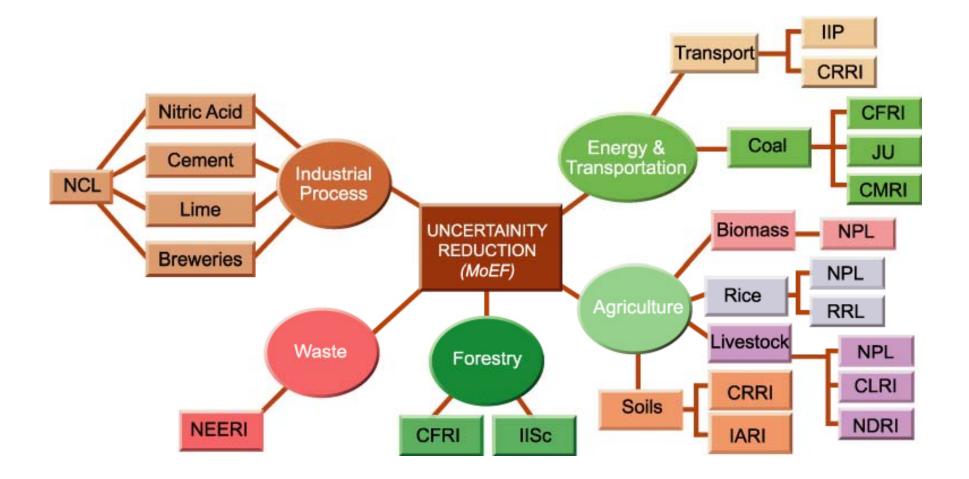
## Uncertainty Assessment: India's Experience

Sumana Bhattacharya NATCOM, MoEF, India


## Approach towards reducing uncertainties in GHG estimates

- Development of country specific GHG emission factors
  - Updating the same with time
  - Evaluating key sources over time and developing new emission factors
- Identifying uncertainties in the steps of GHG estimates itself by using the IPCC guidelines

