# The 3rd Workshop on Greenhouse Gas Inventories in Asia Region 23-24 February 2006, Manila, Philippines

# Proceedings



Ministry of the Environment, Japan National Institute for Environmental Studies (NIES), Japan

# The 3rd Workshop on Greenhouse Gas

# **Inventories in Asia Region**

23-24 February 2006, Manila, Philippines

**Proceedings** 

Ministry of the Environment, Japan National Institute for Environmental Studies (NIES), Japan

#### Preface

The Workshop on GHG Inventories in Asia Region (WGIA) was first held in Phuket, Thailand in 2003, followed by the second, held in Shanghai, China in 2004. To maintain the momentum of those meetings, on 23 and 24 February 2006 the third WGIA was held in Manila, the Philippines. There are now 12 countries participating in this network, mostly non-Annex I countries under the UN Framework Convention on Climate Change.

At the workshops, governmental and scientific experts responsible for the development of greenhouse gas emissions inventories in their respective countries gather together to exchange and discuss information and experiences regarding various aspects of inventory development. We have discovered great value in these exchanges, as various countries in the region share many similarities and regionally-unique characteristics that affect GHG emissions, so experiences in one country can often be a tremendous help to others.

These kinds of exchanges are even more relevant than before, as all participating countries have completed at least one national communication to fulfill their commitments under the Climate Convention, and are already or will soon be working on their next communication. All countries are seeking greater accuracy and reduced uncertainty in their inventories, and to accomplish this, many are moving from the default emission factors offered by the Intergovernmental Panel on Climate Change to region-specific or country-specific emission factors. To respond to this situation, this time, besides hearing the annual updates on national circumstances, participants divided into four working group sessions for more detailed technical discussions in the sectors of: energy; agriculture; land use, land-use change and forestry (LULUCF); and waste.

We sincerely hope that the WGIA meetings and network will continue to be valuable in helping countries improve the quality of GHG emissions inventories in the Asian region.

Dr. Shuzo/Nishioka Executive Director National Institute for Environmental Studies (NIES), Japan

Gasuhiro Baba

Mr. Yasuhiro Baba Deputy Director Climate Change Policy Division, Global Environment Bureau Ministry of the Environment, Japan



# **Opening Remarks**



Dr. Shuzo NISHIOKA (Japan)



Dr. Enrico P. SUPANGCO (Philippines)

# **Opening Remarks**



Mr. Hon. Demetrio L.IGNACIO (Philippines)

# Closing Remarks



Atty. Fernandino Y. CONCEPCION (Philippines)

# Chair & Co-Chairs



Dr. Damasa Magcale MACANDOG (Philippines)



Mr. Tomoyuki AIZAWA (Japan)



Mr. Yasuhiro BABA (Japan) Mr. Tomoyuki AIZAWA (Japan)



Dr. Shuzo NISHIOKA (Japan)

# The 3rd Workshop on Greenhouse Gas Inventories in Asia Region 23-24 February 2006, Manila, Philippines

## Proceedings

## CONTENTS

## 1. Preface

| 2. | 2. Executive Summary 1 |                                                            |     |  |
|----|------------------------|------------------------------------------------------------|-----|--|
| 3. | Background Pape        | r                                                          | 4   |  |
| 4. | Chairperson's Sur      | mmary                                                      | .10 |  |
|    | Attachment I:          | Agenda                                                     | 20  |  |
|    | Attachment II:         | Working Group Guidance (Energy, Agriculture, LLUCF, Waste) | .23 |  |
|    | Attachment III:        | List of Participants                                       | 39  |  |
|    |                        |                                                            |     |  |

#### -----

## 5. Documents

## (i) Presentations

| - Opening Session -                                                                                                     |      |
|-------------------------------------------------------------------------------------------------------------------------|------|
| 1) Overview of workshop and explanation of schedule by Ms. Chisa Umemiy                                                 | /a47 |
| Contract I Hadden on CHC incontantia in Asia analism                                                                    |      |
| <ul> <li>Session I: Updates on GHG inventories in Asia region -</li> <li>2) China's News by Prof. Huaqing Xu</li> </ul> | 52   |
| 2) China S News by 1101. Huaqing Au                                                                                     |      |
| 3) Indonesia's News by Mr. Dadang Hilman                                                                                | 57   |
|                                                                                                                         |      |
| 4) Japan's News by Mr. Yasuhiro Baba                                                                                    | 61   |
| 5) Korea's News by Dr. Kyoungsik Choi                                                                                   | 68   |
|                                                                                                                         |      |
| 6) Lao PDR's News by Mr. Syamphone Sengchandala                                                                         | 74   |
|                                                                                                                         | 00   |
| 7) Mongolia's News by Ms. Bujidmaa Borkhuu                                                                              | 80   |
| 8) Philippines' News by Ms. Raquel Ferraz Villanueva                                                                    |      |
|                                                                                                                         |      |

| 9)        | Thailand's News by Ms. Aree Wattana Tummakird                                                                                                                             | 91  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 10)       | Viet Nam's News by Mr. Hoang Manh Hoa1                                                                                                                                    | 01  |
| ,         | Sectoral features of GHG inventories from non-Annex I Parties by<br>Mr. Dominique Revet                                                                                   | 07  |
| 12)       | Overview and schedule for Session II by Ms. Chisa Umemiya1                                                                                                                | 13  |
| - Sess    | ion II: Countries' practices, by sector -                                                                                                                                 |     |
|           | The development of GHG Inventory for energy sector and industrial processes - Malaysia by Ms. Siti Indati Mustapa                                                         | 17  |
|           | Japan's country-specific emission factors for the CO <sub>2</sub> emissions from fuel combustion by Mr. Tomoyuki Aizawa1                                                  | 33  |
|           | GHG emission factors developed for the energy sector in India by<br>Dr. Sumana Bhattacharya1                                                                              | 42  |
|           | Methane emission from Thai paddy fields by using the sensor technique by<br>Dr. Amnat Chidthaisong1                                                                       | 55  |
| · · · · · | Nitrous oxide and methane emissions and nitrogen dynamics in hedgerow systems in the uplands of Southern Philippines by Dr. Damasa Magcale Macandog1                      | 70  |
| ,         | Better evaluation system for N <sub>2</sub> O and CH <sub>4</sub> emission from composting (and wastewater purification) of Livestock waste by Dr. Takashi Osada1         | 90  |
| · · · · · | Development inventory of the country-specific activity data and estimation methods for forests ecosystems and land-use change in Malaysia by Mr. Lip Khoon Kho            | 201 |
|           | Development of the LULUCF's GHG Inventories of Cambodia by<br>Mr. Heng Chan Thoeun                                                                                        | 212 |
|           | Experience learned by using the IPCC's Good Practice Guidance on Land Use,<br>Land-Use Change, and Forestry in developing Japan's GHG inventories by<br>Mr. Atsushi Sato2 | 21  |
| 22)       | The estimate model of MSW generation in China by Dr. Qingxian Gao2                                                                                                        | 232 |
|           | Estimation and uncertainty analysis of CH <sub>4</sub> emissions from landfills by<br>Dr. Kyoungsik Choi                                                                  | .44 |
| - Sess    | ion III: Reports and overall discussion -                                                                                                                                 |     |
| 24)       | Report from Energy WG2                                                                                                                                                    | 56  |

| 25) Repor     | rt from Agriculture WG                           | 260  |
|---------------|--------------------------------------------------|------|
| 26) Repor     | rt from LULUCF WG                                | 264  |
| 27) Repor     | rt from Waste WG                                 | .269 |
| (ii) Other do | ocuments                                         |      |
| i) Propos     | sal for the concept of the WGIA Activity Report  | 274  |
| ii) Propos    | sal for the outline of the WGIA Activity eport   | 278  |
| (iii) Append  | lix                                              |      |
| i) Sun        | nmary Table of Energy WG Discussion Results      | .284 |
| ii) Sun       | nmary Table of Agriculture WG Discussion Results | .285 |
| iii) Sun      | nmary Table of LULUCF WG Discussion Results      | .286 |
| iv) Sun       | nmary Table of Waste WG Discussion Results       | 287  |

**Executive Summary** 

## The 3rd Workshop on GHG Inventories in the Asia Region 23 – 24 February 2006, Manila, Philippines EXECUTIVE SUMMARY

The Third Workshop on GHG Inventories in Asia Region (WGIA) was attended by governmental officials and scientists from 12 countries and a representative of the United Nations Framework Convention on Climate Change (UNFCCC) Secretariat.<sup>1</sup> It was organized by the Ministry of the Environment (Japan) and the National Institute for Environmental Studies (NIES) of Japan, and hosted by the Department of Environment and Natural Resources of the Philippines (DENR) and the University of the Philippines at Los Banos. Objectives of the meeting were to (1) update each other on the status of GHG inventory development in Asia, (2) specify the features of GHG inventory development, sector by sector, and (3) identify the next steps for the WGIA.

During the first session of the workshop, participants presented updates on the status of GHG inventories in their countries since the last WGIA meeting, in Shanghai in 2005. Selected points of these updates are as follows:

- Countries are all making progress in improving the quality of their GHG inventories.
- Most are either already working on or planning to start work on their Second National Communication (SNC) soon, and aim to complete the work within two or three years.
- Countries vary widely in institutional resources available for GHG inventories.
- Most countries are not yet satisfactorily using UNFCCC software/manuals/guidebooks for their inventories.
- Many countries plan to develop or refine their own national emission factors (EFs).

The representative of the UNFCCC Secretariat presented information on "sectoral features of GHG inventories from non-Annex I Parties." He summarized GHG emissions data for members of WGIA based on their national communications to the Secretariat. He pointed out that the UNFCCC Secretariat provides many information resources (downloadable) that can save countries time and money, and improve their inventories, including, among others:

- the UNFCCC "User Manual" (explains new guidelines for national communications)<sup>2</sup>
- the CGE hands-on training materials on GHG inventories<sup>3</sup>
- UNFCCC software for national GHG inventories<sup>4</sup> (solves problems of previous IPCC software, and add new features, such as GPG, GPG for LULUCF, and a key categories analysis tool, as well as the required two tables for UNFCCC reporting [included in Decision 17/CP.8]).
- new guidelines for national communications (decision 17/CP.8).<sup>5</sup>

<sup>&</sup>lt;sup>1</sup> Participants in WGIA include Cambodia, China, India, Indonesia, Japan, Korea, Lao PDR, Malaysia, Mongolia, Philippines, Singapore, Thailand, and Viet Nam. Singapore was unable to attend this time.

<sup>&</sup>lt;sup>2</sup> http://unfccc.int/files/essential\_background/application/pdf/usermanu\_nc.pdf

<sup>&</sup>lt;sup>3</sup> http://unfccc.int/resource/cd\_roms/na1/ghg\_inventories/index.htm

<sup>&</sup>lt;sup>4</sup> http://unfccc.int/resource/cd\_roms/na1/ghg\_inventories/index.htm

<sup>&</sup>lt;sup>5</sup> http://unfccc.int/resource/docs/cop8/07a02.pdf#page=2

He reminded participants that it would be beneficial to first check the IPCC Emission Factor Database (EFDB) to see if emission factors already registered in the database can be applied.<sup>6</sup> If countries do decide to develop their own emission factors, they are encouraged to submit them to IPCC's EFDB to be verified and then shared for the benefit of others. He informed participants that Non-Annex I countries are <u>not required</u> to use the new IPCC 2006 GHG inventory guidelines when they come out, and in fact they should use the 1996 IPCC Revised Guidelines, as they will be much easier to use.

During the second session, participants met in four separate sectoral working groups (energy; agriculture; land use, land-use change and forestry; and waste) to discuss issues relating to GHG emissions inventories. They started with presentations, and were followed by a discussion, with the aim of identifying good practices, challenges and possible solutions (including within WGIA network), and other topics. During the third session (second day), rapporteurs presented the findings. Key points of their presentations and the discussions are as follows:

- Countries are all making steady progress in quality of GHG inventories. Needs are becoming more specific and specialized. Countries are starting to realize that they have solutions to share, and realize the value of continuing the meetings and activities of the WGIA.
- Now that most member countries are between their Initial and Second National Communications to the UNFCCC, the timing is good for this type of more detailed discussion in sectoral groups in the Asia region. There was good discussion on the technical and specific issues in each sector in the four working groups.
- Countries have different situations, but there is much value in sharing emission factors, estimation methodologies, measurement methodologies, etc. Many good practices were identified and there must be many more to share.
- Some of the sectoral groups are planning to communicate during the next year, and compile information before next WGIA meeting.
- WGIA outputs should be made available more broadly, in order to promote/enhance activities of scientists/experts, for the benefit of policy makers, and for governments and funding agencies, and for sharing of WGIA efforts in Asia and experience with UNFCCC and IPCC and the international community. The idea of a creating a website for this purpose was raised.

The meeting agreed with the idea of preparing a "WGIA Activity Report," in the format proposed by the WGIA Secretariat, to present a list of action items to improve GHG emissions inventories in Asia, to compile information that has been presented and discussed in WGIA to date, and to document the history of WGIA activities. Some constructive comments were made on the outline. The Japanese Ministry of the Environment announced that it was willing to organize the fourth WGIA one year from now.

<sup>&</sup>lt;sup>6</sup> www.ipcc-nggip.iges.or.jp/EFDB/main.php

Background paper

## **Background Paper**

for the 3rd Workshop on GHG Inventories in Asia Region (WGIA) 23-24 February, 2006 (Manila)

#### 1. Introduction

To help guide policies and strategies of countries around the world to reduce greenhouse gas (GHG) emissions, inventories that provide accurate knowledge of GHG emissions and trends are critically important. To discuss this topic in the Asian region, a 1<sup>st</sup> Workshop on GHG Inventories in Asia Region (WGIA) was held in Phuket, Thailand in November 2003, followed by the 2<sup>nd</sup> WGIA in Shanghai, China in February 2005. The workshops revealed varying degrees and types of efforts by countries to improve the accuracy of their GHG inventories, with the differences depending mostly on national priorities, institutional and technical capacity, and experience related to GHG inventory development. The participants of the 1<sup>st</sup> and 2<sup>nd</sup> WGIAs recognized the importance of this regional forum to share information and agreed to cooperate on the effective use of the forum in the future, including the holding of a 3<sup>rd</sup> WGIA.

#### 2. Purpose and scope of this paper

This paper, prepared by the WGIA Secretariat, serves as a provisional background paper for the 3<sup>rd</sup> WGIA. It indicates the proposed objectives and expected outcomes of the workshop, as well as the details of each session. Based on this paper, prospective participants are invited to provide the WGIA Secretariat with suggestions on additional information to be considered for inclusion in the workshop. The Secretariat would highly appreciate your active input to help prepare for the workshop. It is hoped that this paper will also help participants prepare themselves for the workshop.

