

Improving Secondary Forest Above-ground Biomass Estimates using GIS-based Model

Damasa B. Magcale-Macandog

Associate Professor Ecoinformatics Lab., Institute of Biological Sciences, College of Arts and Sciences University of the Philippines Los Banos, College, Laguna, Philippines

INTRODUCTION

Secondary forests in the Philippines are scattered across the country, with an estimated forest cover of 2.7 M ha

- These forest areas comprise the largest remaining natural forest type in the country
 - > Under severe pressure from human activities
 - Main source of wood and other forestbased resources

INTRODUCTION

Data reporting aboveground biomass density of secondary forests has been poor and insufficient to extrapolate biomass estimates to areas where data are lacking.

GIS technology can provide a means to estimate biomass density for regions with little data because consistent patterns of biomass density frequently result from similar biophysical characteristics in the study area.

Develop a GIS-based model that can be used to predict estimates of aboveground biomass of secondary forests at different locations and environmental conditions in the Philippines.

METHODOLOGY

Study area

Main types of forest vegetation are dipterocarp, mangrove, pine and mossy forests

Flow diagram of GIS-modeling approach

Major soil types of remaining secondary forests

Clay (70.7%) Clay loam and silty clay loam (17.3%) Loam and silty loam (9.3%) Sandy loam to sandy clay (2.7%)				Soil Type Sandy loam/ sandy clay loam/ silt loam clay loam/ silty clay loam clay								E						
	Soil type	Сос	le	· · · ·	· ·	· ·	· ·	 	 		Į.	X			· ·	· ·		
	Sandy loam/ sandy clay	1			•••	•••	•••	· ·	£				Ŋ		· ·	· ·		· ·
	Loam/ silt loam	2		· · ·	· · ·	· · ·	· ·			· · ·		1e		۲ <mark>ا</mark>	 	· ·		· ·
	Clay loam/ silty clay loam	3		· · ·	· ·	· ·			 	 	 			Ľ)։ Ե	· ·		
	Clay	4			 	· ·	 	 	• •	· · ·	P	AC -	E.			· ·		
	Fernandez and Clar de Jesus, 19	80	· · ·	- 	· · · · · ·	· · · · · ·	· · · · · ·	· · · ·		-) '	 	· · · · · · · · · · · · · · · · · · ·		

Major elevation ranges

Majority of forests are in the 700-1100 m asl and few are found in 300-600 m asl and greater than 1500 m asl elevation classes.

Elevation (meters)	Elevation (feet)					
0-151	0-499					
152-456	500-1499					
457-1066	1500-3499					
1067-1523	3500-4999					
1524-1980	5000-6499					
1981-2437	6500-8000					
2438+	8000+					

National Mapping and Resource Information Authority (1995)

Major slope distribution

□ Fifty-seven percent of the remaining secondary forest areas are found in the 60-65% slope class. □ The remaining 43% is unevenly Slope level to nearly level distributed the 0 to 25% and 45 gently sloping to undulating rollig to steeply rooling to 50% slope classes. hilly to steeply hill Slope range (%) Classification Level to nearly level 0-3Gently sloping to undulating 3-15 15-30 Rolling to steeply rolling **Steeply hilly** 30-65+Bureau of Soil and Water Management (1975)

Major annual rainfall distribution

Thirty-seven percent of the secondary forests have 2000-2500 mm/yr precipitation, and the remaining proportion are unevenly distributed to greater than 1000 and 4000 mm/yr precipitation values.

Data source: Climatological normals from the Philippine Atmospheric, Geophysical and Astronomical Services Administration (1961-1995)

Major agroclimate distribution

Majority of forest areas are under

Climate type B1(less than 2 dry months, 7-9 wet months)

Climate type C2 (2-4 dry months, 5-6 wet months)

Climate type C3 (5-6 wet and dry months)

Data Source: Philippine Atmospheric, Geophysical and Astronomical Services Administration (1990)

Potential biomass (t/ha) =

Physical factor 1* Weight 1 + Physical factor n...* Weight n...

Physical factor	Weight
Annual rainfall	-0.1033
Climate	17.1668
Elevation	-0.1621
Slope	3.66446
Soil type	108.244

Data sources: Lasco et al, (2001); Guillermo (1998); Racelis (2000)

Potential aboveground biomass

secondary forests in the Philippines (1996) Aboveground biomass (t/ha) of secondary forests Non-forested Area 100 - 200 201 - 300 301 - 400 401 - 500 +

1996 Land Use Map provided by the National Mapping and Resource Information Authority (NAMRIA)

Aboveground biomass computation

Computation of the aboveground biomass of secondary forests:

- Biomass density (t/ha) x forest area per province
 - = Total biomass/province

2. Total aboveground biomass in secondary forests

= Σ Total biomass/province

Author	Biomass density (t/ha)
Lasco (1998)	258
Francisco (1998)	335
UNDP-ESMAP(1992)	300
GIS-based model	Province-specific values
	(100-500 t/ha)

Comparison of the total aboveground biomass in secondary forest (million tons) in the Philippines using biomass density values reported by different authors using IPCC default values and using the GIS-based model.

Use of GIS approach can:

- Reduce the uncertainty in estimates of aboveground biomass;
- Improve the quality of biomass estimates;
- Predict more accurate biomass estimates at different locations and environmental conditions; and
- Improve the computations for C stocks and preparation of national GHG inventory report

RECOMMENDATION

Improvements to this approach can be achieved:

- Further research on other factors that influence biomass production in forests and that should be included in future estimates;
- Enhancing the resolution of input maps;
- Incorporation of more recent GIS techniques as the technology; and
- Advances to reduce variability of biomass estimates at the local level.

http://www.uplb.edu.ph