| Coal         Column           Coking coal         CO <sub>6</sub> (05/13)         25.53           Developed by CMNRI, Dinabed         CO <sub>6</sub> (05/13)         28.95           Transport         9 CO <sub>6</sub> (05/13)         28.95           Developed by CMNRI, Dinabed         9 CO <sub>6</sub> (05/13)         28.95           Transport         9 CO <sub>6</sub> (05/13)         28.95           Developed by CMNRI, Dinabed         9 CO <sub>6</sub> (05/13)         28.95           Developed by IIP, Delivedue         9 CO <sub>6</sub> (05/14)         1957.89±321.82           Developed by IIP, Delivedue         9 CO <sub>6</sub> (05/14)         86.45           Coal Mining         9 CO <sub>6</sub> (05/14)         86.45           Developed by IIP, Delivedue         2.9         64gree 1         13.1           degree 1         m3 CH <sub>6</sub> /t coal mined         2.9         64gree 2           degree 3         m3 CH <sub>6</sub> /t coal mined         2.2         64gree 3           Jourt Mining         m3 CH <sub>6</sub> /t coal mined         3.1         5.2           Developed by CMNRI, Dinabed         10.1         3.1         5.3           Jourt Scale mined         3.1         5.2         5.6           Developed by CMNRI, Dinabed         1.8         5.2         5.5           Surface Mining         m3 CH <sub>6</sub> /t c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unit                            | EF                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------|
| Colong coal         CO, (C/T)         28.53           non Colong coal         CD, (C/T)         26.13           Lightis         CD, (C/T)         26.13           Developed by CHRR, Dianbad         CD, (C/T)         28.95           Transport         g CO, Ng of Fuel         2752.98±179.35           Invo wheelers (Gasoline)         g CO, Ng of Fuel         1957.89±321.82           Invo wheelers (Gasoline)         g CO, Ng of Fuel         2957.98±321.82           Developed by TR, Delvadua         Cool Ng of Fuel         2357.98±321.82           Developed by TR, Delvadua         Cool Ng of Fuel         2357.98±321.82           Developed by TR, Delvadua         Cool Ng of Fuel         235.           Coal Mining         m3 CH,/t coal mined         23.6           degree 1         m3 CH,/t coal mined         2.9           degree 2         m3 CH,/t coal mined         2.1           Developed by CHR, Dhanbad         3.1         3.1           Surface Mining         m3 CH,/t coal mined         3.1           degree 3         m3 CH,/t coal mined         3.2           Developed by CHR, Dhanbad         3.1         3.1           Ume production         toCO,/ton of Idmiser         0.2           Germent production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                    |
| nen CSkeng Goal         CD, (EC/T)         26.13           Lights         CD, (EC/T)         28.95           Developed by CMRR, Dhanbad         2752.984_579.35           Transport         9 CD,/kg of Fuel         2752.984_579.35           Passenper Carls (Gasoline)         9 CD,/kg of Fuel         1957.984_521.82           two wheelers (Gasoline)         9 CH,/kg of Fuel         1957.984_521.82           Developed by IP, Detrodum         9 CH,/kg of Fuel         88.45           Coal Mining         9 CH,/kg of Fuel         88.45           developed by IP, Detrodum         23.6         90.44/kg of Fuel           Coal Mining         m3 CH,/k coal mined         2.9           degree 1         m3 CH,/k coal mined         2.8           degree 2         m3 CH,/k coal mined         2.8           degree 3         m3 CH,/k coal mined         2.8           degree 3         m3 CH,/k coal mined         2.1           degree 4         m3 CH,/k coal mined         3.1           Surface Mining         m3 CH,/k coal mined         3.1           Garne 1         m3 CH,/k coal mined         3.1           Surface Mining         m3 CH,/k coal mined         3.1           Garne mining         m3 CH,/k coal mined         3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO. 0C/TD                       | 25.53              |
| Light         CO_(RC/T3)         28.95           Developed by CMRR, Danbed         Transport         9 CO_(Ng of Fuel         2752.98 $\pm$ 179.35           Transport         9 CO_(Ng of Fuel         2752.98 $\pm$ 179.35         1957.89 $\pm$ 121.82           Developed by CMRR, Danbed         9 CO_(Ng of Fuel         1957.89 $\pm$ 121.82         1957.89 $\pm$ 121.82           Developed by IIP, Dehredun         0 Ch/Ng of Fuel         1957.89 $\pm$ 121.82         1957.89 $\pm$ 121.82           Developed by IIP, Dehredun         Coal Mining         2.9         degree 1         86.45           Coal Mining         March Coal mined         2.9         degree 2         13.1         degree 3           post Mining         m3 CH/t coal mined         2.9         degree 3         13.1         degree 3         13.1         degree 3         13.1         degree 3         13.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1         3.1 <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| Transport     g CO <sub>2</sub> /kg of Fuel     2752.98±279.35       Passenger Cars (Gasoline)     g CO <sub>2</sub> /kg of Fuel     2752.98±279.35       bwo wheelers (Gasoline)     g CO <sub>2</sub> /kg of Fuel     1957.89±321.82       bwo wheelers (Gasoline)     g CO <sub>2</sub> /kg of Fuel     1957.89±321.82       beveloped by <i>IIP, Dehredum</i> 2.9       Coal Mining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | 28.95              |
| Passenger Cars (Geschine)     9 CO, kg of Fuel     27.83       bio wheelers (Geschine)     9 CO, kg of Fuel     27.83       bio wheelers (Geschine)     9 CO, kg of Fuel     1957.89 $\pm$ 321.82       bio wheelers (Geschine)     9 CO, kg of Fuel     1957.89 $\pm$ 321.82       bio wheelers (Geschine)     9 CO, kg of Fuel     1957.89 $\pm$ 321.82       coal Mining     9 CH, kg of Fuel     1957.89 $\pm$ 321.82       coal Mining     m3 CH, k coal mined     2.9       degree 1     m3 CH, k coal mined     2.9       degree 2     m3 CH, k coal mined     2.9       degree 3     m3 CH, k coal mined     2.9       degree 1     m3 CH, k coal mined     2.9       degree 2     m3 CH, k coal mined     2.2       degree 3     m3 CH, k coal mined     3.1       Sturface Mining     m3 CH, k coal mined     3.8       during mining     m3 CH, k coal mined     3.2       Developed by CMRR, Dhanber     100, f to of lativism     0.2       Industrial Processes     000, f to of lativism     0.35 $\pm$ 10.03       Ume store and dotomite use     1 CO, f ammonia     1.35       Nitric add prod.     100, f ammonia     1.35       Minic add prod.     100, f ammonia     1.35       Minic add prod.     100, f ammonia     1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Developed by CMFRI, Dhanbad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                    |
| Passenger Cars (Geschine)     9 CO, kg of Fuel     27.83       bio wheelers (Geschine)     9 CO, kg of Fuel     27.83       bio wheelers (Geschine)     9 CO, kg of Fuel     1957.89 $\pm$ 321.82       bio wheelers (Geschine)     9 CO, kg of Fuel     1957.89 $\pm$ 321.82       bio wheelers (Geschine)     9 CO, kg of Fuel     1957.89 $\pm$ 321.82       coal Mining     9 CH, kg of Fuel     1957.89 $\pm$ 321.82       coal Mining     m3 CH, k coal mined     2.9       degree 1     m3 CH, k coal mined     2.9       degree 2     m3 CH, k coal mined     2.9       degree 3     m3 CH, k coal mined     2.9       degree 1     m3 CH, k coal mined     2.9       degree 2     m3 CH, k coal mined     2.2       degree 3     m3 CH, k coal mined     3.1       Sturface Mining     m3 CH, k coal mined     3.8       during mining     m3 CH, k coal mined     3.2       Developed by CMRR, Dhanber     100, f to of lativism     0.2       Industrial Processes     000, f to of lativism     0.35 $\pm$ 10.03       Ume store and dotomite use     1 CO, f ammonia     1.35       Nitric add prod.     100, f ammonia     1.35       Minic add prod.     100, f ammonia     1.35       Minic add prod.     100, f ammonia     1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| Bit Child         Bit Child         17.83           bits wheelers (Casoline)         a CO <sub>2</sub> /kg of Fuel         197.89_321.82           Beveloped by IRP, Dehvedun         Bits State         Bits State           Coal Mining         Bits State         Bits State           degree 1         m3 CH <sub>2</sub> /t coal mined         13.1           degree 2         m3 CH <sub>2</sub> /t coal mined         13.1           degree 3         m3 CH <sub>2</sub> /t coal mined         0.98           degree 1         m3 CH <sub>2</sub> /t coal mined         0.98           degree 2         m3 CH <sub>2</sub> /t coal mined         0.98           degree 3         m3 CH <sub>2</sub> /t coal mined         1.8           post Mining         m3 CH <sub>2</sub> /t coal mined         1.8           degree 3         m3 CH <sub>2</sub> /t coal mined         1.8           bot mining         m3 CH <sub>2</sub> /t coal mined         1.8           bot mining         m3 CH <sub>2</sub> /t coal mined         0.2           Developed by CMRI, Dhanbad         1.0         1.8           Industrial Processes         COC/ton of Idminer         0.5425.03           Lime stone and doomte use         t COC/ton of HoO3         10.125.8           High pressure plant         kg NO/0 of HNO3         10.125.8           High pressure plant         kg NO/0 of HNO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000 At a 4 First              | 2752 984179 35     |
| bwo wheelers (Gasoline)         a CSU/kg of Fuel         1957.89_321.82           Developed by IIP, Derivation         g CH/kg of Fuel         36.45           Coal Mining         during mixing         g         36.45           degree 1         m3 CH/k coal mined         2.9           degree 2         m3 CH/k coal mined         2.9           degree 3         m3 CH/k coal mined         2.9           degree 1         m3 CH/k coal mined         2.8           degree 1         m3 CH/k coal mined         2.2           degree 1         m3 CH/k coal mined         2.2           degree 2         m3 CH/k coal mined         2.2           degree 3         m3 CH/k coal mined         2.2           degree 4         m3 CH/k coal mined         2.2           degree 5         m3 CH/k coal mined         2.2           degree 5         m3 CH/k coal mined         2.2           degree 5         m3 CH/k coal mined         2.3           Dowtoped by CMRR, Dhanbad         1.8         1.8           Inne acol prod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| g CH,/kg of Fuel         86.45           Developed by <i>IDP, Dehredum</i> Coal Mining           daring mining         m3 CH,/t coal mined         2.9           degree 1         m3 CH,/t coal mined         2.9           degree 2         m3 CH,/t coal mined         2.9           degree 3         m3 CH,/t coal mined         2.9           degree 1         m3 CH,/t coal mined         2.9           degree 2         m3 CH,/t coal mined         2.9           degree 3         m3 CH,/t coal mined         2.1           degree 3         m3 CH,/t coal mined         3.1           Surface Mining         m3 CH,/t coal mined         3.1           Surface Mining         m3 CH,/t coal mined         3.1           Developed by CMPR, Dhanbed         1.8         0.24±0.03           Developed by CMPR, Dhanbed         0.72         1.0           Uns store and doomite use         t CO2/tan dictime         0.72           Uns store and doomite use         t CO2/tan dictime         0.72           Uns store and doomite use         t CO2/tan dictime         0.74±0.01           Mind pressure plant         kg NQ/fon of Hk03         0.41±0.17           Madum pressure plant         kg NQ/fon of Hk03         0.41±0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | two wheelers (Gasoline)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 | 1957.89+321.82     |