### 3. Objectives and expected outcomes of the 3rd WGIA

#### 3.1. Workshop objectives

- To exchange information on GHG inventory development, sector by sector
- > To update each other on the state of GHG inventories, particularly in the Asia region
- To add to the body of knowledge about GHG inventory development

#### 3.2 Expected outcomes of the workshop

- Identification of specific issues that are important for the improvement of GHG inventories, by sector
- > Determination of the current status of GHG inventory development in each country
- Identification of ways the WGIA network can help to improve GHG inventories in Asia in the future
- > Enhancement of cooperative relationships within the WGIA community

## 4. Diagram of workshop flow

The diagram below shows the planned flow of the workshop sessions.

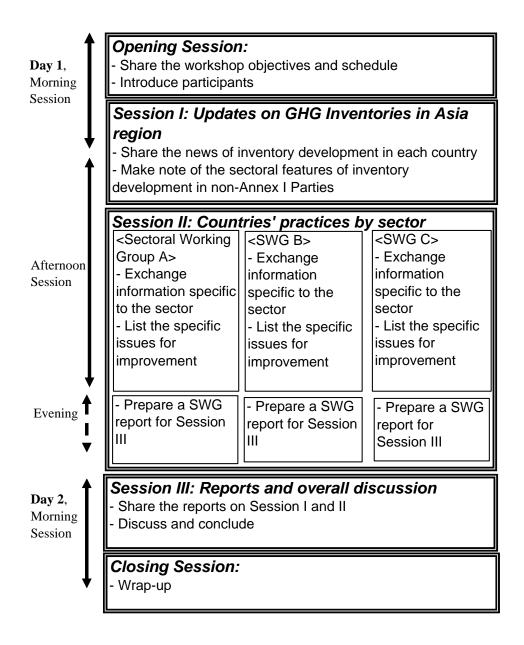



Figure. Flow chart of the sessions in the 3<sup>rd</sup> WGIA

#### 5. Proposed details of each session

#### 5.1 Session I: Updates on GHG inventories in Asia region

#### 5.1.1 Overview

The 3<sup>rd</sup> WGIA will be held almost one year after the previous workshop. In this first session of the workshop, a representative of each participating country will speak about activities and progress made for the development of its GHG inventories, particularly since the 2<sup>nd</sup> WGIA. In addition, a presentation from the UNFCCC Secretariat will feature the sectoral characteristics of inventory development in non-Annex I Parties. This presentation will be a preliminary talk for the next session: "Session II: Countries' practices, by sector." In Session I, participants are expected to gain a general and shared understanding of the current state of inventory development in Asia and be aware of the sectoral features of inventory development in non-Annex I Parties.

#### 5.1.2 Structure

First, brief presentations will be made by all participating countries on the state of the GHG inventory development in their countries, particularly focusing on the period after the 2<sup>nd</sup> WGIA. The presentation from the UNFCCC Secretariat will then be given.

#### 5.1.3. Items to be included in the presentations

(a) Presentations from participating countries

Any activities and progress made, particularly since the 2<sup>nd</sup> WGIA, for the development of GHG inventories, such as:

- · Policy framework to support the management of GHG inventory preparation
- · Research projects to improve the accuracy of activity data and emission factors
- Collaborative research activities with other countries in Asia or other regions, for the improvement of inventories

(b) Presentation from the UNFCCC Secretariat

- What are the sectoral features of GHG inventories from non-Annex I Parties inside and outside Asia?
- What kinds of sector-specific issues have been identified in those GHG inventories? Have any practices been developed to address these issues?
- What kinds of requests has the UNFCCC Secretariat received from non-Annex I Parties to help improve GHG inventories in any given sector? How has the UNFCCC Secretariat responded and what suggestions has it made?
- From the UNFCCC Secretariat's point of view, what effective measures could be taken to improve GHG inventories in Asia, in specific sectors?

#### 5.2 Session II: Countries' practices by sector

#### 5.2.1 Overview

Through the past 1<sup>st</sup> and 2<sup>nd</sup> WGIAs, researchers and government officials from Asian countries shared information and experiences, from a wide range of areas of expertise, related to GHG inventory development in each country. It is hoped that at the 3<sup>rd</sup> WGIA, discussion will became more concrete, (i.e., more technical and sector-specific). Sectoral working groups (SWGs) will be set up in this session to provide an opportunity for more detailed discussion of the GHG inventory development in certain sectors, among people with similar interests and background. The aim is that by the end of this session, participants will have identified the sector-specific needs and potential solutions for the improvement of GHG inventories in the region.

#### 5.2.2 Structure

Three or four SWGs will be set up in separate rooms. The intention is for the WGIA Secretariat to assign participants to SWGs based largely on the results of questionnaires distributed to participants before the workshop. For each SWG, a chair and session reporter will be nominated. Participants will be able to take part in more than one SWG if they wish.

Each SWG session will begin with presentations about two or three countries' practices for preparing the GHG inventories in a certain sector, followed by an active round-table discussion among the session members.

#### 5.2.3 Details to be included in presentations and discussions in each SWG

- What are similarities and differences among countries' practices in Asia in terms of the development of GHG inventories in a specific sector? Result: Understand the state of the sectoral inventories in the region.
- What are the technical constraints for the development of GHG inventories in a specific sector in a country? Do other session members recognize the same constraints in their countries? Result: Identify commonalities in data or technical capacity gaps, by sector, in Asia.
- Are there any data or relevant methodologies that can be applied in other countries? Result: Increase technical capacity by learning from other countries' practices.
- How can the WGIA network be utilized to improve inventories in a specific sector in the Asia region? Result: Explore next steps to make improvements.

#### 5.3 Session III: Reports and overall discussion

#### 5.3.1 Overview

Following the completion of the Sessions I and II, participants will review the outcomes of those sessions, further discuss them, and make conclusions of the workshop. In this process, participants can also hear the outcomes of discussions of the other SWGs. By the end of Session III, it is expected that all participants will share a common understanding of the workshop outcomes, and have a shared vision for the future activities of the WGIA community.

#### 5.3.2 Structure

The rapporteur of Session I and the session reporters of three SWGs will summarize their presentations and discussions. Questions and suggestions will be then actively shared and discussed by all.

#### 5.3.3 Examples of expected results of discussion in Session III

The WGIA Secretariat envisions that some of the major results of the discussion could be as follows:

- Lists of sectoral good practices in one country in the region, which could be implemented in others, related to the development of local emission factors or good data acquisition systems. The practices may include, for example, research work or the use of publicly-available information sources.
- Lists of data gaps that are common in the region (e.g., local emission factors, estimation methods, etc.). Potential solutions with the use of the WGIA network could be also proposed, including the sharing of specific information and research-related collaboration in the future.
- Lists of the strengths of inventory development of a certain sector in the region. Ways to contribute to the international community could be identified.
- Directions as well as concrete future plans on the above points, based on the WGIA network.

- This paper was prepared by the National Institute for Environmental Studies in Japan, the WGIA Secretariat on September 13, 2005.

- If you have any questions, concerns, or comments regarding this paper, please do not hesitate to contact the WGIA Secretariat by e-mail at any time.

# Chairperson's Summary

| Attachment I:    | Agenda                 |
|------------------|------------------------|
| Attachment II :  | Working Group Guidance |
| Attachment III : | List of Participants   |

## The 3rd Workshop on GHG Inventories in Asia Region 23–24 February 2006 Manila, Philippines

## **Chairperson's Summary**

### Background

- The Third Workshop on Greenhouse Gas (GHG) Inventories in Asia Region (WGIA) was held in Manila, the Philippines, on 23 and 24 February 2006. It was organized by the Ministry of the Environment (Japan) and the National Institute for Environmental Studies (NIES) of Japan, and hosted by the Department of Environment and Natural Resources of the Philippines (DENR) and the University of the Philippines Los Banos.
- 2. The workshop was attended by participants from 12 countries (Cambodia, China, India, Indonesia, Japan, Korea, Lao PDR, Malaysia, Mongolia, Philippines, Thailand, and Viet Nam), and a representative of the United Nations Framework Convention on Climate Change (UNFCCC) Secretariat. A list of participants is attached.

### **Opening Session**

3. The opening session was chaired by Dr. Damasa Magcale Macandog of the University of the Philippines Los Banos. In a welcome address, Dr. Shuzo Nishioka of NIES gave a short history of the WGIA and outlined the structure of the workshop. In a welcome speech, Dr. Enrico P. Supangco, Vice-Chancellor for Research and Extension, University of the Philippines Los Banos, pointed out that participation in this workshop was a sign of commitment to a better environment and quality of life for people. In the second welcome speech, Mr. Hon. Demetrio L. Ignacio, Undersecretary for Policy and Planning, Environmental Management Bureau, DENR, put this meeting into the context of national commitments under the UN Framework Convention on Climate Change to prepare inventories of greenhouse gas emissions to help combat climate change. Participants then introduced themselves to the group. Ms. Chisa Umemiya of the Greenhouse Gas Inventory Office of Japan then gave a detailed outline of the workshop, and stated the workshop's three goals: (1) updating each other on the status of GHG inventory development in Asia, (2) specifying the features of GHG inventory development, sector by sector, and (3) identifying the next steps after this, the third WGIA. She also pointed out that with the addition of Malaysia and Singapore recently, the number of participating countries in the WGIA network had grown to thirteen (although Singapore was not able to

attend this time).

#### Session I: Updates on GHG inventories in Asia region

- 4. Session I was chaired by Mr. Tomoyuki Asizawa of NIES. In this session, participants provided an updates on the status of GHG inventories in their countries since the last WGIA meeting (Shanghai, 2005). All non-Annex I countries in WGIA have completed their INC<sup>1</sup> under the UNFCCC, and have started or plan to start work on their SNC.<sup>2</sup> A selection of points from their presentations is provided below (more detail is available in their presentation materials).
- For China, Prof. Huaqing Xu, of the Center for Energy, Environment and Climate Change Research, Energy Research Institute, reported that his country was making preparations for its SNC, this time to include hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6) along with the three gases reported in the INC. A proposal seeking funding for this work has been submitted to the Global Environment Facility (GEF). Prof. Xu listed the details of specific improvements that are planned for the each sector: energy; industrial processes; agriculture; LULUCF;<sup>3</sup> and waste.
- For Indonesia, Mr. Dadang Hilman, of the Sub-Division of Adaptation to Climate Change, Office of Deputy III to the Minister, Ministry of the Environment, reported that his country planned to start work on its SNC in 2006, covering a reporting period up to 2002. Features include improvement of emission estimates from the forestry sector, and encouragement of relevant/responsible sectors to be actively involved in development of the inventory. Indonesia has a "National Team for GHG Inventories," under the "Inter-Ministerial Team for National Communications." Participants were interested to hear that in the INC, Indonesia had included emissions projections up to 2025 in three sectors (energy, forestry, agriculture).
- For Japan, Mr. Yasuhiro Baba, of the Climate Change Policy Division, Global Environment Bureau, Ministry of the Environment, presented several graphs to show how emissions data is being used to carefully track each type of emissions in each sector in Japan. He described the "Kyoto Protocol Target Achievement Plan," established in April 2005 to help Japan achieve its emissions reductions commitment during the first commitment period of the Protocol.
- For the Republic of Korea, Dr. Kyoungsik Choi, Global Environment Team, Environmental Management Corporation, reported on his country's integrated approach for management of air pollutants and GHG emissions; the use of telemetric systems (TMS) installed by the government (in 1,841 stacks in 317 installations) as an efficient way to verify industry's self-reporting of emissions; and the government's practice of providing guidance to specific industry sectors for reporting of emissions (in some cases, industries are required to develop

<sup>&</sup>lt;sup>1</sup> INC = Initial National Communication under the UNFCCC

<sup>&</sup>lt;sup>2</sup> SNC = Second National Communications under the UNFCCC

<sup>&</sup>lt;sup>3</sup> LULUCF = Land use, land cover-use change and forestry

their own emission factors).<sup>4</sup>

- For Lao PDR, Mr. Syamphone Sengchandala, of the Environment Impact Assessment Division, Science Technology and Environment Agency, reported on plans to start work on the SNC during the second half of 2006. His country is maintaining GHG inventories in four sectors: energy, agriculture, forestry, and waste. Challenges faced by Lao PDR include limited involvement of experts on climate change, and development of country-specific emission factors.
- For Malaysia, Ms. Siti Indati Mustapa, of Pusat Tenaga Malaysia (PTM), reported that a national team was formed in June 2004 to prepare the SNC, and inventory work was assigned to four agencies (PTM for energy and industrial processes, Forest Research Institute of Malaysia for LULUCF, University of Putra Malaysia for waste, and Department of Agriculture for agriculture sector), with the target completion by June 2006. It will cover five sectors (energy, industrial processes, agriculture, LULUCF, waste,). In the future, Malaysia plans to extend the reporting period, improve accuracy, and systematically update the inventory.
- For Mongolia, Ms. Bujidmaa Borkhuu, of the Institute of Meteorology and Hydrology, reported that her country was planning to start work on its SNC in mid-2006, with the aim of completing it in 2008. It would cover emissions from 1999 to 2001. She also mentioned that her country was involved in a regional project (June 2003 to June 2006) funded by the United Nations Development Programme (UNDP) and Global Environment Facility (GEF), entitled "Capacity Building for Improving the Quality of Greenhouse Gas Inventories" (involving 12 countries: Albania, Armenia, Azerbaijan, Croatia, Georgia, FYR Macedonia, Moldova, Mongolia, Solvenia, Tajikistan, Turkmenistan, Uzbekistan).<sup>5</sup> The goals are to strengthen technical and institutional capacity and to improve the quality of data inputs to national GHG inventories. Main outputs of the project will be (1) national manuals of procedures, (2) improvements in data collection, (3) regional key sources documented and archived, (4) quality assurance/quality control plans, (5) outline of an awareness campaign, and (6) long term/short term strategies to improve national inventories. A key part of the project's strategy was to use the time between the first and second national communications of participating countries to enhance their technical capacity. She also mentioned that in 2005, some recalculations were performed on emission factors in preparation for Mongolia's SNC, and gave detailed examples of how they improved on the accuracy over that of the IPCC default emission factors.
- For the Philippines, Ms. Raquel Ferraz Villanueva, of the Environmental Management Bureau, DENR, stated that her country had an Intern-Agency Committee on Climate Change (IACCC), through which the National Action Plan on Climate Change was created in 1997. She also

<sup>&</sup>lt;sup>4</sup> The Republic of Korea submitted its SNC in December 2003.

<sup>&</sup>lt;sup>5</sup> http://www.rec.org/REC/programs/undp-GHGinventories/default.html

provided some statistics on her country's emissions. The Philippines has developed a plan for its SNC, which includes not only updating its GHG inventories, but also a GHG protocol, developed in partnership with another organization, for industries that are willing to voluntarily develop their own emissions inventories.

