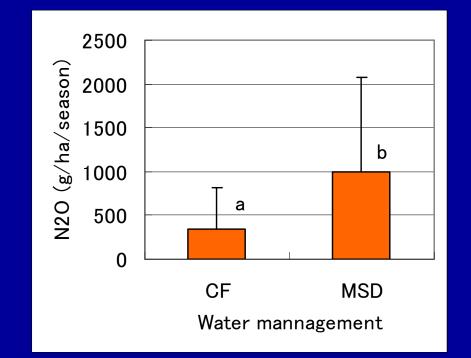

 Continuous flooding (CF)
 Fields flooded whole rice growing season and drained only at the end of the season.

– Midseason drainage (MSD)

• Fields drained one or more times during the ricecropping season. (Common practice in Japan)

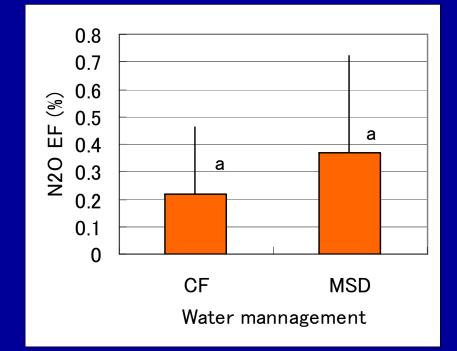
-Rain-fed, wet season (RF)

• Fields with no irrigation system and planted during wet season.


Relationships between total N input and N₂O emission during the growing season.

●N₂O emission : CF < MSD</p>

All water regime & CF : No clear relationship


•MSD : a weak linear relationship ($r^2 = 0.28$, P < 0.01)

Mean N₂O emission from fertilized fields during cropping season

 N_2O emission : MSD > CF

Mean EF during cropping season

No significant difference between CF and MSD
Mean EF = 0.31 %

The IPCC default emission factors for N₂O from agricultural soil (IPCC, 2006)

Emission Factor	Default Value	Uncertainty Range
EF ₁ for N additions from mineral fertilisers, organic amendments and crop residues, and N mineralised from mineral soil as a result of loss of soil carbon [kg N ₂ O-N (kg N) ⁻¹]	0.01	0.003-0.03
EF _{1PR} for flooded rice fields [kg N ₂ O-N (kg N) ⁻¹]	0.003	0.000-0.006
$EF_{2CO,Temp}$ for temperate organic crop and grassland soils (kg $N_2O\text{-}N\ ha^{-1})$	8	2-24
$EF_{2CO,\ Trop}$ for tropical organic crop and grassland soils (kg $N_2O\text{-}N\ ha^{-1})$	16	5- 48
$EF_{2F,\ Temp,\ Org.\ R}$ for temperate and boreal $\ organic\ mutrient\ rich forest\ soils\ (kg\ N_2O-N\ ha^{-1})$	0.6	0.16-2.4
EF _{2F, Temp, Org. P} for temperate and boreal organic nutrient poor forest soils (kg N ₂ O-N ha ⁻¹)	0.1	0.02-0.3
$\text{EF}_{\text{2P, Trop}}$ for tropical organic forest soils (kg $N_2\text{O-N}\ \text{ha}^{\text{-1}}$)	8	0-24
$EF_{3PRP, CPP}$ for cattle (dairy, non-dairy and buffalo), poultry and pigs [kg N ₂ O-N (kg N) ⁻¹]	0.02	0.007-0.06
EF _{3PRP. SO} for sheep and 'other animals' [kg N ₂ O-N (kg N) ⁻¹]	0.01	0.003-0.03

EF₁: Bouwman et al. 2002a,b; Stahfest & Bouwman, in press; Novoa & Tejeda in press; EF_{1FR}: Akiyama et al., 2005; EF_{2C0, Temp}, EF_{2C0, Temp}, EF_{2C0, Temp}, EF_{2C0, Temp}; Klemedtsson et al., 1999; IPCC Good Practice Guidance, 2000; EF_{28, Temp}; Alm et al., 1999; Laine et al., 1996; Martikainen et al., 1995; Minkkinen et al., 2002; Regina et al., 1996; Klemedtsson et al., 2002; EF_{3, CPP}, EF_{3, SO}; de Klein, 2004.