| Coal Mining       Image: Coal Mining         degree 1       m3 CH/rt coal mined       2.9         degree 2       m3 CH/rt coal mined       23.1         degree 3       m3 CH/rt coal mined       23.5         post Niving       m3 CH/rt coal mined       2.9         degree 1       m3 CH/rt coal mined       0.98         degree 2       m3 CH/rt coal mined       3.1         degree 3       m3 CH/rt coal mined       3.1         Surface Mining       m3 CH/rt coal mined       0.2         degree 3       m3 CH/rt coal mined       0.2         degree 4       m3 CH/rt coal mined       0.2         degree 5       m3 CH/rt coal mined       0.2         Developed by CHRI, Dianted       1       1         Industrial Processes       Cocylon diktime       0.72         Cement production       tocylon quicktime       0.72         Ume stone and domitie use       1 cocylon quicktime       0.72         Immessure plant       kg N/rton of HNO3       10.1 $\pm$ 3.8         High pressure (MSOR)       kg N/rton of HNO3       0.1 $\pm$ 3.8         High pressure (MSOR)       kg N/rton of HNO3       0.41 $\pm$ 6.17         Developed by NCL, Pune       24 $\pm$ 5       0         E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| during mixing         m3 CH/(t coal mined         2.9           degree 1         m3 CH/(t coal mined         13.1           degree 2         m3 CH/(t coal mined         23.6           post Mining         m3 CH/(t coal mined         23.6           degree 1         m3 CH/(t coal mined         0.98           degree 2         m3 CH/(t coal mined         2.2           degree 3         m3 CH/(t coal mined         2.1           Surface Mining         m3 CH/(t coal mined         2.2           degree 3         m3 CH/(t coal mined         3.1           Surface Mining         m3 CH/(t coal mined         2.2           degree 1         m3 CH/(t coal mined         3.1           Surface Mining         m3 CH/(t coal mined         2.2           degree 3         m3 CH/(t coal mined         3.1           Surface Mining         m3 CH/(t coal mined         2.2           Developed by CH/RI, Diantizel         m3 CH/(t coal mined         0.2           Comment production         toCo/(t at mined         0.2           Industrial Processes         toCo/(t at mined         0.72           Ume stone and dolomite use         toCo/(t at mined         0.71           Minonia Prod.         toCo/(t at mined         0.12,3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Developed by IIP, Delvadun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                    |
| during mixing         m3 CH/(t coal mined         2.9           degree 1         m3 CH/(t coal mined         13.1           degree 2         m3 CH/(t coal mined         23.6           post Mining         m3 CH/(t coal mined         23.6           degree 1         m3 CH/(t coal mined         0.98           degree 2         m3 CH/(t coal mined         2.2           degree 3         m3 CH/(t coal mined         2.1           Surface Mining         m3 CH/(t coal mined         2.2           degree 3         m3 CH/(t coal mined         3.1           Surface Mining         m3 CH/(t coal mined         2.2           degree 1         m3 CH/(t coal mined         3.1           Surface Mining         m3 CH/(t coal mined         2.2           degree 3         m3 CH/(t coal mined         3.1           Surface Mining         m3 CH/(t coal mined         2.2           Developed by CH/RI, Diantizel         m3 CH/(t coal mined         0.2           Comment production         toCo/(t at mined         0.2           Industrial Processes         toCo/(t at mined         0.72           Ume stone and dolomite use         toCo/(t at mined         0.71           Minonia Prod.         toCo/(t at mined         0.12,3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Coal Mining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                    |
| degree 1     m3 CHyt coal mined     2.9       degree 2     m3 CHyt coal mined     13.1       degree 3     m3 CHyt coal mined     23.5       past Wriving     m3 CHyt coal mined     0.98       degree 1     m3 CHyt coal mined     2.2       degree 2     m3 CHyt coal mined     3.1       Surface Mining     m3 CHyt coal mined     1.8       post mining     m3 CHyt coal mined     0.2       Developed by CMMR, Dhanbed     m3 CHyt coal mined     0.2       Industrial Processes     Convent production     0.72       Ume production     bCOyten of Idmiar     0.72       Lime stone and dolomits use     1 COyt ammonia     0.49 $\pm$ 0.01       Animonia Prod.     bCOyten of Idmiar     0.72       Lime stone and dolomits use     1 COyt ammonia     0.49 $\pm$ 0.01       Animonia Prod.     bCOyten of HNO3     2.8 $\pm$ 1.3       Tigh pressure plant     kg No/ton of HNO3     0.41 $\pm$ 0.17       Developed by NCL, Pune     1     1       Enteric Fermentation     1     1       Non Dairy < 1yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| degree 2     m3 CH <sub>4</sub> /t coal mined     13.1       degree 3     m3 CH <sub>4</sub> /t coal mined     23.6       degree 1     m3 CH <sub>4</sub> /t coal mined     0.98       degree 1     m3 CH <sub>4</sub> /t coal mined     2.2       degree 2     m3 CH <sub>4</sub> /t coal mined     3.1       Surface Mining     m3 CH <sub>4</sub> /t coal mined     1.8       post Mining     m3 CH <sub>4</sub> /t coal mined     0.2       during mithing     m3 CH <sub>4</sub> /t coal mined     0.2       Developed by CMRR, Dhanbad     m3 CH <sub>4</sub> /t coal mined     0.2       Industrial Processes     CO <sub>4</sub> /ton of Islmiser     0.34 $\pm$ 0.03       Comment production     ECO <sub>4</sub> /ton of Islmiser     0.72       Ume store and dolomite use     ECO <sub>4</sub> /ton of Islmiser     0.72       Ume store and dolomite use     ECO <sub>4</sub> /ton of HNO3     10.1 $\pm$ 3.8       Nitric acid prod.     ECO <sub>4</sub> /ton of HNO3     10.1 $\pm$ 3.8       Nitric acid prod.     E     E       Medium pressure plant     Kg N <sub>4</sub> O/ton of HNO3     2.8 $\pm$ 1.3       Nitric acid prod.     E     E       Developed by NCL, Pune     E     E       Enteric Permenentation     E     E       Developed by NCL, Pune     E     E       Developed by NCL, Pune     E     E       Developed by NCL, Pune     E     E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m3 CH-/t coal mined             | 2.9                |
| degree 3     m3 CHVt coal mined     23.6       post Mining     m3 CHVt coal mined     0.98       degree 1     m3 CHVt coal mined     2.2       degree 3     m3 CHVt coal mined     3.1       Surface Mining     m3 CHVt coal mined     3.1       during mining     m3 CHVt coal mined     3.1       during mining     m3 CHVt coal mined     0.2       Developed by CMPRI, Dhanber     m3 CHVt coal mined     0.2       Developed by CMPRI, Dhanber     m3 CHVt coal mined     0.2       Industrial Processes     CCVt con of kimiter     0.72       Cement production     kCVton of kimiter     0.72       Ume production     kCVton of kimiter     0.72       Hint coal prod.     kg NQVton of HNO3     0.49±0.01       Medium pressure plant     kg NQVton of HNO3     0.41±0.17       Medium pressure plant     kg NQVton of HNO3     0.41±0.17       Developed by NL, Pune     imediate     1       Enteric Fermentation     kg CHVyv/anmal     23±3       Non Delry C Tyr     kg CHVyv/anmal     23±8       Non Delry C Tyr     kg CHVyv/anmal     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| degree 1     m3 CH/t coal mined     0.98       degree 2     m3 CH/t coal mined     2.2       degree 3     m3 CH/t coal mined     3.1       Surface Mining     m3 CH/t coal mined     3.1       during mining     m3 CH/t coal mined     1.8       post mining     m3 CH/t coal mined     0.2       Developed by CMMR, Dhanbad     0.2     0.2       Industrial Processes     0.54±0.01     0.72       Ume production     CO/t coal mined     0.72       Ume store and dolomits use     1 CO/t ammonia     0.49±0.01       Arminina Prod.     DO/t ammonia     1.55       Nith: coal prod.     NO/t ammonia     1.55       High pressure plant     kg R/O/ton of HN03     10.1±3.8       High pressure plant     kg R/O/ton of HN03     0.41±0.17       Developed by NCL, Pone     1     1       Enteric Permentation     Mgenous     0.41±0.17       Developed by NCL, Pone     1     28±5       Non Dairy < 1yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| degree 2     m3 CH/it coal mined     2.2       degree 3     m3 CH/it coal mined     3.1       Surface Mining     m3 CH/it coal mined     3.1       during mining     m3 CH/it coal mined     1.8       past mining     m3 CH/it coal mined     1.8       Developed by CMINI, Dhanbed     m3 CH/it coal mined     0.2       Industrial Processes     0.34 $\pm$ 0.01     0.34 $\pm$ 0.01       Coment production     t00/iten quicklime     0.72       Lime store and dolomits use     tCO/ite mineria     0.49 $\pm$ 0.01       Aminoria Prod.     t00/iten quicklime     0.72       Nitric add prod.     t00/iten of HN03     10.1 $\pm$ 3.8       High pressure plant     kg N/o/iten of HN03     0.41 $\pm$ 0.17       Developed by MCL, Pure     tool/iten of HN03     0.41 $\pm$ 0.17       Developed by MCL, Pure     tog CH/yr/anmal     28 $\pm$ 5       Non Dery (offners)     kg CH/yr/anmal     23 $\pm$ 8       Non Dery 1-3 yrs     kg CH/yr/anmal     32 $\pm$ 5       Non Dery 1-3 yrs     kg CH/yr/anmal     8 $\pm$ 3       Non Dery 1-3 yrs     kg CH/yr/anmal     8 $\pm$ 3       Non Dery 1-3 yrs     kg CH/yr/anmal     8 $\pm$ 3       Non Dery 1-3 yrs     kg CH/yr/anmal     8 $\pm$ 3       Non Dery 1-3 yrs     kg CH/yr/anmal     8 $\pm$ 3       Non Dery 1-3 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| degree 3     m3 CH,/t coel mined     3.1       Surface Hiring     m3 CH,/t coel mined     1.8       post mining     m3 CH,/t coel mined     1.8       post mining     m3 CH,/t coel mined     0.2       Developed by CHRI, Dhanbed     0.2       Industrial Processes     0.34 $\pm$ 0.03       Cament production     ICO,/ton of kimker     0.54 $\pm$ 0.03       Lime production     ICO,/ton quicklime     0.72       Lime store and dolomite use     ICO,/t ammonia     0.143.8       Nation and production     ICO,/t ammonia     0.123.8       Nation and production     ICO,/t ammonia     0.123.8       Nation and production     ICO,/t ammonia     0.123.8       Nation pressure production     ICO,/t ammonia     0.4140.17       Developed by NCL, Pune     Independent     Independent       Darity     Ikg CH,/yr/ammal     2845       Non Dairy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| Surface Mining     m3 CH <sub>2</sub> /t coal mined     1.8       gost mining     m3 CH <sub>2</sub> /t coal mined     1.8       post mining     m3 CH <sub>2</sub> /t coal mined     0.2       Industrial Processes     m3 CH <sub>2</sub> /t coal mined     0.2       Carent production     too,/ton of kinker     0.54 $\pm$ 0.01       Lime store and dolonite use     t CO <sub>2</sub> /t amonal     0.44 $\pm$ 0.01       Amonals Prod.     t CO <sub>2</sub> /t amonal     0.44 $\pm$ 0.01       Amonals Prod.     t CO <sub>2</sub> /t amonal     0.44 $\pm$ 0.01       Amonals Prod.     t CO <sub>2</sub> /t amonal     0.44 $\pm$ 0.01       Amonals Prod.     t CO <sub>2</sub> /t amonal     0.44 $\pm$ 0.01       Amonals Prod.     t CO <sub>2</sub> /t amonal     1.55       Nithic actil prod.     t CO <sub>2</sub> /t amonal     0.44 $\pm$ 0.01       Amonals Prod.     t CO <sub>2</sub> /t amonal     1.53       Nithic actil prod.     t CO <sub>2</sub> /t amonal     1.55       Nithic actil prod.     t CO <sub>2</sub> /t amonal     1.123.8       High pressure plant     kg N <sub>2</sub> O <sub>1</sub> ton of HNO3     2.8 $\pm$ 1.3       high pressure plant     kg N <sub>2</sub> O <sub>1</sub> ton of HNO3     2.8 $\pm$ 5       Developed by NCL, Pune     Enteric Fermentation     1.425.17       Developed by NCL, Pune     t kg CH <sub>2</sub> V <sub>1</sub> /enimal     23 $\pm$ 5       Non Dairy < 1yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| during mining         m3 CH,/t coal mined         1.8           past mining         m3 CH,/t coal mined         0.2           Developed by CHRI, Dhanbed         industrial Processes         0.2           Cament production         icOc/ton of idmiser         0.54 $\pm$ 0.03           Ume production         icOc/ton quickline         0.72           Ume store and dolomits use         i COc/t ammonia         0.49 $\pm$ 0.01           Ammonia Prod.         icOc/t ammonia         1.35           Nitric acid prod.         icOc/t ammonia         1.35           Medium pressure plant         kg N_C/ton of HNO3         2.8 $\pm$ 1.3           high pressure plant         kg N_C/ton of HNO3         0.41 $\pm$ 0.17           Developed by NCL, Pune         icOc/t ammonia         2.8 $\pm$ 3           Delity         kg CH/yy/enmal         28 $\pm$ 5           Non Dairy < 1yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m3 CHVt coal mined              | 3.1                |