- For Thailand, Ms. Aree Wattana Tummakird, Measures Analysis Section, Office of Natural Resources and Environmental Policy and Planning, reported that her country has submitted a proposal to UNEP/GEF for development of its SNC, which will use 2000 as the base year. She also provided detailed emissions statistics for 2003, stating that these relatively newer numbers are available thanks to work in preparation of data required for a CDM project.
- For Viet Nam, Mr. Hoang Manh Hoa, National Office for Climate Change and Ozone Protection, International Cooperation Department, Ministry of Natural Resources and Environment, reported that his ministry had organized a national workshop in mid-January to develop a plan for the SNC. He enumerated areas where major improvements are needed in his country's GHG inventory compared to the INC. He stated that Viet Nam would submit a proposal to UNEP/GEF in March to fund work on the SNC, which is scheduled to start in May and continue for three years.
- 5. Mr. Dominique Revet, of the UNFCCC Secretariat, presented information on "sectoral features of GHG inventories from non-Annex I Parties." He summarized GHG emissions data for non-Annex I Parties based on their national communications to the Secretariat, particularly the regional features for 12 countries participating in WGIA. He pointed out that the UNFCCC Secretariat provides many information resources (downloadable) that can save countries time and money, and improve inventories, including, among others, (1) the UNFCCC "User Manual" (explains new guidelines for national communications),<sup>6</sup> (2) the CGE hands-on training materials on GHG inventories,<sup>7</sup> and (3) UNFCCC software for national GHG inventories<sup>8</sup> (which solves many problems of previous IPCC software, and add new possibilities, such as GPG, GPG for LULUCF, and a key categories analysis tool, as well as the required 2 tables for UNFCCC reporting purposes [included in Decision 17/CP.8]). He also encouraged everyone to refer to the new guidelines for national communications (decision 17/CP.8) as they prepared their SNC.<sup>9</sup> As some countries had indicated they were planning to develop their own national emission factors in some sectors, he reminded participants that it would be beneficial to first check the IPCC Emission Factor Database (EFDB) to see if emission factors already registered

<sup>&</sup>lt;sup>6</sup> http://unfccc.int/files/essential\_background/application/pdf/usermanu\_nc.pdf

<sup>&</sup>lt;sup>7</sup> http://unfccc.int/resource/cd\_roms/na1/ghg\_inventories/index.htm

<sup>&</sup>lt;sup>8</sup> http://unfccc.int/resource/cd\_roms/na1/ghg\_inventories/index.htm

<sup>&</sup>lt;sup>9</sup> http://unfccc.int/resource/docs/cop8/07a02.pdf#page=2

in the database can be applied.<sup>10</sup> If countries do decide to develop their own emission factors, they are encouraged to submit them to IPCC's EFDB to be verified and then shared for the benefit of others. He referred to the project entitled "Capacity Building on Greenhouse Gas Inventories," involving 12 Europe/CIS countries (including Mongolia) as a good model of regional cooperation, funded by over US\$2 million by the GEF for cooperative work to improve the quality of national GHG inventories. He also stated that Non-Annex I countries in different regions (particularly in Asia, Africa, South America) share similar challenges and could benefit by sharing information. Having heard that some countries were planning to use the new IPCC 2006 GHG inventory guidelines when they come out, he emphasized that Non-Annex I countries are not required to use them. In fact they should use the 1996 IPCC Revised Guidelines, as they will be much easier to use.

#### Session II: Countries' practices, by sector

During the afternoon, participants met in four separate sectoral working groups to discuss issues relating to GHG emissions inventories in more detail. They started with presentations, and were followed by a discussion, with the aim of identifying good practices (particularly in relation to the development of GHG inventories), challenges and possible solutions (including within the WGIA network), and other topics. The working group sectors and chairpersons were as follows: (1) Energy (Mr. Tomoyuki Aizawa, Japan), (2) Agriculture (Dr. Batimaa Punsalmaa, Mongolia), (3) Land Use, Land-Use Change and Forestry (Dr. Rizaldi Boer, Indonesia), and (4) Waste (Dr. Sirintornthep Towprayoon, Thailand).

#### Session III: Reports and overall discussion

- This session, held on the morning of the second day, was chaired by Dr. Shuzo Nishioka. First, Ms. Villanueva reported on Session I. Next, rapporteurs reported on the discussions of the four sectoral working groups that had met during Session II. Summaries of their reports are provided below.
- (a) Energy Sector Working Group (Rapporteur: Ms. Aree Wattana Tummakird, Thailand)
  Experts from India, Malaysia, and Japan made presentations. The working group session was attended by participants from China, India, Indonesia, Japan, Malaysia, Philippines, Thailand, and Viet Nam. Good practices that were identified included the following: (1) India—establishment of a National Inventory Management System; data collection from three important sectors (power plants, transport, iron/steel); adoption of Tier 2 methodology; and use of plant-specific emission factors; (2) Malaysia—establishment of a group to work on SNC;

<sup>&</sup>lt;sup>10</sup> www.ipcc-nggip.iges.or.jp/EFDB/main.php

data collecting methodology (e.g., approach stakeholders in many ways); and passion to improve inventory; and (3) Japan—good collaboration between the agency responsible for energy and the Ministry of the Environment (the inventory agency); balance approach (for mass, energy, carbon); institutionalizing the country's inventory program. The group felt that in Asia it would be worthwhile to share experiences regarding collecting data in three specific areas: transportation (regarding traveling distance), power plants, and heavy industry. They intend to continue working through the year on these specific points, and prepare a document before the next WGIA. They also felt it would be worth creating a table to share information on their country-specific emission factors showing basic assumptions and authors.

During the discussion in plenary following the Energy working group report, a suggestion arose to create a website to enter and share country-specific emission factors and contact information for experts (it was felt that this could have a different function compared to the IPCC EFDB, which involves a more formal review process), existing designs/plans for surveying emissions (e.g., in transport sector), and other information.

(b) Agriculture Sector Working Group (Rapporteur: Mr. Syamphone Sengchandala, Lao PDR) Experts made presentations from the Philippines (agroforestry), Thailand (rice paddies), and Japan (animal manure treatment). The working group session was attended by participants from Cambodia, Lao PDR, Japan, Mongolia, Philippines, and Thailand. From the presentations, a number of good practices were identified: (1) detailed data collection from experiments; (2) very comprehensive measurements; (3) the use of well-designed experiments and simple, portable equipment for measurements of  $CH_4$ ,  $N_2O$ ,  $NH_3$  emissions; (4) the application of water management and fertilization strategies to reduce CH<sub>4</sub> and N<sub>2</sub>O emissions from agricultural system in Asian countries; and (5) composting of livestock manure reduces N<sub>2</sub>O and CH<sub>4</sub> emissions. A number of challenges were identified: (1) development of regional-specific emission factors for the Asian region; (2) establishing networks of monitoring stations for GHG emissions; and (3) obtaining funding for research and capacity building in the region. A number of solutions were identified: (1) develop and implement a regional research project; (2) collaborate among experts; (3) share databases and expertise. During discussion, many points arose. If livestock is a key source of GHG emissions in a country, it is especially important to improve emission factors and data collection for CH<sub>4</sub> from enteric fermentation from livestock. The agriculture sector is important in Asia, as it is one of the main contributors to GHG sources (CH<sub>4</sub> and N<sub>2</sub>O) in this region. To improve GHG inventories in this sector, we need to collect more data, expand experiments, establish monitoring networks, and develop region-specific emission factors. Collaboration among experts in this region could be very beneficial (for example, paddy field agriculture is unique to Asian countries; Mongolia and India share similar topics with enteric fermentation of livestock: agroforestry in Asia also has some special characteristics in Asia compared to other regions).

(c) Land Use, Land-Use Change and Forestry (LULUCF) Sector Working Group (Rapporteur: Ms. Chisa Umemiya, Japan)

The working group session was attended by participants from Cambodia, Indonesia, Japan, Malaysia, and the Philippines. Experts from Malaysia, Cambodia, and Japan made presentations on (1) various improvements between First and Second National Communications (Malaysia), (2) direct measurement of removal factors for major forest categories (Cambodia); (3) experience from preparing inventories with the IPCC's Good Practice Guidance (GPG) for LULUCF compared to previous inventories (Japan). A number of good practices were identified by the group: (1) use a statistical approach to define land-use categories under the GPG for LULUCF; (2) develop removal factors for major forest categories; and (3) implement data verification through personal consultation. A number of challenges were identified: (1) different levels of detail of forest categories and strata between states/provinces; (2) difficulty in the defining appropriate (i.e., cost-effective) number of destructive sampling tests; (3) frequent changes of personnel working on inventories. The group felt that the creation of stable institutional arrangements and continued information sharing at the regional level are key to help improving the quality of GHG inventories in Asia. A few other points that could improve data availability include (1) enhancing national level to local level coordination and sector-to-sector coordination; (2) enhancing official support from national governments for GHG inventory work; and (3) sharing data among countries in the region. It was found that there was some duplication of efforts in country-to-country collaboration in Asia, which could be rectified by better communication.

In plenary, participants expressed the need for a regional emission factor database dedicated for countries to share data within the Asia region. It was pointed out the IPCC's EFDB is also a valuable resource, with set procedures for submitting emission factors and a formal review process by experts. It was also pointed out that when WGIA discusses "good practices," for example, in the WGIA Activity Report proposed later, it is important to agree on and state a clear definition of what is meant by good practices (i.e., for GHG inventories, climate change mitigation, or whatever).

(d) Waste Sector Working Group (Rapporteur: Dr. Qingxian Gao, China) The working group heard three reports, on waste activity data in China, on waste flows in Japan, and on waste disposal in Korea. The working group session was attended by participants from China, Japan, Korea, Mongolia, the Philippines, and Thailand. This working group focused mainly on landfills, although it did slightly discuss waste to energy, recycling and reuse, but did not discuss composting, incineration, and waste water. It produced a number of suggestions and conclusions: (1) they would like to set up a network to share expertise on waste issues in this region to work on activity data, emission factors, site measurements, treatment technology, etc.; (2) waste stream analysis should be done for each country (and sub-region in large countries); (3) measurements are needed in site for each country or region; (4) when doing measurements, it is important to use standard operation procedures (SOP) for landfills, so it was recommended to set up a work group to provide same guidance on this; (5) it is important to clarify "co-benefit" issues as a practical strategy to address GHG emissions. (On the topic of "co-benefits," GHG emissions from the waste sector are generally not considered an important topic in developing countries, so it is important to look for other benefits of GHG emissions reduction, such as environmental and health benefits, and to cooperate with environmental scientists, governments, and others to achieve common goals.) In conclusion, although waste management systems differ greatly country to country in Asia, common problems do exist, like the issues associated with measurement of GHG emissions from landfill areas. Waste flows are Asia-specific or country-specific issue so countries here cannot rely too much on other countries' emission factors or estimation methods.

- 8. Some members of the sectoral working groups were keen to continue detailed discussions that were started here, and indicated that they would make an effort to communicate and work together during the coming year on some of the actions recommended above.
- 9. WGIA Activity Report: The Secretariat presented a proposal for the preparation of a WGIA Activity Report. The stated purposes of the report are (1) to present a list of action items to improve GHG emissions inventories in Asia, (2) to compile information that has been presented and discussed in WGIA to date, and (3) to document the history of WGIA activities. Potential readers for the report are GHG inventory developers particularly in the Asia region (but also elsewhere in the world) and possible sponsors (for funding, etc.) etc. The outline of the report was discussed, with the conclusion that a possible outline could be as follows: (1) executive summary, (2) background, (3) introduction to WGIA, (4) GHG inventory development in Asia good practices and barriers (giving considerable detail on emission factors, methodologies, etc., in each country) (5) energy sector, (6) agriculture sector, (7) LULUCF sector, (8) waste sector, (9) Asian regional characteristics of GHG emissions inventories, (10) recommendations for next steps, and (11) appendix (participants agreed to discuss further after the third WGIA). All

participants in WGIA are invited to contribute text and ideas. It was suggested that the report be presented at the Sixteenth Asia-Pacific Seminar on Climate Change, scheduled for September 2006. To be ready for that event, the proposed time line for work is as follows: contributors submit text that was assignment (by early May), circulate to all for review (June), edit and print (by end of August). During the discussion, it was agreed that recommendations from each sector (i.e., the four working groups) can go into each sector report (i.e., Chapters 5 to 8) and will be summarized in Chapter 10 (Recommendations). It was also agreed that the report could include documentation from past WGIA workshops. The meeting agreed to go ahead with the plan as discussed above.

#### **Closing Session**

10. The closing session was co-chaired by Mr. Yasuhiro Baba and Mr. Tomoyuki Aizawa of Japan. Randal Helten of the WGIA Secretariat summarized the morning's discussions. Atty. Fernandino Y. Concepcion, Officer-in-Charge and Assistant Director, Environmental Management Bureau, DENR, the Philippines, made closing remarks. Mr. Baba also offered his closing remarks, thanking all participants for their contributions to the discussion and the Philippine host organizations and personnel for their warm hospitality and support for the workshop. He announced that Japan's Ministry of the Environment was willing to organize the fourth WGIA in 2007. The meeting thanked the hosts from the Philippines for their kind hospitality in Manila.