3. Estimate of country specific N₂O emission factors from agricultural soils in Japan

Before revision: The National Greenhouse Gas Inventory Report of Japan (2005)

Table 6-19	Nitrous oxi	de emission	factors, l	by type of crop
------------	-------------	-------------	------------	-----------------

Type of crop	Emission Factors [kgN2O-N/kgN]			
Vegetables	0.00773			
Rice	0.00673			
Fruit	0.0069			
Tea	0.0474			
Potatoes	0.0201			
Pulse	0.0073			
Feed crops	0.006			
Sweet potato	0.00727			
Wheat	0.00486			
Buckwheat	0.0073			
Mulberries	0.0073			
Industrial crops	0.0073			
Tobacco	0.0073			

•Tier 2: country specific EFs : 13 different EFs by crop type based on a report by Tsuruta (2001)

Source: Haruo Tsuruta, Establishment of GHGs reduction model, Incorporated foundation, Society for the Study of Agricultural Technology, A Report on an Investigation of how to quantify the amount of Greenhouse Gases Emissions reduced in 2000F.Y.

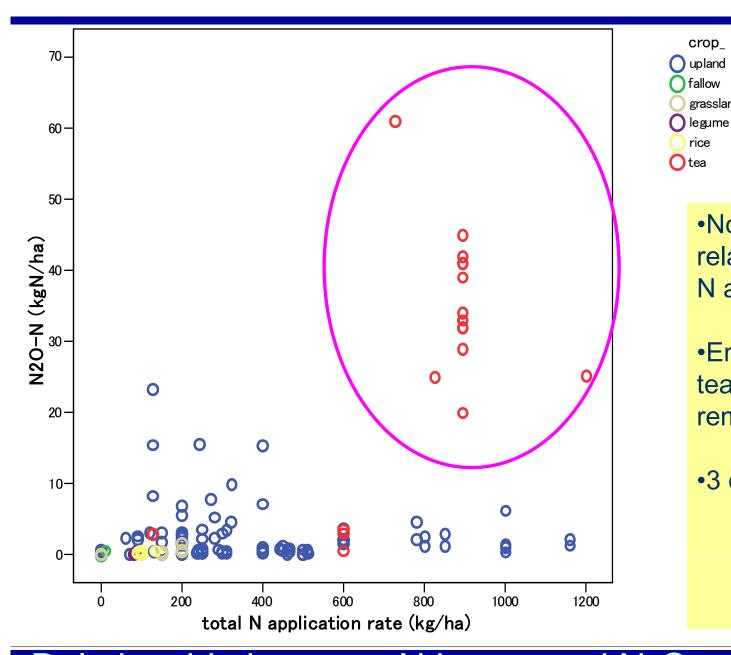
Advantages and disadvantages of the EFs in the National GHGs Inventory Report of Japan (2005)

- Advantage:
 - based on the most extensive measurement campaign of N₂O emissions from Japanese agricultural fields conducted from 1992 to 1994.
- Disadvantages:

(1) background emission is included in EFs,

because of lack of data at that point.

(2) Measurement periods were not sufficient to estimate annual emissions — 3 months in many cases, but less than 2 months in some cases.

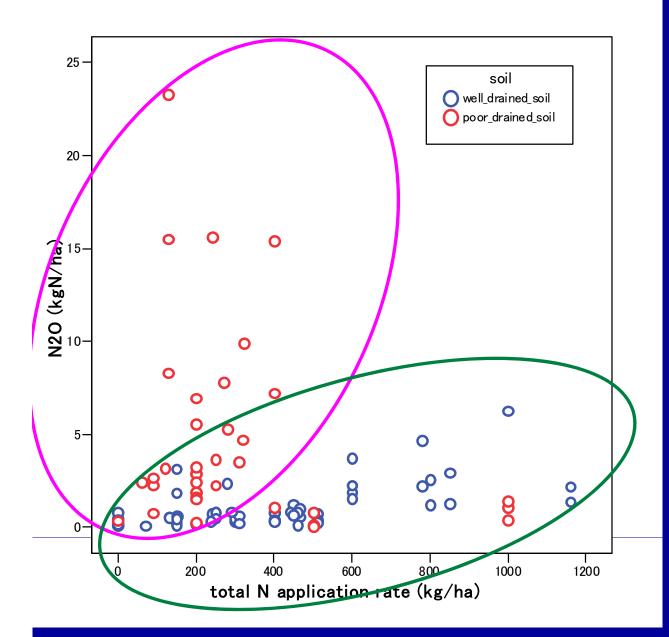

And also...