| post mining         m3 CH/rt coal minisd         0.2           Developed by CMPRI, Dhanbed         Industrial Processes         0.54±0.01           Cement production         ICO/ton quicklime         0.72           Lime production         ICO/ton quicklime         0.72           Lime stone and dolomite use         1 CO/t ammonia         0.49±0.01           Ammonia Pred.         ICO/t ammonia         0.49±0.01           Ammonia Pred.         ICO/t ammonia         0.49±0.01           Medium pressure plant         kg N/O/ton of HNO3         10.1±3.8           High pressure plant         kg N/O/ton of HNO3         0.41±0.17           Developed by NCL, Pune         Indigenous         Indigenous           Delity         kg CH/yn/anmal         5±3           Non Delity (sthers)         kg CH/yn/ynmal         5±5 <t< td=""><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| Developed by CMNR, Dearbed           Industrial Processes           Cement production         ECO,/ton of kinker           Lime store and dolomits use         ECO,/ton of kinker           Lime store and dolomits use         ECO,/ton of kinker           Ammonia Prod.         ECO,/t ammonia           Lime store and dolomits use         ECO,/t ammonia           Ammonia Prod.         ECO,/t ammonia           Nitric acid prod.         Image and the explored and                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| Industrial Processes         ECO,/ton of kinker         0.54 $\pm$ 0.01           Lime production         ECO,/ton of kinker         0.72           Lime store and dolomite use         ECO,/ton quicklime         0.72           Lime store and dolomite use         ECO,/ton quicklime         0.72           Lime store and dolomite use         ECO,/ton quicklime         0.72           Lime store and dolomite use         ECO,/t ammonia         0.49 $\pm$ 0.01           Ammonia Prod.         ECO,/t ammonia         1.55           Nibit acid prod.         EME         ECO,/t ammonia         1.1 $\pm$ 3.8           High pressure plant         kg N,O/ton of HNO3         10.1 $\pm$ 3.8         11.1 $\pm$ 3.8           High pressure (NSCI)         kg N,O/ton of HNO3         0.41 $\pm$ 0.17           Developed by NCL, Pune         Enteric Fermentation         28 $\pm$ 5           Mon Dairy < Lyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mo churc coar minio             | 0.2                |
| Cement production         ECC_/ton of klinker $0.54\pm0.01$ Lime production         ECC_/ton quicklime $0.72$ Lime store and dolomits use         ECC_/t ammonia $0.49\pm0.01$ Ammonia Prod.         ECC_/t ammonia $1.55$ Nitric acid prod.         Immonia $1.55$ Medium pressure plant         kg N_O/ton of HNO3 $2.8\pm1.3$ High pressure plant         kg N_O/ton of HNO3 $2.8\pm1.3$ high pressure plant         kg N_O/ton of HNO3 $0.41\pm0.17$ Developed by NCL, Pune         Enteric Permentation $Ndgenous$ $0.41\pm0.17$ Dairy         kg CPL/yn/anmal $9\pm3$ Non Dairy 1.3 yrs         kg CPL/yn/anmal $23\pm5$ Non Dairy 1.3 yrs         kg CPL/yn/anmal $32\pm5$ $Cross Bred$ $Esc Cultivation         8\pm2 8c CH/yn/anmal         8\pm3 8c CH/yn/anmal 22\pm5 8c CH/yn/anmal 8\pm3 8c CH/yn/anmal 8\pm3 8c CH/yn/anmal 8\pm3 8c CH/yn/anmal 8\pm3 8c CH/yn/anmal$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| Lime production         ICO_/ton quickline         0.72           Lime store and doronite use         1 CO_/t ammonia         0.49 $\pm$ 0.01           Ammonia Prod.         ICO_/t ammonia         0.35           Nitric acid prod.         ICO_/t ammonia         1.35           Nitric acid prod.         ICO_/t ammonia         1.35           High pressure plant         kg N_O/ton of HNO3         2.8 $\pm$ 1.3           high pressure plant         kg N_O/ton of HNO3         0.41 $\pm$ 0.17           Developed by NCL, Pune         ICO_/t ammonia         9.43 $\pm$ 3           Indigenous         ICO_/t ammonia         9.43 $\pm$ 3           Non Dairy < NVCL, Pune                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| Line store and domite use         ECQ/Earmonia $0.49\pm0.01$ Ammonia Prod. $000/Earmonia$ $1.55$ Nitric acid prod.         Interval and prod.         Interval and prod.           Medium pressure plant         kg N <sub>i</sub> O/ton of HNO3 $10.1\pm3.8$ High pressure plant         kg N <sub>i</sub> O/ton of HNO3 $2.8\pm1.3$ high pressure /NSCR         kg N <sub>i</sub> O/ton of HNO3 $0.41\pm0.17$ Developed by NCL, Pune         Interval $0.9\pm5.0$ Enteric Fermentation         Mdgenous $0.41\pm0.17$ Delivy         kg CH/yy/animal $28\pm5$ Non Dairy < 1yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| Ammonia Prod. $tCO_{1}/t$ ammonia $1.55$ Nthic acid prod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| Nitric acid prod.       Intervention         Medium pressure plant       kg R(0/ton of HNO3 $10.1\pm3.8$ High pressure plant       kg R(0/ton of HNO3 $2.8\pm1.3$ high pressure /NSCR       kg R(0/ton of HNO3 $2.8\pm1.3$ high pressure /NSCR       kg R(0/ton of HNO3 $0.41\pm0.17$ Developed by NCL, Pure       Intervention       Intervention         Intervention       Kg CH/yr/animal $28\pm5$ Non Dairy < 1yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| Medium pressure plant       kg N,O/ton of HNO3 $10.1\pm3.8$ High pressure plant       kg N,O/ton of HNO3 $2.8\pm1.3$ high pressure /NSCR       kg N,O/ton of HNO3 $2.8\pm1.3$ high pressure /NSCR       kg N,O/ton of HNO3 $0.41\pm0.17$ Developed by NCL, Pune $0.41\pm0.17$ Enteric Ferminentation $0.41\pm0.17$ Delry       kg CH,/yr/enmal $28\pm5$ Non Delry < 1yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | coog c antina na                |                    |
| high pressure /NSCR     kg N/O/ton of HNO3     0.41±0.17       Developed by NCL, Pune     Enteric Fermentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | $10.1 \pm 3.8$     |
| Developed by NCL, Pune         Image: Church and a |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| Enteric Fermentation     Indigenous       Indigenous     kg CH_/yt/animal       Dairy     kg CH_/yt/animal       Dairy     kg CH_/yt/animal       Dairy     kg CH_/yt/animal       Standard     Standard       Non Dairy < 1yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | kg N <sub>2</sub> Cyton of HNO3 | 0.41 <u>+</u> 0.17 |
| Indigenous     kg CH_/yr/anmal     28±5       Non Dairy < 1yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Developed by NCL, Pune                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                    |
| Indigenous     kg CH_/yr/anmal     28±5       Non Dairy < 1yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Enteric Fermentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                    |
| Non Dairy < 1yr         kg CH_/yr/animal         9±3           Non Dairy (1-3 yrs         kg CH_/yr/animal         23±8           Non Dairy (others)         kg CH_/yr/animal         32±5           Cross bred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| Non Dairy 1-3 yrs     kg CHU/yr/anmal     23±8       Non Dairy (others)     kg CHU/yr/anmal     32±5       Cross bred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| Non Dairy (others)         kg CH_/yi/anmal         32±5           Cross bred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| Cross brief         kg CH_/yt/animal         43±5           Dairy         kg CH_/yt/animal         43±5           Non-dairy < 1 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| Dairy         kg CHJyr/anmal         43±5           Non-dairy < 1 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | kg CH_/yr/animal                | 32±6               |
| Non-datry < 1 yr         kg CHJytylanmal         8±3           Non Datry1-3 yrs         kg CHJytylanmal         22±5           Others         kg CHJytylanmal         22±5           Others         kg CHJytylanmal         44±11           Developed by: NDRI, Kamal; NPL, New Deth; CLRI, Chemai         44±11           Rain fed - flood prone         ton CHJkm2         19±5.0           Rainfed-drought prone         ton CHJkm3         6.95±1.85           Irrigated (Continuously Flooded)         ton CHJkm4         17.48±4.00           Intermittently Flooded - Single aeration         ton CHJkm5         6.62±1.89           Intermittently Flooded - Multiple Aeration         ton CHJkm5         2.01±1.49           Deep water         ton CHJkm7         19±5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| Non Dairy1-3 yrs         kg CHJ/yr/anmal         22±5           Others         kg CHJ/yr/anmal         44±11           Developed by: NDRI, Kamal; NPL, New Dells; CLRI, Chevnai         44±11           Rain Ned - Rood prone         ton CHJ/km2         19±5.0           RainNed-drought prone         ton CHJ/km3         6.95±1.85           Irrigated (Continuously Flooded)         ton CHJ/km4         17.48±4.00           Intermittently Flooded - Single aeration         ton CHJ/km5         6.62±1.89           Intermittently Flooded - Multiple Aeration         ton CHJ/km5         2.01±1.49           Deep water         ton CHJ/km7         19±5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| Others         kg CH/vs/animal         44±11           Developed by: NDRI, Kannel; NPL, New Dells; CLRI, Cheknel         Image: CLRI, Cheknel           Rice Cuttivation         Image: CLRI, Cheknel           Rain fed - flood prone         Ion CH,/km2         19±5.0           Rainfed-drought prone         Ion CH,/km3         6.95±1.85           Irrigated (Continuously Flooded)         Ion CH,/km4         17.48±4.00           Intermittently Flooded - Single aeration         Ion CH,/km5         6.62±1.89           Intermittently Flooded- Multiple Aeration         Ion CH,/km5         2.01±1.49           Deep water         Ion CH,/km7         19±6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| Developed by: NDRI, Kamal; NPL, New Dells; CLRI, Chemel           Rice Cultivation           Rainfed-flood prone           Inned-drought prone           ton CH,/km3           Experimentary Flooded)           Intermittently Flooded - Single aeration           Intermittently Flooded - Multiple Aeration           Ten CH,/km5           Experimentary Flooded - Multiple Aeration           Ten CH,/km7           Ten CH,/km7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and the second sec |                                 |                    |
| Bice Cultivation           Rain fed - flood prone         ton CH,/km2         19±5.0           Rainfed-drought prone         ton CH,/km3         6.95±1.85           Irrigated (Continuously Flooded)         ton CH,/km3         6.95±1.85           Intermittently Flooded - Single aeration         ton CH,/km5         6.62±1.89           Intermittently Flooded - Multiple Aeration         ton CH,/km5         2.01±1.49           Deep water         ton CH,/km7         19±6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | 44 <u>+</u> 11     |
| Rain fed - flood prone         ton CH_/km2         19±5.0           Rainfed-drought prone         ton CH_/km3         6.95±1.85           Irrigated (Continuously Flooded)         ton CH_/km4         17.48±4.00           Intermittently Flooded - Single aeration         ton CH_/km5         6.62±1.89           Intermittently Flooded - Multiple Aeration         ton CH_/km5         2.01±1.49           Deep water         ton CH_/km7         19±6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a second and a second sec |                                 |                    |
| Rainfed-drought prone         ton CH_/km3         6.95±1.85           Irrigated (Continuously Flooded)         ton CH_/km4         17.48±4.00           Intermittently Flooded - Single aeration         ton CH_/km5         6.62±1.89           Intermittently Flooded - Multiple Aeration         ton CH_/km5         2.01±1.49           Deep water         ton CH_/km7         19±6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Los Mil Acest                   | 10.15.0            |
| Irrigated (Continuously Flooded)         bon CH/km4         17.48±4.00           Intermittently Flooded - Single aeration         ton CH/km5         6.62±1.89           Intermittently Flooded- Multiple Aeration         ton CH/km5         2.01±1.49           Deep water         ton CH/km7         19±5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| Intermittently Flooded - Single aeration ton CHJ/km5 6.62±1.89<br>Intermittently Flooded- Multiple Aeration ton CHJ/km5 2.01±1.49<br>Deep water ton CHJ/km7 19±5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| Intermittently Flooded- Multiple Aeration ton CHJ/km5 2.01±1.49<br>Deep water ton CHJ/km7 19±5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
| Deep water ton CHJ/km7 19+5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |

## NATCOM-I

## Institutional arrangement: NATCOM I



## Moving on to NATCOM - II

- Refinement of existing factors
- Development of new emission factors
- Moving towards higher tier estimates for key source categories
- Bridging data gaps identified in NATCOM I
- Launching standard QA/QC procedures for each of the categories

| Sources of emission                            | CO <sub>2</sub><br>equivalent<br>(Gg) | Percentage<br>of total<br>emissions | emission | total emission | Tier used |      | Status of<br>EF<br>anvisaged<br>in SNC |
|------------------------------------------------|---------------------------------------|-------------------------------------|----------|----------------|-----------|------|----------------------------------------|
| Energy and transformation                      |                                       |                                     |          |                |           |      |                                        |
| industries                                     | 355037                                | 28.9                                | 355037   | 28.9           | Tier :    | CS   | R                                      |
| Enteric Fermentation                           | 188412                                | 15.3                                | 543449   | 44.2           | Tier 🛙    | CS   | R                                      |
| Industry                                       | 150674                                | 12.3                                | 694123   | 56.5           | Tier I    | D.   | D                                      |
| Rice Cultivation                               | 85890                                 | 7.0                                 | 780013   | 63.5           | Tier II   | CS   | R                                      |
| Transport                                      | 80280                                 | <b>6</b> .5                         | 860299   | 70.0           | Tier I    | CS.  | R                                      |
| Emission from Soils                            | 45260                                 | 3.7                                 | 905559   | 73.7           | Tier I    | D    | CS                                     |
| Iron and steel production                      | 44445                                 | 3.6                                 | 950004   | 77.3           | Tier I    | D    | CS                                     |
| Energy use in Residential sector               | 43918                                 | 3.6                                 | 993922   | 80.9           | Tier I    | D    | D                                      |
| Biomass burnt for energy                       | 34976                                 | 2.8                                 | 1028898  | 83.7           | Tier :    | D.   | D                                      |
| All other energy sectors                       | 32087                                 | 2.6                                 | 1060985  | 96.4           | Tier 1    | D    | D                                      |
| Cement production                              | 30767                                 | 2.5                                 | 1091752  | 88.9           | Tier :    | CS   | R.                                     |
| Energy consumed in<br>Commercial/institutional | 20571                                 | 1.7                                 | 1112323  | 90.5           | Tie: I    | D    | D                                      |
| Manure Management                              | 20176                                 | 1.6                                 | 1132499  | 92.2           | Tier :    | D    | D                                      |
| Ammonia production                             | 14395                                 | 1.2                                 | 1146894  | 93.4           | Tier I    | D    | CS .                                   |
| Land use, Land-use change and                  | ·                                     |                                     |          |                |           |      |                                        |
| Forestry                                       | 14292                                 | 1.2                                 | 1161186  | 94.5           | Tier I    | D.   | CS                                     |
| Coal mining                                    | 13650                                 | 1.1                                 | 1174836  | 95.6           | Tier III  | CS.  | CS                                     |
| Oil and natural gas system                     | 12621                                 | 1.0                                 | 1187457  | 96.7           | Tier I    | D    | D                                      |
| Municipal Solid Waste Disposal                 | 12222                                 | 1.0                                 | 1199679  | 97.7           | Tier :    | D    | CS                                     |
| Domestic Waste water                           | 7530                                  | 0.6                                 | 1207218  | 98.3           | Tier :    | D    | D                                      |
| Lime stone and dolomite use                    | 5751                                  | 0.5                                 | 1212969  | 98.7           | Tier :    | D    | D                                      |
| Agricultural crop residue                      | 4747                                  | 0.4                                 | 1217716  | 99.1           | Tier I    | D    | D                                      |
| Nitric acid production                         | 2790                                  | 0.2                                 | 1220506  | 99.3           | TierⅡ     | CS . | CS                                     |
| Human Sewage                                   | 2170                                  | 0.2                                 | 1222676  | 99.5           | Tier I    | D    | D                                      |
| Lime production                                | 1901                                  | 0.2                                 | 1224577  | 99.7           | Tier :    | D    | D                                      |
| Industrial Waste Water                         | 1302                                  | 0.1                                 | 1225879  | 99.8           | Tier :    | D    | CS                                     |
| Ferro alloys production                        | 1295                                  | 0.1                                 | 1227174  | 99.9           | Tier I    | D    | D                                      |
| Aluminium production                           | 749                                   | 0.1                                 | 1227923  | 99.9           | Ties :    | D    | D                                      |
| Carbide production                             | 302                                   | 0.0                                 | 1228225  | 100.0          | Tier 1    | D    | D                                      |
| Soda ash use                                   | 273                                   | 0.0                                 | 1228498  | 100.0          | Tier :    | D    | D                                      |
| Black carbon and styrene prod.                 | 42                                    | 0.0                                 | 1228540  | 100.0          | Tier :    | D    | D                                      |