## The 3rd Workshop on GHG Inventories in Asia Region (WGIA) 23-24 February 2006, Manila, Philippines

| Day 1, Thursday 23rd February |                              |                                                              |  |  |
|-------------------------------|------------------------------|--------------------------------------------------------------|--|--|
| 9:00~9:30                     |                              | Participant Registration (30 min.)                           |  |  |
| 9:30~10:20                    |                              | Opening Section (50 min )                                    |  |  |
| 9:30~10:20                    |                              | Opening Session (50 min.)                                    |  |  |
| 9:30~9:35                     | Dr. Nishioka, Japan          | Chair: Ms. Macandog, Philippines<br>Welcome address (5 min.) |  |  |
|                               |                              |                                                              |  |  |
| 9:35~9:38                     | Dr. Supangco,<br>Philippines | Welcome speech from host country (3 min.)                    |  |  |
| 9:38~9:41                     | Mr. Ignacio,<br>Philippines  | Welcome speech from host country (3 min.)                    |  |  |
| 9:41~ 9:55                    | All                          | Introduction of participants (14 min.)                       |  |  |
| 9:55~10:10                    | Ms. Umemiya,                 | Overview of workshop and explanation of schedule (13         |  |  |
|                               | Japan                        | min.+ 2 min. for Q&A)                                        |  |  |
| 10:10~10:20                   | All                          | Questions (10 min.)                                          |  |  |
| 10:20~10:35                   |                              | Tea Break (15 min.)                                          |  |  |
| 10:35~12:00                   |                              | Session I : Updates on GHG inventories in Asia               |  |  |
|                               |                              | region (85 min.)                                             |  |  |
|                               |                              | Chair: Mr. Aizawa, Japan                                     |  |  |
|                               |                              | "News from All"                                              |  |  |
| 10:35~10:42                   | Prof. Xu, China              | China's News (5 min. + 2 min. for Q&A)                       |  |  |
| 10:42~10:49                   | Mr. Hilman,                  | Indonesia's News (5 min. + 2 min. for Q&A)                   |  |  |
|                               | Indonesia                    |                                                              |  |  |
| 10:49~10:56                   | Mr. Baba, Japan              | Japan's News (5 min. + 2 min. for Q&A)                       |  |  |
| 10:56~11:03                   | Dr. Choi, Republic           | Korea's News (5 min. + 2 min. for Q&A)                       |  |  |
|                               | of Korea                     |                                                              |  |  |
| 11:03~11:10                   | Mr. Sengchandala,            | Lao PDR's News (5 min. + 2 min. for Q&A)                     |  |  |
|                               | Lao PDR                      |                                                              |  |  |
| 11:10~11:17                   | Ms. Mustapa,                 | Malaysia's News (5 min. + 2 min. for Q&A)                    |  |  |
|                               |                              |                                                              |  |  |

#### Attachment I

| 11:17~11:24                                                 | Ms. Borkhuu,<br>Mongolia                     | Mongolia's News (5 min. + 2 min. for Q&A)                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11:24~11:31                                                 | Ms. Villanueva,<br>Philippines               | Philippine's News (5 min. + 2 min. for Q&A)                                                                                                                                                                                                                                                                                                                           |
| 11:31~11:38                                                 | Ms. Tummakird,<br>Thailand                   | Thailand's News (5 min. + 2 min. for Q&A)                                                                                                                                                                                                                                                                                                                             |
| 11:38~11:45                                                 | Mr. Hoa, Viet Nam                            | Viet Nam's News (5 min. + 2 min. for Q&A)                                                                                                                                                                                                                                                                                                                             |
| 11:45~12:00                                                 | All                                          | Questions and discussions (15 min.)                                                                                                                                                                                                                                                                                                                                   |
| 12:00~13:30                                                 |                                              | Lunch Time (90 min.)                                                                                                                                                                                                                                                                                                                                                  |
| 13:30~14:15                                                 |                                              | Session I (continued) (45 min.)                                                                                                                                                                                                                                                                                                                                       |
| 13:30~13:50                                                 | Mr. Revet,                                   | Sectoral features of GHG inventories from non-Annex I                                                                                                                                                                                                                                                                                                                 |
|                                                             | UNFCCC                                       | Parties (17 min. + 3 min. for Q&A)                                                                                                                                                                                                                                                                                                                                    |
| 13:50~14:05                                                 | Ms. Umemiya,                                 | Overview and schedule for Session II (13 min. + 2 min.                                                                                                                                                                                                                                                                                                                |
|                                                             | Japan                                        | for Q&A)                                                                                                                                                                                                                                                                                                                                                              |
| 14:05~14:15                                                 | All                                          | Questions and discussions (10 min.)                                                                                                                                                                                                                                                                                                                                   |
| 14:15~14:40                                                 |                                              | Tea Break (25 min.)                                                                                                                                                                                                                                                                                                                                                   |
|                                                             |                                              |                                                                                                                                                                                                                                                                                                                                                                       |
| 14:40~18:30                                                 |                                              | Session II : Countries' practices, by sector ( 230 min.)                                                                                                                                                                                                                                                                                                              |
|                                                             |                                              | Session II : Countries' practices, by sector ( 230 min.)<br>Chair for Energy WG: Mr. Aizawa, Japan                                                                                                                                                                                                                                                                    |
| 14:40~18:30                                                 |                                              |                                                                                                                                                                                                                                                                                                                                                                       |
| <b>14:40~18:30</b><br>(until WG                             |                                              | Chair for Energy WG: Mr. Aizawa, Japan                                                                                                                                                                                                                                                                                                                                |
| <b>14:40~18:30</b><br>(until WG                             |                                              | Chair for Energy WG: Mr. Aizawa, Japan<br>Chair for Agriculture WG: Dr. Punsalmaa, Mongolia                                                                                                                                                                                                                                                                           |
| <b>14:40~18:30</b><br>(until WG                             |                                              | Chair for Energy WG: Mr. Aizawa, Japan<br>Chair for Agriculture WG: Dr. Punsalmaa, Mongolia<br>Chair for LULUCF WG: Dr. Boer, Indonesia                                                                                                                                                                                                                               |
| <b>14:40~18:30</b><br>(until WG                             |                                              | Chair for Energy WG: Mr. Aizawa, Japan<br>Chair for Agriculture WG: Dr. Punsalmaa, Mongolia<br>Chair for LULUCF WG: Dr. Boer, Indonesia<br>Chair for Waste WG: Dr. Towprayoon, Thailand                                                                                                                                                                               |
| <b>14:40~18:30</b><br>(until WG                             |                                              | Chair for Energy WG: Mr. Aizawa, Japan<br>Chair for Agriculture WG: Dr. Punsalmaa, Mongolia<br>Chair for LULUCF WG: Dr. Boer, Indonesia<br>Chair for Waste WG: Dr. Towprayoon, Thailand<br>< Please see individual sectoral guidance for the                                                                                                                          |
| <b>14:40~18:30</b><br>(until WG<br>finishes work)           | 24 <sup>th</sup> February                    | Chair for Energy WG: Mr. Aizawa, Japan<br>Chair for Agriculture WG: Dr. Punsalmaa, Mongolia<br>Chair for LULUCF WG: Dr. Boer, Indonesia<br>Chair for Waste WG: Dr. Towprayoon, Thailand<br>< Please see individual sectoral guidance for the<br>details of each WG agenda and other relevant                                                                          |
| 14:40~18:30<br>(until WG<br>finishes work)<br>Day 2, Friday | 24 <sup>th</sup> February                    | Chair for Energy WG: Mr. Aizawa, Japan<br>Chair for Agriculture WG: Dr. Punsalmaa, Mongolia<br>Chair for LULUCF WG: Dr. Boer, Indonesia<br>Chair for Waste WG: Dr. Towprayoon, Thailand<br>< Please see individual sectoral guidance for the<br>details of each WG agenda and other relevant<br>information>                                                          |
| <b>14:40~18:30</b><br>(until WG<br>finishes work)           | 24 <sup>th</sup> February                    | Chair for Energy WG: Mr. Aizawa, Japan<br>Chair for Agriculture WG: Dr. Punsalmaa, Mongolia<br>Chair for LULUCF WG: Dr. Boer, Indonesia<br>Chair for Waste WG: Dr. Towprayoon, Thailand<br>< Please see individual sectoral guidance for the<br>details of each WG agenda and other relevant<br>information><br>SessionIII: Reports and overall discussion (150 min.) |
| 14:40~18:30<br>(until WG<br>finishes work)<br>Day 2, Friday | 24 <sup>th</sup> February<br>Rapporteur: Ms. | Chair for Energy WG: Mr. Aizawa, Japan<br>Chair for Agriculture WG: Dr. Punsalmaa, Mongolia<br>Chair for LULUCF WG: Dr. Boer, Indonesia<br>Chair for Waste WG: Dr. Towprayoon, Thailand<br>< Please see individual sectoral guidance for the<br>details of each WG agenda and other relevant<br>information>                                                          |

#### Attachment I

|                                   | Villanueva,                            |                                                                                                                    |
|-----------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|                                   | Philippines                            |                                                                                                                    |
| 9:10~9:20                         | Ms. Tummakird,                         | Report from Energy WG (7 min. + 3 min. for Q&A)                                                                    |
|                                   | Thailand                               |                                                                                                                    |
| 9:20~9:30                         | Mr. Sengchandala,                      | Report from Agriculture WG (7 min. + 3 min. for                                                                    |
|                                   | Lao PDR                                | Q&A)                                                                                                               |
| 9:30~9:40                         | Ms. Umemiya,                           | Report from LULUCF WG (7 min. + 3 min. for Q&A.)                                                                   |
|                                   | Japan                                  |                                                                                                                    |
| 9:40~9:50                         | Dr. Gao, China                         | Report from Waste WG (7 min. + 3 min. for Q&A)                                                                     |
| 9:50~11:30                        | All                                    | Overall discussion (100 min.)                                                                                      |
|                                   |                                        | - Sectoral features of GHG inventory development                                                                   |
|                                   |                                        |                                                                                                                    |
|                                   |                                        | - Future Activities (e.g. WGIA Activity Report etc.)                                                               |
| 11:30~11:45                       |                                        | - Future Activities (e.g. WGIA Activity Report etc.)<br><i>Tea Break (15 min.)</i>                                 |
| <i>11:30~11:45</i><br>11:45~12:10 |                                        |                                                                                                                    |
|                                   |                                        | Tea Break (15 min.)                                                                                                |
|                                   | Dr. Nishioka, Japan                    | Tea Break (15 min.)<br>Closing Session (25 min.)                                                                   |
| 11:45~12:10                       | Dr. Nishioka, Japan<br>Mr. Concepcion, | Tea Break (15 min.)<br>Closing Session (25 min.)<br>Co-chairs: Mr. Baba and Mr. Aizawa, Japan                      |
| <b>11:45~12:10</b><br>11:45~12:00 |                                        | Tea Break (15 min.)<br>Closing Session (25 min.)<br>Co-chairs: Mr. Baba and Mr. Aizawa, Japan<br>Wrap-up (15 min.) |
| <b>11:45~12:10</b><br>11:45~12:00 | Mr. Concepcion,                        | Tea Break (15 min.)<br>Closing Session (25 min.)<br>Co-chairs: Mr. Baba and Mr. Aizawa, Japan<br>Wrap-up (15 min.) |

## Energy Working Group Session (Session 2)

The 3<sup>rd</sup> Workshop on GHG Inventories in Asia Region (WGIA) 23-24 February, 2006, Manila, the Philippines <u>14:40 ~ 18:30 (230 min.)</u>

## Session Guidance

- **1. Objectives of this session** (joint tasks for all the group members)
  - To specify the features of the Energy GHG inventory development in Asia by creating the lists of country's good practices and challenges
  - To prepare one presentation on the summary of discussion made in the group (this presentation will be delivered by the nominated reporter of the group in the Session 3 of the following day)

## 2. Group members (as of preparing this paper)

- Mr. Tomoyuki Aizawa (<u>Chair;</u> Japan)
- Ms. Aree Wattana Tummakird (<u>Reporter</u>; Thailand)
- Mr. Huaqing Xu (China)
- Dr. Sumana Bhattacharya (India)
- Mr. Dadang Hilman (Indonesia)
- Ms. Siti Indati Mustapa (Malaysia)
- Mr. Hoang Manh Hoa (Viet Nam)

## 3. General Agenda (time is only as a guide!!)

| 14:40~14:50                                                                                      | By All                                | Introduction of members                            |  |  |
|--------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------|--|--|
| <part a:="" country's="" good="" introduction="" of="" practices=""></part>                      |                                       |                                                    |  |  |
| Listeners, please fill the provided worksheet for each of the presentations to extract essential |                                       |                                                    |  |  |
| information for follo                                                                            | information for following discussion. |                                                    |  |  |
| 14:50~15:10                                                                                      | Ms. Siti Indati                       | "The Development of GHG Inventory for Energy       |  |  |
| (approx. 20 min.                                                                                 | MUSTAPA                               | Sector and Industrial Processes - Malaysia"        |  |  |
| including 5 min.                                                                                 | (Malaysia)                            |                                                    |  |  |
| for Q&A)                                                                                         |                                       |                                                    |  |  |
| 15:10~15:30                                                                                      | Mr. Tomoyuki                          | "Japan's country-specific emission factors for the |  |  |
| (approx. 20 min.                                                                                 | AIZAWA (Japan)                        | emissions from fuel combustion"                    |  |  |
| including 5 min.                                                                                 |                                       |                                                    |  |  |

| for Q&A)                                                                                                                          |                         |                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------|
| 15:30~15:50                                                                                                                       | Dr. Sumana              | "GHG Emission Factors Developed for the Energy       |
| (approx. 20 min.                                                                                                                  | BHATTACHARYA            | Sector in India"                                     |
| including 5 min.                                                                                                                  | (India)                 |                                                      |
| for Q&A)                                                                                                                          |                         |                                                      |
| 15:50~16:15                                                                                                                       | By All                  | Question and discussion                              |
| <part b:="" round-ta<="" td=""><td>ble discussion for "Cha</td><td>allenges to be tackled and possible solutions"&gt;</td></part> | ble discussion for "Cha | allenges to be tackled and possible solutions">      |
| 16:15~17:15                                                                                                                       | By All                  | Discussion for challenges to be tackled and          |
|                                                                                                                                   |                         | possible solutions. Some discussion topics were      |
|                                                                                                                                   |                         | already raised by the group members (see the         |
|                                                                                                                                   |                         | below section 5).                                    |
|                                                                                                                                   |                         | - what are the challenges that you have faced?       |
|                                                                                                                                   |                         | - do you have any ideas to solve the challenges      |
|                                                                                                                                   |                         | raised by your colleague? Or do you also have the    |
|                                                                                                                                   |                         | same challenge?                                      |
|                                                                                                                                   |                         | - what does the regional network such as WGIA        |
|                                                                                                                                   |                         | could do to help solving the challenges?             |
| <part c:="" summary<="" td=""><td>and Completion of Pr</td><td>resentation for Session 3&gt;</td></part>                          | and Completion of Pr    | resentation for Session 3>                           |
| 17:15~18:30                                                                                                                       | By All                  | Please summarize the overall discussion your         |
|                                                                                                                                   |                         | group has created and make the presentation for      |
|                                                                                                                                   |                         | the group. The worksheets that the group members     |
|                                                                                                                                   |                         | filled out in Part A can be used for the discussion. |
|                                                                                                                                   |                         | The outline of the discussion will be:               |
|                                                                                                                                   |                         | - overview of the presentation                       |
|                                                                                                                                   |                         | - list of good practices and their features          |
|                                                                                                                                   |                         | - list of challenges and possible solutions          |
|                                                                                                                                   |                         | - other things that were discussed                   |
|                                                                                                                                   |                         | - summary/conclusion                                 |