Small number of data were

Need for Revision

Collected data

- N₂O emissions from Japanese agricultural fields
 - 246 measurements from 36 sites
 - reported in peer-reviewed journals and research reports, published before 2005.


rice Otea •No clear relationship with N application rate Emissions from tea are remarkably high •3 categories: •tea paddy rice

upland

crop_

upland fallow grassland

Relationship between N inputs and N₂O emissions from different crop types

upland

•Soil drainage classes were categorized from soil types

Poorly drained soil > well-drained soil

•No clear relationship for poorly drained soil

•Well-drained soil: R²= 0.38

Relationship between N inputs and N₂O emissions from <u>upland fields</u> with <u>different soil drainage type</u> (measurement period more than 90 days)

Table

Summary of N2O-N emission and

fertilizer induced N2O-N emission factor from Japanese upland field (except tea filed) measurement period more than 90 days

soil drainage #	n	mean	standard deviation	median	min	max		
N2O-N emission (kgN ha-	-1)							
well drained soil	67	1.03 a * *	1.14	0.61	0.09	6.28		
poorly drained soil	35	4.78 b	5.36	2.88	0.07	23.3		
Fertilizer induced N2O-N emission factor (%)								
well drained soil	15	0.32 a**	0.49	0.16	0.07	2.02		
poorly drained soil	9	1.40 b	0.95	1.26	0.57	3.30		
estimated emission factor for all soil		0.62 \$	0.48 \$	\$				

poorly drained soil > well-drained soil
 EF for upland = 0.62 ± 0.48 % (weighted by area of soil type)
 measurement period: more than 90 days
 assuming that most of the fertilizer-induced N2O emission should be included in this period, because data availability

Table								
Summary of N2O-N emission (kg ha-1) and								
Fertilizer induced	1 N2O-N	l emission	factor (%) f	rom Japanes	e tea fields			
			<u> </u>					
	n	mean	standard	median	min	max		
	/1 NI 1	4)	deviation					
N2O-N emission								
	26	24.3	16.3	27.11	2.39	61.0		
				` A				
Estimated fertiliz	er induc							
	26	2.82	/ 1.80	3.02	0.35	8.25		
e backgrour	nd emis	sion wa		d as same	as IPCC o	lefault		
			0 00001100					
value (1kg ha-1),								
because no reliable data from zero-N control plot was available.								
• Measurem	Measurement period: <u>210 to 365 days</u>							

Summary of estimated EF for Japanese Agricultural soil

- Upland = 0.62 ± 0.48 %
 - lower than the IPCC default EF of 1%.
 - lower than the EF of 0.8% by FAO/IFA (2001).
 - poorly drained soils are mainly used for rice paddy fields in Japan.
 - Ratio of well-drained soil among upland field is relatively high (78%) in Japan.
- Tea = 2.82 ± 1.82 %
- Rice paddy = 0.31 ± 0.31 %

 - *estimated from N2O emission data of rice paddy fields worldwide (Akiyama et al., 2005; IPCC, 2006)

 4. Issues related to compiling GHG database for inventory work
 ~ estimate EF from papers with field measurement data

Missing information

- Lack of basic information in many papers
 - soil type, soil property, type and amount of chemical and organic fertilizer, etc
 - impossible to calculate total emission
 - Only average flux is shown, but measurement period is not stated.
 - Only emission from fertilizer applied area of band application is shown, but not emission from entire field.

How to get representative data

Each paper have its own objective, not for GHG inventory

- Few measurement include zero N control, which is needed to calculate fertilizer induced emission factor
- Measurement periods of many experiment are not enough to estimate annual emission
- Danger of Bias : location, crop, soil type, etc
 - Each field measurement are planned individually, Not systematically designed for inventory
 - Small number of data is easily to be biased get enough number of data to represent your country, otherwise default EF is better than country specific EF!

Thank you!