Key Sources analysis

Note: D: IPCC default emission factor, CS: Country specific emission factor, R : Revised country specific emission factor

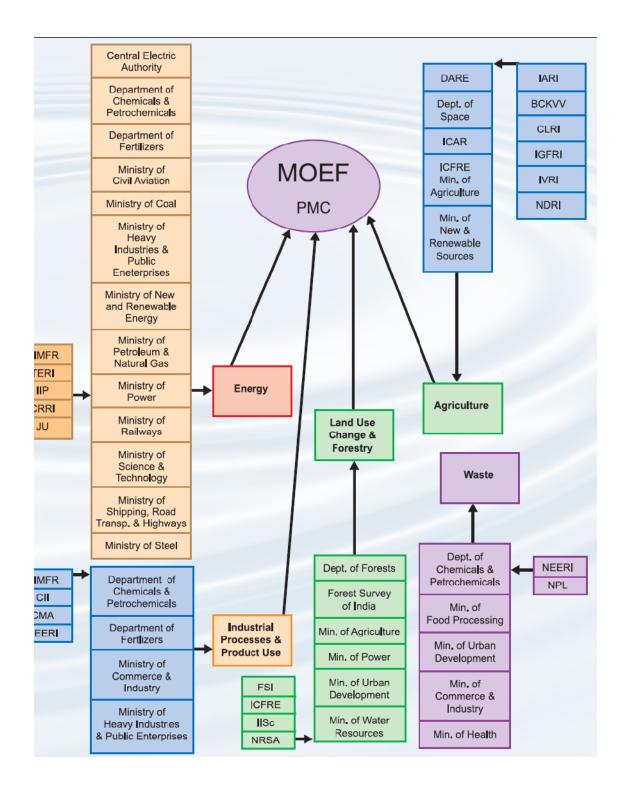
## Planning for reducing uncertainties

| c e                 | 10000 I    | e         | 1                                                        | 1                                                                   | in a      | i1       |
|---------------------|------------|-----------|----------------------------------------------------------|---------------------------------------------------------------------|-----------|----------|
|                     |            | Status of |                                                          |                                                                     | Tier used |          |
| emission            |            | EF        |                                                          |                                                                     | in INC    |          |
|                     |            | envisage  |                                                          |                                                                     |           | Proposed |
|                     |            | d in SNC  | Activities proposed in SNC                               | Rationale                                                           |           | in SNC   |
| Energy and          | CS         | R         | <ul> <li>Refinement of NCV of different types</li> </ul> | o Inadequate sample size taken in INC                               | Tier I    | Tier II  |
| transformation      |            |           | of coal                                                  |                                                                     |           |          |
| industries          |            |           | o Determine technology specific point                    | o Thermal power plants is the key category                          |           |          |
|                     |            |           | source level EFs of CO <sub>5</sub> , CO and NOX         |                                                                     |           |          |
|                     |            |           | for thermal power plants                                 |                                                                     |           |          |
| Enteric             | CS         | R         | o Sample survey of age wise domestic                     | <ul> <li>It is a key category in the agriculture sector.</li> </ul> | Tier II   | Tier III |
| Fermentation        |            |           | livestock population, feed type, milk                    | o In INC, appropriate activity data was not                         |           |          |
|                     |            |           | production in various climate regions                    | available to make a correct assessment                              |           |          |
|                     |            |           | of India                                                 | o The sample size for which measurements                            |           |          |
|                     |            |           | o Develop CH, EF for enteric                             | were taken was small, and could not be                              |           |          |
|                     |            |           | fermentation through estimation and                      | validated through estimates because lack of                         |           |          |
|                     |            |           | measurement                                              | activity data                                                       |           |          |
| Industry (fuel      | D          | D         | -not targeting-                                          | -not targeting-                                                     | Tier I    | Tier I   |
|                     | D          | P         | -not targeting-                                          | -not targeting-                                                     | Tier I    | mer i    |
| combustion)         | <b>C</b> 0 | -         |                                                          |                                                                     |           |          |
| Rice Cultivation    | CS         |           |                                                          |                                                                     |           | No       |
|                     |            |           | hotspot areas                                            | category amongst all the agriculture                                |           | change   |
|                     |            |           |                                                          | categories. As the emission from this source                        |           |          |
|                     |            |           |                                                          | is dominated by emissions from hotspots,                            |           |          |
|                     |            |           |                                                          | therefore it is proposed to investigate the EFs                     |           |          |
|                     |            |           |                                                          | from these regions.                                                 |           |          |
| Transport           | CS         | R.        | o Conduct survey to apportion the fossil                 | These two approaches will be used to                                | Tier I    | Tier II  |
|                     |            |           |                                                          | reconcile the top down and bottom up                                |           |          |
|                     |            |           | vehicles                                                 | emission estimates from this source                                 |           |          |
|                     |            |           | o Refine EFs from different kinds of                     |                                                                     |           |          |
|                     |            |           | gasoline and diesel driven vehicles by                   |                                                                     |           |          |
|                     |            |           | incorporating driving cycles                             |                                                                     |           |          |
| Emission from Soils | D          |           | o Development of N <sub>2</sub> O EFs from               | This is a major source of NO emission                               | Tier I    |          |

## Planning for reducing uncertainties

|                                                    |    | cs | different soils                                                            | amongst all the categories.                                                                                                                                                                                 |          | Tier II      |
|----------------------------------------------------|----|----|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| Iron and steel<br>production                       | D  | cs | (resulting from combustion of fuel &                                       | It is a fast growing sector of the economy in<br>addition to being a major source of CO2<br>emission                                                                                                        | Tier I   | Tier II      |
| Energy use in<br>Residential sector                | D  | Þ  | -not to be targeted-                                                       | -not to be targeted-                                                                                                                                                                                        |          | No<br>change |
| Biomass burnt for<br>energy                        | D  | Þ  | -not to be targeted-                                                       | Data available                                                                                                                                                                                              |          | No<br>change |
| All other energy<br>sectors                        | D  | Þ  | -not to be targeted-                                                       | Individually not in key category                                                                                                                                                                            | Tier I   | No<br>change |
| Cement production                                  | CS | R  | Plant level assessment of CO <sub>2</sub> EFs due to<br>production process | It is a fast growing sector of the economy in<br>addition to being a major source of CO2<br>emission                                                                                                        | Tier I   | Tier II      |
| Energy consumed in<br>Commercial-<br>institutional | D  | D  | -not to be targeted-                                                       | <ul> <li>not to be targeted- As source category too<br/>diverse, and enough resources not available.</li> </ul>                                                                                             |          | No<br>change |
| Mamure<br>Management                               | D  | Þ  |                                                                            | Manure management not done in a<br>systematic manner in India                                                                                                                                               | Tier I   | No<br>change |
| Ammonia<br>production                              | D  | cs | Determine plant level CO2EF                                                | Key category – not targeted in INC.                                                                                                                                                                         | Tier I   | Tier II      |
| Land use, Land-use<br>change and Forestry          |    | CS | o Develop land use change matrix<br>o Assess biomass stock, carbon         | A key category, and targeted in SNC to bring<br>in the GPG LULUCF (2003) guidance in the<br>inventory estimation process.                                                                                   |          | Tier II      |
| Coal mining                                        | CS | CS | -not targeted-                                                             | -not targeted-                                                                                                                                                                                              | Tier III | Tier III     |
| Oil and natural gas<br>system                      | D  |    | transport, storage, venting and flaring.                                   | Though not a key category, but the<br>consumption of oil and natural gas shows the<br>highest growth rate w.r.t other fossil fuel, so<br>efforts will be made to stream line<br>assessment of activity data | Tier I   | Tier I       |