## 4. Descriptions of the Presentations for Part A

| Speaker         | Title                  | Description                                       |
|-----------------|------------------------|---------------------------------------------------|
| Ms. Siti Indati | The Development of     | This presentation provides overview on the        |
| MUSTAPA         | GHG Inventory for      | development of GHG Inventory for Energy Sector    |
| (Malaysia)      | Energy Sector and      | and Industrial Processes in Malaysia. This        |
|                 | Industrial Processes - | presentation will first discuss on the choice and |

|              | Malaysia             | structure of methodology in estimating the GHG                                        |
|--------------|----------------------|---------------------------------------------------------------------------------------|
|              |                      | emission particularly on CO <sub>2</sub> , CH <sub>4</sub> and N <sub>2</sub> O. Then |
|              |                      | highlights on the calculation of emissions from all                                   |
|              |                      | sources of combustion and processes on the basis of                                   |
|              |                      | the quantities of fuel consumed and average emission                                  |
|              |                      | factors using the Tier 1 Methodology of Revised                                       |
|              |                      | IPCC 1996 Guidelines. Country-specific emission                                       |
|              |                      | factors may also be discussed for industrial sector                                   |
|              |                      | especially in Chemical (Tier 3) sectors.                                              |
|              |                      | The presentation will emphasized the experience and                                   |
|              |                      | practice of Malaysia in updating and compiling our                                    |
|              |                      | GHG inventory for the National Communication 2                                        |
|              |                      | of which could possibly be applied to other Asian                                     |
|              |                      | countries. These include the following:                                               |
|              |                      | 1) Approach and estimation used in the GHG                                            |
|              |                      | Inventory for energy sector (sectoral and Reference                                   |
|              |                      | approach) and Industrial Processes                                                    |
|              |                      | 2) Data collection methodology and experience                                         |
|              |                      | (categorization of sectors, etc)                                                      |
|              |                      | 3) Emission calculation methodology used in the                                       |
|              |                      | inventory (Tier 1, Tier 2 and Tier 3)                                                 |
|              |                      | 4) Issues and challenges faced in the development of                                  |
|              |                      | the inventory, which can be shared by other Asian                                     |
|              |                      | countries                                                                             |
|              |                      | 5) Recommendations to improve GHG inventory                                           |
|              |                      | preparation                                                                           |
|              |                      | This presentation will focus on our effort to provide                                 |
|              |                      | better estimation on GHG inventories for the                                          |
|              |                      | National Communication 2.                                                             |
| Mr. Tomoyuki | Japan's              | In Japan, the technology to utilize the by-product                                    |
| AIZAWA       | country-specific     | gases from fuel combustion has been improved in the                                   |
| (Japan)      | emission factors for | iron and steel sector. Therefore, technical discussion                                |
|              | the emissions from   | on how to estimate the emission factors for those                                     |
|              | fuel combustion      | gases with consideration to the purpose of                                            |
|              |                      | application of those emission factors are being                                       |
|              |                      | conducted in the country. The presentation will talk                                  |
|              |                      | in the presentation will dark                                                         |

|             |                       | about the overview of this discussion.                |
|-------------|-----------------------|-------------------------------------------------------|
| Dr. Sumana  | GHG Emission          | Emissions due to combustion of coal in the thermal    |
| ВНАТТАСНА   | Factors Developed for | power plants, the rapidly growing industries of steel |
| RYA (India) | the Energy Sector in  | and cement, emission due to combustion of gasoline    |
|             | India                 | and diesel in the ever-burgeoning road transport      |
|             |                       | sector and fugitive emissions from coal mining        |
|             |                       | together constitute over 76 per cent of the total     |
|             |                       | GHG emissions from the energy sector in India.        |
|             |                       | Efforts in India are on to reduce the uncertainties   |
|             |                       | associated with the GHG emission from these key       |
|             |                       | source categories by determining the country specific |
|             |                       | emission factors. This paper presents a summary of    |
|             |                       | the emissions distribution from the energy sector in  |
|             |                       | India, the rationale for choosing these sectors, the  |
|             |                       | approach and methodology for determining the          |
|             |                       | emission factors and results and impacts of the       |
|             |                       | uncertainty reduction efforts on the national GHG     |
|             |                       | emission inventory estimates.                         |

## 5. List of submitted discussion topics for Part B

| Proponent            |    | Discussion topics                                                    |
|----------------------|----|----------------------------------------------------------------------|
| (alphabetical order) |    |                                                                      |
| Mr. Tomoyuki         | 1. | Methodology to develop the Energy Balance Tables and the             |
| AIZAWA (Japan)       |    | uncertainty in those tables                                          |
|                      | 2. | How to estimate the travel distance of automobiles                   |
|                      | 3. | Comparison between Reference Approach and Sectoral Approach          |
| Ms. Siti Indati      | 1. | Technical skills on each methodology Tier 1, 2 and 3 for estimating  |
| MUSTAPA              |    | emissions of CO2, CH4, NO2, based on the availability of data        |
| (Malaysia)           |    | sources from each energy sector (Sectoral approach) particularly for |
|                      |    | Transport, Residential & Commercial, Industry, Agriculture and       |
|                      |    | Non-energy sectors.                                                  |
|                      | 2. | Topic on quality assurance/control procedure for the inventory.      |
|                      | 3. | Topic on uncertainty assessment (calculation and reporting) and key  |
|                      |    | sources analyses.                                                    |

### Agriculture Working Group Session (Session 2)

The 3<sup>rd</sup> Workshop on GHG Inventories in Asia Region (WGIA) 23-24 February, 2006, Manila, the Philippines <u>14:40 ~ 18:30 (230 min.)</u>

### Session Guidance

- **1. Objectives of this session** (joint tasks for all the group members)
  - To specify the features of the Agriculture GHG inventory development in Asia by creating the lists of country's good practices and challenges
  - To prepare one presentation on the summary of discussion made in the group (this presentation will be delivered by the nominated reporter of the group in the Session 3 of the following day)

#### 2. Group members (as of preparing this paper)

- Dr. Batimaa Punsalmaa (<u>Chair;</u> Mongolia)
- Mr. Syamphone Sengchandala (<u>Reporter</u>; Lao P.D.R.)
- Mr. Chan Thou Chea (Cambodia)
- Dr. Shuzo Nishioka(Japan)
- Dr. Takashi Osada (Japan)
- Ms. Bujidmaa Borkhuu (Mongolia)
- Dr. Damasa Magcale Macandog (Philippines)
- Dr. Amnat Chidthaisong (Thailand)

#### 3. General Agenda (time is only as a guide!!)

| 14:40~14:50                                                                                                                             | By All                                                                      | Introduction of members                               |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------|--|
| <part a:="" introduct<="" td=""><td colspan="3"><part a:="" country's="" good="" introduction="" of="" practices=""></part></td></part> | <part a:="" country's="" good="" introduction="" of="" practices=""></part> |                                                       |  |
| Listeners, please fil                                                                                                                   | l the provided <u>workshee</u>                                              | et for each of the presentations to extract essential |  |
| information for follo                                                                                                                   | owing discussion.                                                           |                                                       |  |
| 14:50~15:10                                                                                                                             | Dr. Amnat                                                                   | "Methane emission from Thai paddy fields by           |  |
| (approx. 20 min.                                                                                                                        | CHIDTHAISONG                                                                | using the sensor technique"                           |  |
| including 5 min.                                                                                                                        | (Thailand)                                                                  |                                                       |  |
| for Q&A)                                                                                                                                |                                                                             |                                                       |  |
| 15:10~15:30                                                                                                                             | Dr. Damasa Magcale                                                          | "Nitrous oxide and methane emissions from             |  |
| (approx. 20 min.                                                                                                                        | MACADOG                                                                     | agroforestry systems in upland areas"                 |  |

| including 5 min.                                                                                                                  | (Philippines)           |                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------|
| for Q&A)                                                                                                                          |                         |                                                                    |
| 15:30~15:50                                                                                                                       | Dr. Takashi OSADA       | "Better evaluation system for N <sub>2</sub> O and CH <sub>4</sub> |
| (approx. 20 min.                                                                                                                  | (Japan)                 | emission from composting (and wastewater                           |
| including 5 min.                                                                                                                  |                         | purification) of Livestock waste"                                  |
| for Q&A)                                                                                                                          |                         |                                                                    |
| 15:50~16:15                                                                                                                       | By All                  | Question and discussion                                            |
| <part b:="" round-ta<="" td=""><td>ble discussion for "Cha</td><td>allenges to be tackled and possible solutions"&gt;</td></part> | ble discussion for "Cha | allenges to be tackled and possible solutions">                    |
| 16:15~17:15                                                                                                                       | By All                  | Discussion for challenges to be tackled and                        |
|                                                                                                                                   |                         | possible solutions. Some discussion topics were                    |
|                                                                                                                                   |                         | already raised by the group members (see the                       |
|                                                                                                                                   |                         | below section 5).                                                  |
|                                                                                                                                   |                         | - what are the challenges that you have faced?                     |
|                                                                                                                                   |                         | - do you have any ideas to solve the challenges                    |
|                                                                                                                                   |                         | raised by your colleague? Or do you also have the                  |
|                                                                                                                                   |                         | same challenge?                                                    |
|                                                                                                                                   |                         | - what does the regional network such as WGIA                      |
|                                                                                                                                   |                         | could do to help solving the challenges?                           |
| <part c:="" summary<="" td=""><td>v and Completion of Pr</td><td>resentation for Session 3&gt;</td></part>                        | v and Completion of Pr  | resentation for Session 3>                                         |
| 17:15~18:30                                                                                                                       | By All                  | Please summarize the overall discussion your                       |
|                                                                                                                                   |                         | group has created and make the presentation for                    |
|                                                                                                                                   |                         | the group. The worksheets that the group members                   |
|                                                                                                                                   |                         | filled out in Part A can be used for the discussion.               |
|                                                                                                                                   |                         | The outline of the discussion will be:                             |
|                                                                                                                                   |                         | - overview of the presentation                                     |
|                                                                                                                                   |                         | - list of good practices and their features                        |
|                                                                                                                                   |                         | - list of challenges and possible solutions                        |
|                                                                                                                                   |                         | - other things that were discussed                                 |
|                                                                                                                                   |                         | - summary/conclusion                                               |

### 4. Descriptions of the Presentations for Part A

| Speaker   | Title                 | Description                                            |  |
|-----------|-----------------------|--------------------------------------------------------|--|
| Dr. Amnat | Methane emission      | Methane sensor was obtained from NIES in 2005 and      |  |
| CHIDTHAIS | from Thai paddy field | has been used to measured methane and carbon           |  |
| ONG       | by using the sensor   | dioxide emission from irrigated and rainfed rice field |  |

| (Thailand)    | technique                       | in Thailand since then. It has been proved very                                                            |
|---------------|---------------------------------|------------------------------------------------------------------------------------------------------------|
| ()            |                                 | useful and efficient approach. This presentation is                                                        |
|               |                                 | intended to show these measurement results as well as                                                      |
|               |                                 | some technical issues that arise when applying the                                                         |
|               |                                 | sensor unit.                                                                                               |
| Dr. Damasa    | Nitrous oxide and               | Her study conducted field experiments and made                                                             |
| Magcale       | methane emissions               | measurements on tree and crop growth and biomass,                                                          |
| MACADOG       | from agroforestry               | tree litterfall, crop harvest and crop residues, litterfall                                                |
| (Philippines) |                                 | and crop residue decomposition. It also made an                                                            |
| (Timppines)   |                                 | inventory survey of livestock holdings in the                                                              |
|               | areas                           | smallholder farms in the community that was studied.                                                       |
|               |                                 | Its major findings include: the major sources of N                                                         |
|               |                                 | , 8                                                                                                        |
|               |                                 | inputs in the different hedgerow systems are the<br>maize crop residues and synthetic fertilizer nitrogen; |
|               |                                 | nitrogen from animal manure and tree leaf litter are                                                       |
|               |                                 | 6                                                                                                          |
|               |                                 | other sources of nitrogen input into the systems;                                                          |
|               |                                 | availability of litter nitrogen would depend on the                                                        |
|               |                                 | quality of the litter (high N and low lignin content)                                                      |
|               |                                 | and the rate of litter decomposition; the major source                                                     |
|               |                                 | of N20 emissions from the agroforestry systems                                                             |
|               |                                 | studied is the direct N2O emissions form soil; maize                                                       |
|               |                                 | monocropping system had higher N2O emissions                                                               |
|               |                                 | than hedgerow systems; and enteric fermentation is                                                         |
|               |                                 | the major source of methane emissions from                                                                 |
|               |                                 | domestic livestock in Claveria.                                                                            |
| Dr. Takashi   | Better evaluation               | Proper recycling of nutritive salts from livestock                                                         |
| OSADA         | system for N <sub>2</sub> O and | waste cannot be completed only by circulation in an                                                        |
| (Japan)       | CH <sub>4</sub> emission from   | area where the livestock density per unit area is                                                          |
|               | composting (and                 | especially high just like Japan. Thus, livestock                                                           |
|               | wastewater                      | excrement can be made more manageable through                                                              |
|               | purification) of                | the composting process, and the resulting product can                                                      |
|               | Livestock waste                 | be distributed over a wide area. Since a large amount                                                      |
|               |                                 | of livestock waste is processed, GHG generation is                                                         |
|               |                                 | recognized to be substantial. However, few                                                                 |
|               |                                 | experiments to quantitatively measure the amount of                                                        |
|               |                                 | GHG generation from the pile type composting                                                               |

|  | process, the most widely used composting system, |
|--|--------------------------------------------------|
|  | have been carried out.                           |

### 5. List of submitted discussion topics for Part B

| Proponen   | ıt         |    | Discussion topics                                                      |
|------------|------------|----|------------------------------------------------------------------------|
| (alphabeti | cal order) |    |                                                                        |
| Dr. Takas  | hi OSADA   | 1. | Classification of livestock waste treatment plants in Japan and Asia   |
| (Japan)    |            |    |                                                                        |
| Dr.        | Batima     | 1. | Country-specific emission factor in livestock sector - whether it is   |
| PUNSAL     | MAA        |    | very useful to develop country-specific emission factors in developing |
| (Mongolia  | a)         |    | countries where most of the time use tier I method                     |

### LULUCF Working Group Session (Session 2)

The 3<sup>rd</sup> Workshop on GHG Inventories in Asia Region (WGIA) 23-24 February, 2006, Manila, the Philippines <u>14:40 ~ 18:30 (230 min.)</u>

### Session Guidance

- **1. Objectives of this session** (joint tasks for all the group members)
  - To specify the features of the LULUCF GHG inventory development in Asia by creating the lists of country's good practices and challenges
  - To prepare one presentation on the summary of discussion made in the group (this presentation will be delivered by the nominated reporter of the group in the Session 3 of the following day)

#### 2. Group members (as of preparing this paper)

- Dr. Rizaldi Boer (<u>Chair;</u> Indonesia)
- Ms. Chisa Umemiya (<u>Reporter</u>; Japan)
- Mr. Heng Chan Thoeun (Cambodia)
- Mr. Atsushi Sato (Japan)
- Mr. Lip Khoon Kho (Malaysia)

#### 3. General Agenda (time is only as a guide!!)

| 14:40~14:50                                                                                                                             | By All                                                                                           | Introduction of members                          |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|
| <part a:="" introduct<="" td=""><td colspan="4"><part a:="" country's="" good="" introduction="" of="" practices=""></part></td></part> | <part a:="" country's="" good="" introduction="" of="" practices=""></part>                      |                                                  |  |  |
| Listeners, please fil                                                                                                                   | Listeners, please fill the provided worksheet for each of the presentations to extract essential |                                                  |  |  |
| information for follo                                                                                                                   | owing discussion.                                                                                |                                                  |  |  |
| 14:50~15:10                                                                                                                             | Mr. KHO Lip Khoon                                                                                | "Development inventory of the country-specific   |  |  |
| (approx. 20 min.                                                                                                                        | (Malaysia)                                                                                       | activity data and estimation methods for forests |  |  |
| including 5 min.                                                                                                                        |                                                                                                  | ecosystems and land-use change in Malaysia"      |  |  |
| for Q&A)                                                                                                                                |                                                                                                  |                                                  |  |  |
| 15:10~15:30                                                                                                                             | Mr. Heng CHAN                                                                                    | "Development of the LULUCF's GHG Inventories     |  |  |
| (approx. 20 min.                                                                                                                        | THOEUN                                                                                           | of Cambodia"                                     |  |  |
| including 5 min.                                                                                                                        | (Cambodia)                                                                                       |                                                  |  |  |
| for Q&A)                                                                                                                                |                                                                                                  |                                                  |  |  |
| 15:30~15:50                                                                                                                             | Mr. Atsushi SATO                                                                                 | "Experience learned by using the IPCC's Good     |  |  |

| (approx. 20 min.                                                                                                                  | (Japan)                 | Practice Guidance on Land Use, Land-Use Change       |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------|
| including 5 min.                                                                                                                  |                         | and Forestry in developing Japan's GHG               |
| for Q&A)                                                                                                                          |                         | inventories"                                         |
| 15:50~16:15                                                                                                                       | By All                  | Question and discussion                              |
| <part b:="" round-ta<="" td=""><td>ble discussion for "Cha</td><td>allenges to be tackled and possible solutions"&gt;</td></part> | ble discussion for "Cha | allenges to be tackled and possible solutions">      |
| 16:15~17:15                                                                                                                       | By All                  | Discussion for challenges to be tackled and          |
|                                                                                                                                   |                         | possible solutions. Some discussion topics were      |
|                                                                                                                                   |                         | already raised by the group members (see the         |
|                                                                                                                                   |                         | below section 5).                                    |
|                                                                                                                                   |                         | - what are the challenges that you have faced?       |
|                                                                                                                                   |                         | - do you have any ideas to solve the challenges      |
|                                                                                                                                   |                         | raised by your colleague? Or do you also have the    |
|                                                                                                                                   |                         | same challenge?                                      |
|                                                                                                                                   |                         | - what does the regional network such as WGIA        |
|                                                                                                                                   |                         | could do to help solving the challenges?             |
| <part c:="" summary<="" td=""><td>and Completion of Pr</td><td>resentation for Session 3&gt;</td></part>                          | and Completion of Pr    | resentation for Session 3>                           |
| 17:15~18:30                                                                                                                       | By All                  | Please summarize the overall discussion your         |
|                                                                                                                                   |                         | group has created and make the presentation for      |
|                                                                                                                                   |                         | the group. The worksheets that the group members     |
|                                                                                                                                   |                         | filled out in Part A can be used for the discussion. |
|                                                                                                                                   |                         | The outline of the discussion will be:               |
|                                                                                                                                   |                         | - overview of the presentation                       |
|                                                                                                                                   |                         | - list of good practices and their features          |
|                                                                                                                                   |                         | - list of challenges and possible solutions          |
|                                                                                                                                   |                         | - other things that were discussed                   |
|                                                                                                                                   |                         | - summary/conclusion                                 |

### 4. Descriptions of the Presentations for Part A

| Speaker     | Title                  | Description                                             |
|-------------|------------------------|---------------------------------------------------------|
| Mr. KHO Lip | Development            | This second national inventory of GHG emission is       |
| Khoon       | inventory of the       | being rigorously analysed and extrapolated to ensure    |
| (Malaysia)  | country-specific       | higher accuracy in estimation. Currently, the inventory |
|             | activity data and      | adopts higher tier level approach of I and II.          |
|             | estimation methods     | However, the working group entrusted to carry out       |
|             | for forests ecosystems | this work has been enthusiastic and ambitious to        |

|              | and land-use change in | work at Tier III in the near future.                     |
|--------------|------------------------|----------------------------------------------------------|
|              | 0                      |                                                          |
|              | Malaysia.              | Forest inventory data is important to keep track of      |
|              |                        | the activity within $10 - 20$ years (as recommended in   |
|              |                        | the IPCC guidelines). The national activity data is      |
|              |                        | being compiled by separate sector as in Peninsular       |
|              |                        | Malaysia, Sabah and Sarawak. Thus, this is highly        |
|              |                        | relevant and reflective to each sector. In addition, the |
|              |                        | forestry reporting systems by each sector are quite      |
|              |                        | different with additional new categories and             |
|              |                        | sub-categories.                                          |
|              |                        | This presentation will highlight current activities and  |
|              |                        | initiatives taken by the LULUCF working group with       |
|              |                        | various stakeholders in preparing an improved and        |
|              |                        | comprehensive GHG inventory for the Second               |
|              |                        | National Communication. The presentation will            |
|              |                        | include issues pertaining to the relevancy of practices  |
|              |                        | to neighboring countries and the role of regional        |
|              |                        | network in addressing problems encountered.              |
| Mr. Heng     | Development of the     | His presentation includes: (i) Direct measurement of     |
| CHAN         | LULUCF's GHG           | biomass of the major forest type, (ii) Conversion (or    |
| THOEUN       | Inventories of         | "Translation") of measured biomass values into           |
| (Cambodia)   | Cambodia               | values in carbon pools under the GPGLULUCF, (iii)        |
|              |                        | Development of activity data for 2000 including          |
|              |                        | assumptions made to estimate land areas which went       |
|              |                        | through land use conversion.                             |
| Mr. Atsushi  | Experience learned by  | The latest Japan's GHG inventories submitted in          |
| SATO (Japan) | using the IPCC's Good  | 2005 was developed by using the IPCC's Good              |
|              | Practice Guidance on   | Practice Guidance on Land Use, Land-Use Change           |
|              | Land Use, Land-Use     | and Forestry. The presentation will introduce Japan's    |
|              | Change and Forestry    | experience particularly focusing on the comparison       |
|              | in developing Japan's  | with the previous inventories that were developed        |
|              | GHG inventories        | following the Revised 1996 IPCC Guidelines. The          |
|              |                        | presentation is expected to be useful for countries in   |
|              |                        | Asia which could possibly employ the                     |
|              |                        | GPG-LULUCF in future.                                    |
|              |                        |                                                          |

| Proponent                       | Discussion topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (alphabetical order)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Mr. KHO Lip<br>Khoon (Malaysia) | 1. In order to work at higher level of tier, each country is required to generate its own default data (aboveground biomass, annual growth rate, and etc.). This is imperative to obtain accurate estimation.                                                                                                                                                                                                                                                                                 |
|                                 | <ul> <li>One area of experimental plots often represents a national-scale default data. How can we assure this extrapolation of default data comply with IPCC guidelines or even GPG2000?</li> <li>What is the duration for such analysis?</li> <li>Specific methods to be adopted for Asian region?</li> </ul>                                                                                                                                                                               |
|                                 | <ul><li>Standard or guide for estimations?</li><li>2. This is the main sector that determines emission of land-use changes.</li></ul>                                                                                                                                                                                                                                                                                                                                                         |
|                                 | <ul> <li>Malaysia is currently adopting the "zero conversion' policy. It suggested that the forested areas would not be converted for agricultural, pasture or developmental purposes.</li> <li>Is non-conversion of forest applicable in the inventory?</li> <li>Abandoned managed land being calculated based on converted forest area?</li> <li>Not many countries keep good record of such category (abandoned managed land). How is the best method to justify this category?</li> </ul> |
|                                 | <ul><li>Shifting cultivation comes into which sector?</li><li>3. Definitions subjected to each country needed in terms of soil activity</li></ul>                                                                                                                                                                                                                                                                                                                                             |
|                                 | <ul> <li>(high activity, low activity).</li> <li>How to differentiate the two categories?</li> <li>Estimation of activity data based on crops or land use?</li> <li>Issue pertaining to the availability of activity data according to land use classes is the major limiting factor.</li> </ul>                                                                                                                                                                                              |
|                                 | <ul><li>4. GPG2000 is recommended for the inventory. Key categories as drawn out and suggested are comprehensive.</li><li>• How can we incorporate into the inventory?</li></ul>                                                                                                                                                                                                                                                                                                              |
|                                 | <ul><li>Is there model software for GPG2000 itself?</li><li>The application and development of EFDB.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                |
| Mr. Atsushi SATO                | 1. National system and institutional arrangement for periodical                                                                                                                                                                                                                                                                                                                                                                                                                               |

### 5. List of submitted discussion topics for Part B

| (Japan)         |    | preparation of GHG inventories                                         |
|-----------------|----|------------------------------------------------------------------------|
|                 | 2. | How should we define each inventory (land use) categories?             |
|                 | 3. | Desired level of accuracy of GHG inventories                           |
| Ms. Chisa       | 1. | Degree of dependence of Asian countries on the                         |
| UMEMIYA (Japan) |    | internationally-available data such as those of FAO in developing      |
|                 |    | GHG inventories. How do we consider the uncertainty of those data?     |
|                 | 2. | Links with country's forest inventory data which were developed for    |
|                 |    | different purposes.                                                    |
|                 | 3. | Institutional arrangement for collecting and arranging necessary data. |
|                 |    | What is the key to establish good cooperative network among            |
|                 |    | different national agencies?                                           |

### Waste Working Group Session (Session 2)

The 3<sup>rd</sup> Workshop on GHG Inventories in Asia Region (WGIA) 23-24 February, 2006, Manila, the Philippines <u>14:40 ~ 18:30 (230 min.)</u>

### Session Guidance

- 1. Objectives of this session (joint tasks for all the group members)
  - To specify the features of the Waste GHG inventory development in Asia by creating the lists of country's good practices and challenges
  - To prepare one presentation on the summary of discussion made in the group (this presentation will be delivered by the nominated reporter of the group in the Session 3 of the following day)

#### 2. Group members (as of preparing this paper)

- Dr. Sirintornthep Towprayoon (Chair; Thailand)
- Dr. Gao Qingxian (<u>Reporter</u>; China)
- Mr. Yasuhiro Baba (Japan)
- Dr. Kyoung-sik Choi (Korea)
- Dr. Masato Yamada (Japan)
- Ms. Raquel Ferraz Villanueva (Philippines)

#### 3. General Agenda (time is only as a guide!!)

| 14:40~14:50                                                                                 | By All                         | Introduction of members                               |
|---------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------|
| <part a:="" introduct<="" td=""><td>ion of Country's Good</td><td>Practices&gt;</td></part> | ion of Country's Good          | Practices>                                            |
| Listeners, please fil                                                                       | l the provided <u>workshee</u> | et for each of the presentations to extract essential |
| information for follo                                                                       | owing discussion.              |                                                       |
| 14:50~15:10                                                                                 | Dr. GAO Qingxian               | "The Estimate Model of MSW Production in              |
| (approx. 20 min.                                                                            | (China)                        | China"                                                |
| including 5 min.                                                                            |                                |                                                       |
| for Q&A)                                                                                    |                                |                                                       |
| 15:10~15:30                                                                                 | Dr. Kyoung-sik                 | "Estimation and Uncertainty Analysis of CH4           |
| (approx. 20 min.                                                                            | CHOI (Korea)                   | Emissions from Landfills"                             |
| including 5 min.                                                                            |                                |                                                       |
| for Q&A)                                                                                    |                                |                                                       |

| 15:30~15:50                                                                                                                       | Dr. Masato              | "Organic and fossil carbon flow analysis of waste    |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------|
| (approx. 20 min.                                                                                                                  | YAMADA (Japan)          | streams: A good practice for solid waste sector"     |
| including 5 min.                                                                                                                  |                         |                                                      |
| for Q&A)                                                                                                                          |                         |                                                      |
| 15:50~16:15                                                                                                                       | By All                  | Question and discussion                              |
| <part b:="" round-ta<="" td=""><td>ble discussion for "Cha</td><td>allenges to be tackled and possible solutions"&gt;</td></part> | ble discussion for "Cha | allenges to be tackled and possible solutions">      |
| 16:15~17:15                                                                                                                       | By All                  | Discussion for challenges to be tackled and          |
|                                                                                                                                   |                         | possible solutions. Some discussion topics were      |
|                                                                                                                                   |                         | already raised by the group members (see the         |
|                                                                                                                                   |                         | below section 5).                                    |
|                                                                                                                                   |                         | - what are the challenges that you have faced?       |
|                                                                                                                                   |                         | - do you have any ideas to solve the challenges      |
|                                                                                                                                   |                         | raised by your colleague? Or do you also have the    |
|                                                                                                                                   |                         | same challenge?                                      |
|                                                                                                                                   |                         | - what does the regional network such as WGIA        |
|                                                                                                                                   |                         | could do to help solving the challenges?             |
| <part c:="" summary<="" td=""><td>and Completion of Pr</td><td>resentation for Session 3&gt;</td></part>                          | and Completion of Pr    | resentation for Session 3>                           |
| 17:15~18:30                                                                                                                       | By All                  | Please summarize the overall discussion your         |
|                                                                                                                                   |                         | group has created and make the presentation for      |
|                                                                                                                                   |                         | the group. The worksheets that the group members     |
|                                                                                                                                   |                         | filled out in Part A can be used for the discussion. |
|                                                                                                                                   |                         | The outline of the discussion will be:               |
|                                                                                                                                   |                         | - overview of the presentation                       |
|                                                                                                                                   |                         | - list of good practices and their features          |
|                                                                                                                                   |                         | - list of challenges and possible solutions          |
|                                                                                                                                   |                         | - other things that were discussed                   |
|                                                                                                                                   |                         | - summary/conclusion                                 |