## Planning for reducing uncertainties


| Municipal Solid<br>Waste Disposal      |    |    | <ul> <li>Assess per capita MSW generation,<br/>composition and handling process</li> <li>Generate EFs for managed and<br/>unmanaged landfill areas</li> </ul> | Rapid urbanization resulting in increased<br>generation of waste and changed composition | Tier I  | Tier II      |
|----------------------------------------|----|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------|--------------|
| Domestic Waste<br>water                | D  | D  | -no: targeted-                                                                                                                                                | -not a key category-                                                                     | Tier I  | No<br>change |
| Lime stone and<br>dolomite use         | D  | D  | -no: targeted-                                                                                                                                                | nøt a key category-                                                                      | Tier I  | No<br>change |
| Agricultural crop<br>residue           | D  | D  | -no: targeted-                                                                                                                                                | not a key category-                                                                      | Tier I  | No<br>change |
| Nitric acid<br>production              | CS | cs | -no: targeted-                                                                                                                                                | nøt a key category-                                                                      | Tier II | No<br>change |
| Human Sewage                           | D  | D  | -no. targeted-                                                                                                                                                | not a key category-                                                                      | Tier I  | No<br>change |
| Lime production                        | D  | D  | -no: targeted-                                                                                                                                                | nøt a key category-                                                                      | Tier I  | No<br>change |
| Industrial Waste<br>Water              | D  | cs | Chemical analysis of waste water in<br>selected key industries                                                                                                | Rapid growth of certain industries like paper,<br>pulp, beverage etc.                    | Tier I  | Tier II      |
| Feno alloys<br>production              | D  | Р  | -no: targeted-                                                                                                                                                | not a key category                                                                       | Tier I  | No<br>change |
| Aluminium<br>production                | D  | D  | -no: targeted-                                                                                                                                                | not a key category                                                                       | Tier I  | No<br>change |
| Carbide production                     | D  | D  | -no: targeted-                                                                                                                                                | not a key category                                                                       | Tier I  | No<br>change |
| Soda ash use                           | D  | D  | -no: targeted-                                                                                                                                                | not a key category                                                                       | Tier I  | No<br>change |
| Black carbon and<br>styrene production | D  | Þ  | -not targeted-                                                                                                                                                | nøt a key category                                                                       | Tier I  | No<br>change |

## NATCOM-II

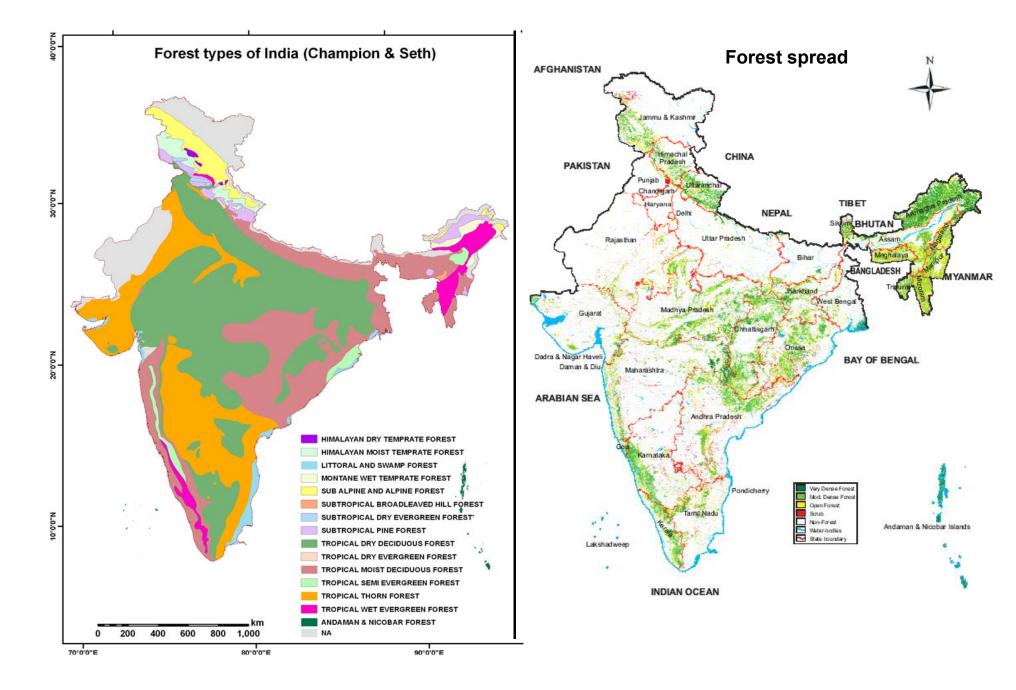
- Improving NCV of coal
- CO2 emission factors from two power plants due to combustion of coal
- CO2 emission factor from an integrated iron and steel plant due to combustion of fuel and the processes itself
- Updating CH4 from Coal mining
- CH4 from transport of oil/natural gas

## NATCOM-II

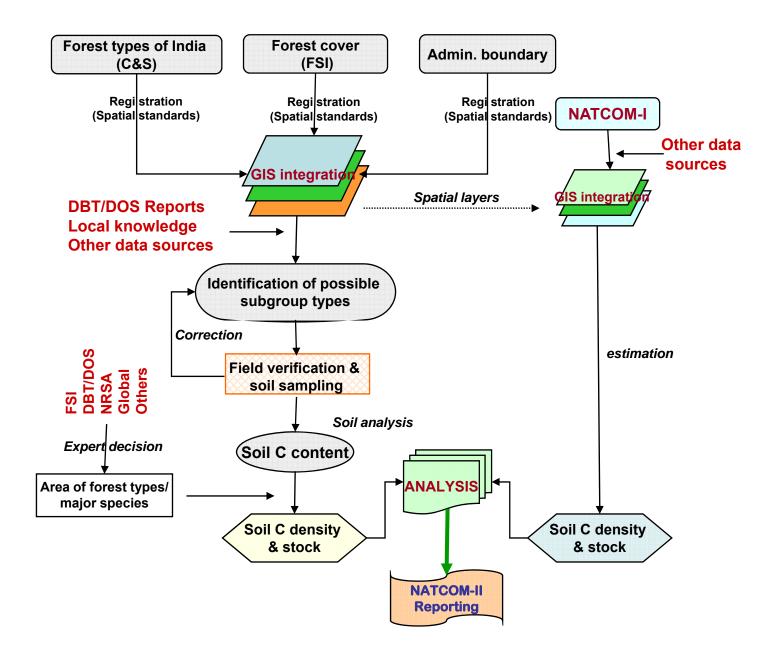
- CH4 from continuously irrigated rice fields
- N2O from agricultural soils
- Improving CH4 EF from enteric fermentation in Livestock
- Soil C from Forests
- CH4 from MSW
- CH4 from Waste water from key industries



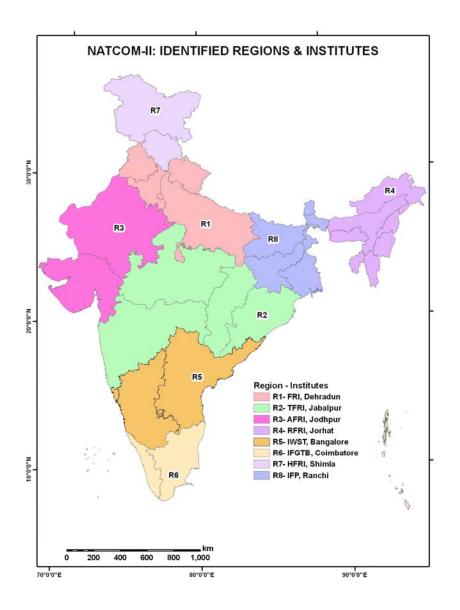
## Institutional Arrangement: NATCOM II


## An example – LULUCF – Soil C

#### Problems to address..


- Preparation of Forest type and sub-group type map of India (Champion & Seth, 1968)
- ✓ Harmonization of different spatial layers of India (forest types, actual forest cover, administrative boundaries and collateral data sources), and assigning them uniform spatial standards
- ✓ Non-existence or localized presence of some of the forest sub-group types and difficulty in locating them
- Even modern tools like RS and recent published estimates gives only forest types and sub-group type associations/equivalents