### 4. Descriptions of the Presentations for Part A

| Speaker  | Title              | Description                                           |
|----------|--------------------|-------------------------------------------------------|
| Dr. GAO  | The Estimate Model | Based on the historical statistical data of municipal |
| Qingxian | of MSW Production  | solid waste in China, several driving factors of      |
| (China)  | in China           | municipal solid waste were analyzed, such as GDP,     |
|          |                    | urban population, the ratio of treatment etc. The     |
|          |                    | results can be used as tool to estimate future        |

|                |                              | municipal solid waste production and can also be        |
|----------------|------------------------------|---------------------------------------------------------|
|                |                              | used as to recalculate historical MSW production.       |
|                |                              | This analysis may be used in most developing            |
|                |                              | countries and it is a good practice for future GHGs     |
|                |                              | inventory.                                              |
| Dr. Kyoung-sik | Estimation and               | - Estimation of CH4 emissions by using Tier 2           |
| CHOI (Korea)   | Uncertainty Analysis         | methodology                                             |
|                | of CH <sub>4</sub> Emissions | - Uncertainty analysis with the Monte Carlo             |
|                | from Landfills               | Simulation                                              |
|                |                              | - Standard measurement method for the GHG               |
|                |                              | emissions in landfills                                  |
| Dr. Masato     | Organic and fossil           | Organic and fossil carbon content in solid waste        |
| YAMADA         | carbon flow analysis         | should change according to activities in waste streams, |
| (Japan)        | of waste streams: A          | such as volume reduction,                               |
|                | good practice for solid      | detoxification, or resource recovery. Case studies on   |
|                | waste sector.                | carbon flow analysis of waste streams at Japan and      |
|                |                              | some other Asian countries will be introduced.          |

## 5. List of submitted discussion topics for Part B

| Proponent            |    | Discussion topics                                                   |
|----------------------|----|---------------------------------------------------------------------|
| (alphabetical order) |    |                                                                     |
| Dr. GAO Qingxian     | 1. | IPCC methodology issues for methane emission from MSW,              |
| (China)              |    | especially in new development                                       |
|                      | 2. | How can get more accurate or reasonable activity data in developing |
|                      |    | country?                                                            |
|                      | 3. | New treatment technique and its effects on GHGs emission            |
|                      | 4. | The potential value of MSW treatment under Kyoto Protocol (CDM      |
|                      |    | project).                                                           |
| Dr. Masato           | 1. | Impact of 3R activity on waste composition.                         |
| YAMADA (Japan)       | 2. | Good landfill management practices for methane reduction.           |
|                      | 3. | Realistic k value or half life for the first decay model in Asian   |
|                      |    | countries.                                                          |

### LIST OF PARTICIPANTS THE 3<sup>rd</sup> WORKSHOP ON GHG INVENTORIES IN ASIA REGION

23-24 February 2006, Manila, Philippines

#### CAMBODIA

Mr. Heng Chan THOEUN Chief Office for Environmental Inspection Ministry of Environment #48, Samdach Preah Sihanouk, Tonle Bassac, Chamkarmon, Phnom Penh, CAMBODIA Tel:+855-23-218370 Fax: +855-23-218370 E-mail: ccco@online.com.kh hcthoeun@yahoo.com

Mr. Chan Thou CHEA Deputy Director of Department Department of Planning and Legal Affairs, Ministry of Environment #48, Preah Sihanouk Blvd, Phnom Penh, CAMBODIA Tel:+855-11-923364 Fax: +855-23-218370 E-mail: chanthouchea@yahoo.com

#### CHINA

Prof. Huaqing XU Director Center for Energy, Environment and Climate Change Research, Energy Research Institute, NDRC B-1405, Guohong Building, Muxidibeili Jia11, Beijing 100038, CHINA Tel: +86-10-6390-8455 Fax: +86-10-6390-8455 E-mail: xuhqing@public3.bta.net.cn xuhuaqing@amr.gov.cn Dr. Qingxian GAO Center for Climate Impact Research, SEPA Chinese Research Academy of Environmental Science 8 Da Yangfang, An Wai, Beijing 100012, CHINA Tel: + 86-10-8491-5154 Fax: +86-10-8491-5252 E-mail: gaoqingxian@hotmail.com gaoqx@craes.org.cn

#### INDIA

Dr. Sumana BHATTACHARYA National Expert Consultant, National Communications, Ministry of Environment and Forest, Government of INDIA Natcom Project Management Cell, Winrock International India 1, Navjeevan Vihar, New Delhi 110017 INDIA Tel: +91-11-26693876 Fax: +91-11-26693876 E-mail: sumana@winrockindia.org

#### INDONESIA

Mr. Dadang HILMAN Head of Sub-Division of Adaptation to Climate Change Office of Deputy III to the Minister-Ministry of the Environment JL. Panjaitan Kav. 24 Kebon-Nanas Jakarta, 13410 INDONESIA Tel: + 62-21-8517164 Fax: +62-21-85902521 E-mail: d\_hilman@menlh.go.id dadanghilman@yahoo.com

Dr. Rizaldi BOER Head of Laboratory of Climatology Department of Geophysics and Meteorology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University Kampus IPB Darmaga, Bogor 16680, West Java, INDONESIA Tel: +62-251-623850 / 623758 Fax: +62-251-623850 E-mail: rizaldiboer@yahoo.com

#### JAPAN

Mr. Yasuhiro BABA Deputy Director Climate Change Policy Division, Global Environment Bureau Ministry of the Environment Kasumigaseki 1-2-2 Chiyoda-ku, Tokyo 100-8975 JAPAN Tel: +81-3-5521-8339 Fax: +81-3-3580-1382 E-mail: YASUHIRO\_BABA@env.go.jp

Dr. Takashi OSADA Team Leader Environmental Harmony Research Team, Department of Animal Production and Grassland, National Agricultural Research Center for Hokkaido Region, National Agricultural and Bio-oriented Research Organization 1 Hitsujigaoka, Toyohira-ku, Sapporo, Hokkaido, 062-8555 JAPAN Tel: +81-11-851-9141 Fax: +81-11-859-2178 E-mail: osada@affrc.go.jp Dr. Shuzo NISHIOKA Executive Director National Institute for Environmental Studies 16-2, Onogawa, Tsukuba, Ibaraki 305-8506 JAPAN Tel: +81-29-850-2169 Fax: +81-29-858-2645 E-mail: snishiok@nies.go.jp

Dr. Masato YAMADA Senior Researcher National Institute for Environmental Studies Research Center for Material Cycles and Waste Management Onogawa 16-2, Tsukuba Ibaraki 305-8506 JAPAN Tel: +81-29-850-2837 Fax: +81-29-850-2016 E-mail: myamada@nies.go.jp

Mr. Tomoyuki AIZAWA Researcher Greenhouse Gas Inventory Office of Japan Center for Global Environmental Research National Institute for Environmental Studies 16-2, Onogawa, Tsukuba, Ibaraki 305-8506 JAPAN Tel: +81-29-850-2777 Fax: +81-29-858-2645 E-mail: aizawa.tomoyuki@nies.go.jp

Ms. Chisa UMEMIYA Assistant Fellow Greenhouse Gas Inventory Office of Japan Center for Global Environmental Research National Institute for Environmental Studies 16-2, Onogawa, Tsukuba, Ibaraki 305-8506 JAPAN Tel: +81-29-850-2169 Fax: +81-29-858-2645 E-mail: umemiya.chisa@nies.go.jp

Mr. Atsushi SATO Collaborating Researcher Greenhouse Gas Inventory Office of Japan (Analyst, Climate Change Mitigation Policy Group, Environmental Policy Consulting Department, Mitsubishi UFJ Research and Consulting) Greenhouse Gas Inventory Office of Japan Center for Global Environmental Research National Institute for Environmental Studies 16-2, Onogawa, Tsukuba, Ibaraki 305-8506 JAPAN Tel: +81-29-850-2777 Fax: +81-29-858-2645 E-mail: sato.atsushi@nies.go.jp

#### KOREA (ROK)

Dr. Kyoungsik CHOI Team Manager Environmental Management Corporation Global Environment Team, Environmental Management Corporation Environmental Research Complex, Kyongseo-dong, Seo-gu, Incheon-si 404-708 KOREA Tel: +82-32-560-2189 Fax: +82-32-560-2294 E-mail: rudtlr@emc.or.kr

#### LAO P.D.R.

Mr. Syamphone SENGCHANDALA Deputy Director of Environment Impact Assessment Division Science Technology and Environment Agency, Prime Minister's Office Ban Sisavad, Nahaidoi Road, P.O. Box 2279, Vientiane, LAOS Tel: +856-21-218712 Fax: +856-21-213472 / 218712 E-mail: syamphone\_sengchandala@yahoo.com

#### MALAYSIA

Ms. Siti Indati MUSTAPA Program Manager, Pusat Tenaga Malaysia Level 8, Bangunan Sapura@Mines, 7, Jalan Tasik, The Mines Resort City, 43300 Seri Kembangan, Selangor Darul Ehsan, MALAYSIA Tel: +603-8943-4300 ext: 310 Fax: +603-8941-1121 E-mail: ati@ptm.org.my

Mr. Lip Khoon KHO Forest Research Institute of Malaysia, (FRIM) Research Office Urban Forestry and Forest Recreation, Division of Forestry and Conservation, Forest Research Institute of Malaysia (FRIM), 52109 Kepong, Selangor Darul Ehsan, MALAYSIA Tel: +603-6279-7251 Fax: +603-6280-4625 E-mail: kholipkhoon@frim.gov.my

#### MONGOLIA

Ms. Bujidmaa BORKHUU Researcher Institute of Meteorology and Hydrology Juulchny Gudamj-5, 210646, Ulaanbaatar MONGOLIA Tel: + 976-9983-7923 Fax: + 976-11-326611 E-mail: bujidmaa2002@yahoo.com

Dr. Batimaa PUNSALMAA Senior Researcher Institute of Meteorology and Hydrology PO Box 664, Ulaanbaatar-24, MONGOLIA Tel: + 976-9924-4946 Fax: + 976-11-318750 E-mail: mcco@magicnet.mn

#### PHILIPPINES

Mr. Hon.Demetrio L.IGNACIO Underdecretary for Policy and Planning, DENR Department of Environment and Natural Resources, Environmental Management Bureau (DENR) 2<sup>nd</sup> Flr., HRD Bldg., DENR Compound., Visayas Avenue, Dilman, Quezon City PHILIPPINES Tel: + 63-2-9284969, 9268094

Atty. Fernandino Y. CONCEPCION Officer-in-Charge and Assistant Director Department of Environment and Natural Resources, Environmental Management Bureau (DENR) 2<sup>nd</sup> Flr., HRD Bldg., DENR Compound., Visayas Avenue, Dilman, Quezon City PHILIPPINES

Atty. Lolibeth R. MEDRANO OIC-Director Environmental Management Bureau Department of Environment and Natural Resources DENR Compound, Visayas Avenue Diliman, Quezon City PHILIPPINES Tel.: +63-2-9271517/ 9283742/ 9271518 Email: lolibeth\_medrano@emb.gov.ph

Ms. Joyceline A. GOCO Chief, Insutitutional Coordination and Documentation Section, Environmental Education and Information Division Head, Inter-agency Committee on Climate Change Secretariat Republic of the Philippines Department of Environment and Natural Resources, Environmental Management Bureau (DENR) 2<sup>nd</sup> Flr., HRD Bldg., DENR Compound., Visayas Avenue, Dilman, Quezon City PHILIPPINES Tel: + 63-2-920-22-51/52, 925-47-97 loc.2 Fax: +63-2-920-22-51/52 E-mail: joygoco@yahoo.com

Ms. Raquel Ferraz VILLANUEVA Environmental Management Bureau Department of Environment and Natural Resources Felbet's Bldg., Lanang, Davao City, PHILIPPINES Tel: + 63-82-234-0166 / 233-0809 Fax: +63-82-235-1354 E-mail: embdavxi@yahoo.com quelvill@yahoo.com

Ms. Ma. Gerarda Asuncion D. MERILO Technical Staff, IACCC Secretariat Environment Management Bureau Department of Environment and Natural Resources, Environmental Management Bureau (DENR) 2<sup>nd</sup> Flr., HRD Bldg., DENR Compound., Visayas Avenue, Dilman, Quezon City PHILIPPINES Tel: + 63-2-920-22-51/52, 925-47-97 loc.2 Fax: +63-2-920-22-51/52 E-mail: gmerilo@yahoo.com

Ms. Hershey de la CRUZ Energy Cooperation and Collaboration Division Department of Energy Energy Center Merritt Road, Fort Bonifacio Taguig, Metro Manila, PHILIPPINES Tel: +63-2-840-22-13/ 840-14-01/ 840-17-80 Fax: +63-2-840-22-13/ 840-14-01/ 840-17-80 Email: hdelacruz@doe.gov.ph

Dr. Sofio QUINTANA

Chief, Planning and Special Projects Division Forest Management Bureau Visayas Avenue, Diliman, Quezon City PHILIPPINES Tel.:+63-2-925-21-36 Fax: +63-2-920-03-68

Dr. Gina NILO Bureau of Soils and Water Management Department of Agriculture Elliptical Road corne! r Visayas Avenue Diliman, Quezon City, PHILIPPINES Email: ginapnilo@yahoo.com

Dr. Enrico P. SUPANGCO Vice-Chancellor for Research and Extension University of the Philippines at Los Banos College, Laguna 4031 PHILIPPINES

Dr. Damasa Magcale MACANDOG University of the Philippines Los Banos Associate Professor Institute of Biological Science, University of the Philippines Los Banos, College, Laguna 4031 PHILIPPINES Tel: + 63-49-536-7418 Fax: +63-49-526-2517 E-mail: macandog@pacific.net.ph

#### THAILAND

Ms. Aree Wattana TUMMAKIRD Director of Measures Analysis Section Office of Natural Resources and Environmental Policy and Planning (ONEP) 60/1 Soi Pibullwattana 7 Rama VI Road, Phrayatai Bangkok 10400, THAILAND Tel: +66-2-265-6611 Fax: +66-2-265-6602/6612 E-mail: areewat@onep.go.th

Dr. Sirintornthep TOWPRAYOON Associate Professor Joint Graduate School of Energy and Environment King Mongkut's University of Technology Thonburi Bangmod, Bangkok 10140, THAILAND Tel: +66-2-470-8309 ext. 4133 Fax: +66-2-872-9805 E-mail: sirin@jgsee.kmutt.ac.th

Dr. Amnat CHIDTHAISONG Assistant Professor Joint Graduate School of Energy and Environment, KMUTT 91 Pracha-Uthit Road, Bangmod, Tungkru, Bangkok 10140, THAILAND Tel: +66-2-470-8309/10 Fax: +66-2-872-9805 E-mail: amnat\_c@jgsee.kmutt.ac.th

#### VIET NAM

Mr. Hoang Manh HOA Senior Expert on Climate Change, National Office for Climate Change and Ozone Protection, International Cooperation Department, Ministry of Natural Resources and Environment of Viet Nam, Member of Viet Nam CDM Designated National Authority (DNA), 45, Tue Tinh, Ha Noi, VIET NAM Tel: +84-4-9743196 Fax: +84-4-9743200 E-mail: vnccoffice@fpt.vn