#### **Opportunities..**


- Preparation of Forest type map and sub-group type details of India in tabular format (Champion & Seth, 1968)
- Harmonization of different spatial layers of India (forest types, actual forest cover, administrative boundaries and collateral data sources) in GIS and assigning them uniform spatial standards
- ✓ Use of FSI and DBT-DOS reports



#### Flow diagram showing overview of methodology



#### **ICFRE** participating Institutes and their area of jurisdiction



## Nodal ICFRE Institutes and number of sample locations

|            | Total No. of samples     |                                   | 171                         | 513+78=591                                                        |
|------------|--------------------------|-----------------------------------|-----------------------------|-------------------------------------------------------------------|
| R8         | IFP, RANCHI              | BH, JH, WB, Sikkim                | 13                          | 39+10=49                                                          |
| <b>R</b> 7 | HFRI, SHIMLA             | HP, J&K,                          | 16                          | 48+08=58                                                          |
| R6         | IFGTB, COIMBATORE        | TN, KE, A&N Is. Pondy,            | 32                          | 96+10=106                                                         |
| R5         | IWST, BANGALORE          | KA, AP, GOA                       | 15                          | 45+08=53                                                          |
| R4         | RFRI, JORHAT             | North East                        | 29                          | 87+12=97                                                          |
| R3         | AFRI, JODHPUR            | RA,GU, D&N Haveli, D&Diu          | 18                          | 54+10=64                                                          |
| R2         | TFRI, JABALPUR           | MP, MS, OR,CH                     | 17                          | 51+10=61                                                          |
| R1         | FRI, DEHRADUN            | UA, UP, PUN,HA, ND,<br>Chandigarh | 31                          | 33+10=43                                                          |
| Region     | Name of the<br>Institute | Area coverage                     | No. of<br>subgroup<br>types | Number of<br>samples (@ 3 per<br>type + from non-<br>forest area) |

## What is given...

- Forest types, sub-groups, sub-group types, C & S code, distribution and dominant species along with the identified institute is supplied to every participating institutes.
- This will be supplemented with any other map available for now or as soon is become available.

Detailed methodology Prepared for :

Sample collection Storage Analysis and calculation

Inception meeting with Nodal officers from different ICFRE Institutes conducted 9-10 May

Sampling procedure to be uniformally adopted by all teams demonstrated in the field

QA/QC plan developed

| Compartment/Vi          | llage        |                             | _Block/Te   | ehsel      |            |          |
|-------------------------|--------------|-----------------------------|-------------|------------|------------|----------|
| Division/Distt          |              | State                       |             |            |            |          |
| Altitude                | Aspect       | Latitude                    |             | Longituc   | le9t       |          |
| orest type :            |              | Dominant spe                | cies        |            |            |          |
| Slope (%) :             |              | Rock out crop (%            | %):         |            |            |          |
| Coarse Fragmer          | ıts (%)      |                             |             |            |            |          |
| <u>Fick on appropri</u> | iate feature | <u>):</u>                   |             |            |            |          |
| a) Erosion class        | : Slight     | Moderate                    | Severe      |            | Gullied    |          |
|                         |              | Hill slope Plateau          |             |            |            | Valley   |
| ) Moisture              | : Wet        | Moist<br>Light (25 % surfac |             | Dry        |            |          |
| I) Plant litter         | :            | Light (25 % surfac          | e area co   | verage)    |            |          |
|                         | Moderat      | te (25-50 % surface         | area cove   | rage)      |            |          |
|                         |              | >50 % surface area          | · · · ·     |            |            |          |
| Soil depth:             | Shallow      | / (<25 cm.) ,               | Moderat     | ely deep ( | 25-50)     |          |
|                         |              | ite (50-100)                | Deep (>     | 100 cm)    |            |          |
| Sample Collecte         |              |                             |             |            |            |          |
| Division:               |              |                             |             |            |            |          |
| nstitute:               |              |                             |             |            |            |          |
| Date_                   |              |                             |             |            |            |          |
| Soil Sample No.         | :            | ( Region No./ For           | est types / | / Sample N | lo Replica | ation No |
|                         |              | Foe ex.                     | ( R6/ TEG   | / 1-2)     |            |          |

## **Soil Sample Collection Protocol**

Most carbon accounting purposes require a volumetric estimate of soil carbon. This requires measures of bulk density and the volumetric proportion of coarse fragments (e.g. gravels).

Existing guidelines (IPPC, 1997) for carbon accounting refer only to the upper 0.30 m. This zone is intended to cover the actively changing soil carbon pool.

| SOC Density (t/ha) = | Organic Carbon Content (%) * Bulk density * |
|----------------------|---------------------------------------------|
|                      | Soil Layer depth * (1- volume fraction      |
| of                   | coarse fragments)                           |

#### While sampling certain points should be kept in mind.

- Locate sample site away from roads, houses and construction sites, etc.,
- In a forested area sample should be drawn away from the trunk of the tree or between trees.
- Avoid eroded and locations where large plant material is under decay.
- Always dig **a fresh rectangular pit** and in grass land first clear the top layer and dig the profile.

#### 1. Estimating Rock Outcrop

It is desirable to have a more accurate estimate of the volume of rock within the soil individual. Measure rock outcrop along a series of linear transects. At each transect intercept, record the length of rock surface (>50 mm). The area of rock outcrop is estimated using:

#### *Aro* = 100 (∑r / L)

where Aro is the areal percentage of of rock outcrop, L is the total transect length and r is the length of rock intercepted (m).

Rock outcrop can also be measured using the 10 m grid (100 m<sup>2</sup> area) assuming that the observer is at the middle of the grid. Make schematic sketch of the rock out crop on the grid and estimate the percentage.

## 2. Estimating Percent Coarse Fragment in the Soil

Percent coarse fragment (>2mm size) in soils will be estimated by morphological examination of soil.

Coarse fragments by volume in layer of 0-30 cm. using the visual estimation of coarse fragments key should be observed.

An area of 10 cm. by 10 cm. (100 cm2) can be visualized in layer covering of coarse fragments.

It is also useful to indicate the size of coarse fragments (CF) by type, as given in table 4b:

#### Type of coarse fragments and its size

Gravels (G) <u>2 -75 mm;</u> Cobbles (C) <u>75-250 mm;</u> Stones (S) <u>> 250 mm</u> (25 cm).

## 3. Collection of Samples

In each sampling units, three sampling points will be selected as replicates.

At each point soil sample of 0-30 cm. depth will be collected.

One sample will also be collected in **non-forested area (agricultural area)** close to the major forest types.

Detailed number of samples, forest sub types and nodal institutes are given in sampling plan with participating institute.

## 3.1 Soil sample for carbon estimation:

- Forest floor litter of an area of 0.5m x 0.5 m, at sampling point will be removed and a pit of 30 cm wide, 30 cm deep and 50 cm in length will be dug out.
- Soil from three sides of the pit, will be scraped with the help of Kurpee from 0 to 30 cm depth and bulked. Scrap uniform thickness of soil layer from top to bottom (0-30m cm)
- This soil will be mixed thoroughly and removed gravels. Quarter the bulked soil sample and select opposite quarter approximately of 500 gm. Here, coarse fragments can also be approximated.
- Keep in a polythene bag and tightly closed with thread.
- A label showing the sampling details should be put in side of polythene bag before closing the bag.
- Proper entry to be made in field note book

#### 3.2 For bulk density estimation by Core sampler

#### **3.3 Storage of the samples**

• If numbers of samples are large and not possible to analyze / process immediately after collection from field, then samples collected for soil organic carbon, should be placed in refrigerator or deep freezer.

• Taken out desired numbers of sample and prepare them for estimation.

## 4. Preparation of sample

#### 4.1 Carbon estimation in the laboratory

- Open the polythene bag and spread the samples on a brown paper sheet in the laboratory. Let the sample dry at room temperature in the laboratory.
- Avoid direct sun drying or oven drying.
- Marking of the sample (which was given on the label at the time of the collection of sample) should be written on the brown paper sheet to avoid the mixing of the samples.
- After drying the samples, grind it and sieve it through 100 mesh sieve (2 mm sieve). This sieved sample will be used for soil organic carbon estimation.

#### 4.2 Analysis

Soil organic carbon will be estimated by standard Walkley & Black method and

## Vegetation characteristics of the sample site

Measure 22x22m either side of sample location (Quadrat of 31x31 m=0.1 ha)

Enumerate all tree species > 10 cm dia within the quadrat

For shrubs 5x5 m qudart

For herbs and grasses 1x1 m quadrat

# Thank You