## INTERNATIONAL ORGANIZATIONS UNFCCC

Mr. Dominique REVET Programme Officer United Nations - Climate Change Secretariat (UNFCCC) Financial and Technical Support (FTS) Programme Support to National Communications (SNC) Unit OBS – Kennedy Allee 105 - 107 P.O. Box 260 124, D-53153 Bonn, GERMANY Tel: +49-228-815-1334, Fax: +49-228-815-1599, E-mail: DRevet@unfccc.int

#### **OBSERVERS**

Ms. Eunhwa CHOI Associate Manager Environmental Management Corporation Global Environment team, Environmental Management Corporation Environmental Research Complex, Kyongseo-dong, Seo-gu, Incheon-si 404-708 KOREA Tel: +82-32-560-2189 Fax: +82-32-560-2294 E-mail: ehchoi@emc.or.kr

Mr. Chan-Gyu KIM Team Leader Korea Energy Management Corporation 1157, Pungdukchun-2-dong, Yougin, Kyonggi-do, 449-994, KOREA Tel: +82-31-2604-555 Fax: +82-31-2604-559 E-mail: drk@kemco.or.kr

Mr. Soon-Chul PARK

Project Coordinator Korea Energy Management Corporation 1157, Pungdukchun-2-dong, Yougin, Kyonggi-do, 449-994, KOREA Tel: +82-31-2604-557 Fax: +82-31-2604-559 E-mail: scpark@kemco.or.kr

#### SECRETARIAT

Mr. Randal HELTEN 408-1388 Nelson Street, Vancouver BC CANADA V6E 1J9 Tel: +1-604-737-7657 Fax: +1-775-637-4972 E-mail: rand@shaw.ca

Ms. Kazuko WATANABE Workshop on GHG Inventories in Asia Region Secretariat 2-30-11, Shinkawa, Chuo-ku, Tokyo 104-0033 JAPAN Tel: +81-3-3553-4991 Fax: +81-3-3553-7092 E-mail: watanabe@tube.co.jp

Ms. Fumiko HIRASAWA Workshop on GHG Inventories in Asia Region Secretariat 2-30-11, Shinkawa, Chuo-ku, Tokyo 104-0033 JAPAN Tel: +81-3-3553-4991 Fax: +81-3-3553-7092 E-mail: Fumi@tube.co.jp

## DOCUMENTS

i) Presentations

**Opening Session** 

Session I  $\vdots$  Updates on GHG inventories in Asia region

Session II: Countries' practices, by sector

 $Session {\rm I\!I\!I} \colon Reports \ \& \ overall \ discussion$ 

- ii ) Other documents
- iii) Appendix

i) PresentationsOpening Session

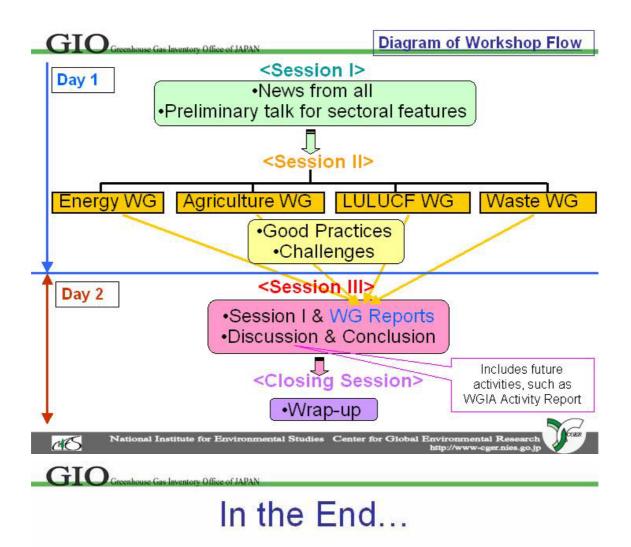


## GIO

# Participants

|                               | No. of nations/<br>organisations      | No. of<br>participants |
|-------------------------------|---------------------------------------|------------------------|
| Asian<br>countries            | <b>13</b><br>(2 are new!)             | 36                     |
| International<br>organisation | <b>1</b><br>(= UNFCCC<br>Secretariat) | 1                      |

National Institute for Environmental Studies Center for Global Environmental Research http://www-oger.nies.go.jp


# Goals

- 1. Updating each other on the status of GHG inventory development in Asia
- Specifying the features of GHG inventory development, sector by sector
- Finding steps to be followed after the 3<sup>rd</sup> WGIA

atal Studies

National Institute for Environ

Center for Global En





Clear understanding of good practices and challenges related to the GHG inventory development of 4 sectors

Common views and understanding for the subsequent activities of WGIAs



i) Presentations

Session I

## The 3<sup>rd</sup> Workshop on GHG Inventories in Asia Region

## China's News on the Development of GHG Inventories

Xu Huaqing Energy Research Institute, NDRC, China Feb. 23, 2006, Manila, the Philippines

## The key new activities under SNC

China is required to prepare its SNC based on the revised Guidelines for the Preparation of National Communications from Parties not Included in Annex I to the Convention.

The Revised Guidelines call for a national GHG emissions inventory for 2000, and encourage the provision of information on anthropogenic emissions by sources of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulfur hexafluoride (SF6).

## The key new activities under SNC

- Quality control of databases that are relevant to the accounting of GHG emissions;
- System for collection, processing, and periodic measurement of energy activity and emissions factors data;
- CH<sub>4</sub>MOD and IAP-N agricultural models;
- Remote sensing of data to continuously monitor the changes in forestry area and land use;
- Research on the soil carbon change for different land categories.

## **Energy sector: Gaps**

- Higher tier methods will be adopted under the SNC, where applicable, to estimate GHG emissions in this sector, and compared with results estimated by other methods;
- Through the use of larger sample sizes and improved measurement techniques, emissions factors for methane from small and medium coal mines and cook stoves will be improved;
- Activity data on transportation, building materials, and other sectors will be collected through sample surveys;
- Activity data will be collected for transportation in the industrial sector through separate surveys so as to be able to distinguish energy use in industrial production from ancillary activities.

## **Industrial Processes: Gaps**

The coverage of source categories will be improved, and, where applicable, GHG emissions in this sector will be estimated at the provincial level;

Additional sectors, nitric acid, non-ferrous metals, and building materials will be included and additional industrial gases (HFCs, PFCs and SF6) will be added;

Uncertainties noted in the estimation of activity data and emissions factors will be calculated, and those contributing to the largest error in GHG emissions will be targeted for improvement through either increased sampling of activity data, and measurements of appropriate emissions factors.

## **Agriculture sector: Gaps**

- Adopt higher tier methods to estimate GHG emissions from the agricultural and compare the estimated results from different methods;
- Indirect emissions of nitrous oxide from croplands and residue burning will be measured for use as substitutes for IPCC default factors;
  - Model used for the calculation of emissions factors from rice paddy fields will be modified and improved to accommodate different types of rice, and application regimes;
- IAP-N model will be converted to a process model to provide greater spatial resolution and allow temperature and precipitation impacts to be modeled;
- Actual observations will be used to estimate activity data and emissions factors for methane and nitrous oxide emissions from enteric fermentation.

## Land-use change and forestry: Gaps

SNC will seek to apply new methods contained in the 2006 IPCC Guidelines for National Greenhouse Gas Inventories to estimate GHG emissions;

Rather than use national average values for activity data and emissions factors, values will be measured and/or estimated by province, tree species, and/or forest type;

SNC will use purchased remote sensed Landsat TM images. These will be combined with the National Land Use pattern Monitoring System to develop a tool for accounting of changes in forests and land use.

## Waste treatment: Gaps

The SNC project will seek to adopt Tier 2 approach and estimate GHG emissions at the provincial level;
Uncertainties will be reduced through use of measured data on degradable organic carbon and methane release for municipal solid waste and the former for wastewater treatment.





2

Indonesia's plan of GHG inventories development

> Dadang Hilman Climate Change Division Ministry of the Environment - Indonesia

The 3rd Workshop on GHG Inventories in Asia Region (WGIA) 23-24 February 2006, Manila, Philippines



## Outline

- Experience from the FNC
- Latest and relevant studies
- SNC (Proposal)



## First National Communication (FNC)

- Estimates of GHG emissions and removals from all sectors from 1990-1994
- Methodology : Revised 1996 IPCC;
- Gases covered: CO2, CH4, N2O, CO, NOx, CF4, C2F6.
- Projection of emissions up to 2025 :
  - three sectors (energy, forestry and agriculture)
  - CO2, CH4, N2O
  - key category analysis were not performed
- Uncertainty : considerably high for all sectors, particularly forestry sector.
- Involvement of sectors in the development of GHG inventories for the INC was also very limited.

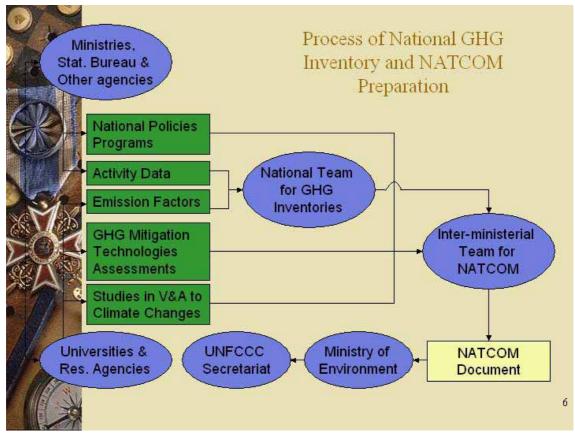
## Latest and Relevant Studies

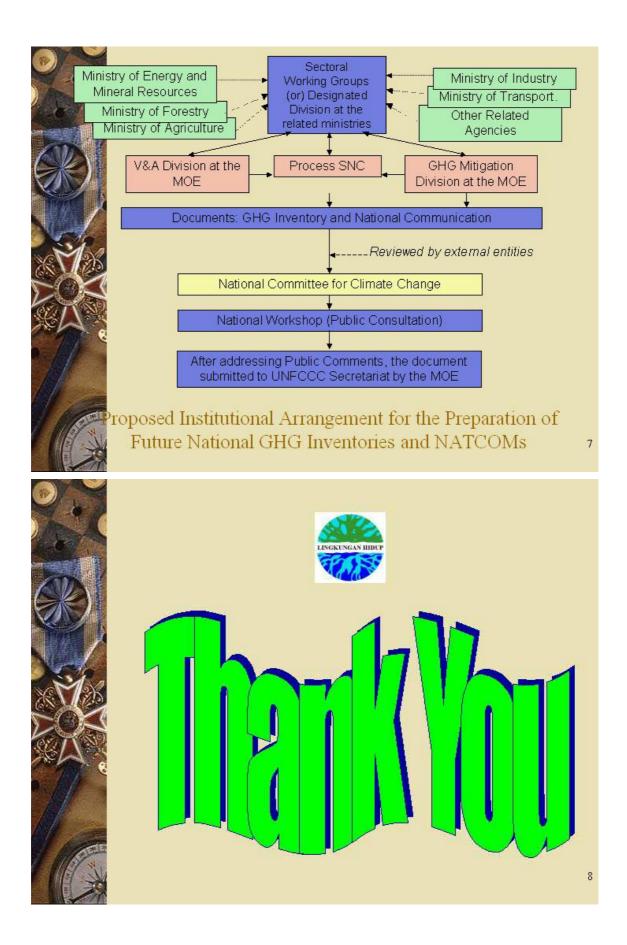
#### Sectors: Agriculture and Forestry

- Boer et al., 2001, Suryahadi et al., 2001; Setyanto et al., 2001; MoE, 2001; Hendri et al., 2001; Palm et al., 1999; Murdiyarso and Rosalina, 2000, Susandi, 2004
- Important results: developed a number of local emission factors particularly on mean annual biomass increment, above and below ground biomass for a number of sites, and methane emission factors for rice paddy and livestock.

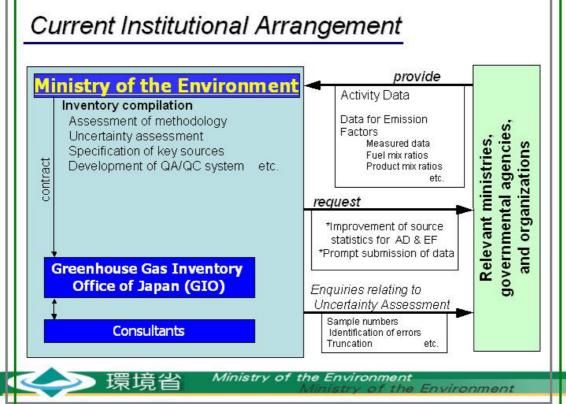
# Sector: Energy industry and waste sector the improvement were very lacking.

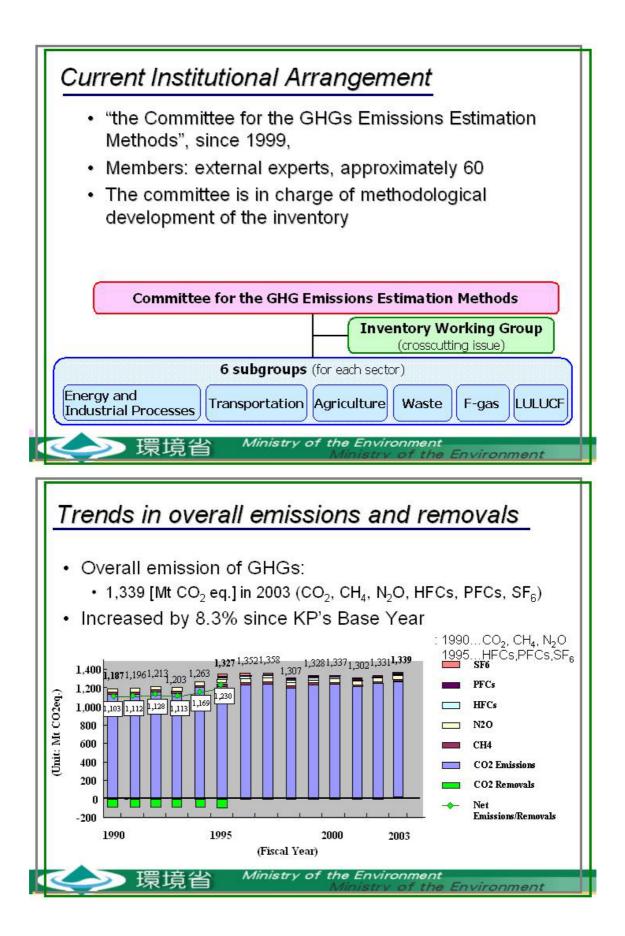


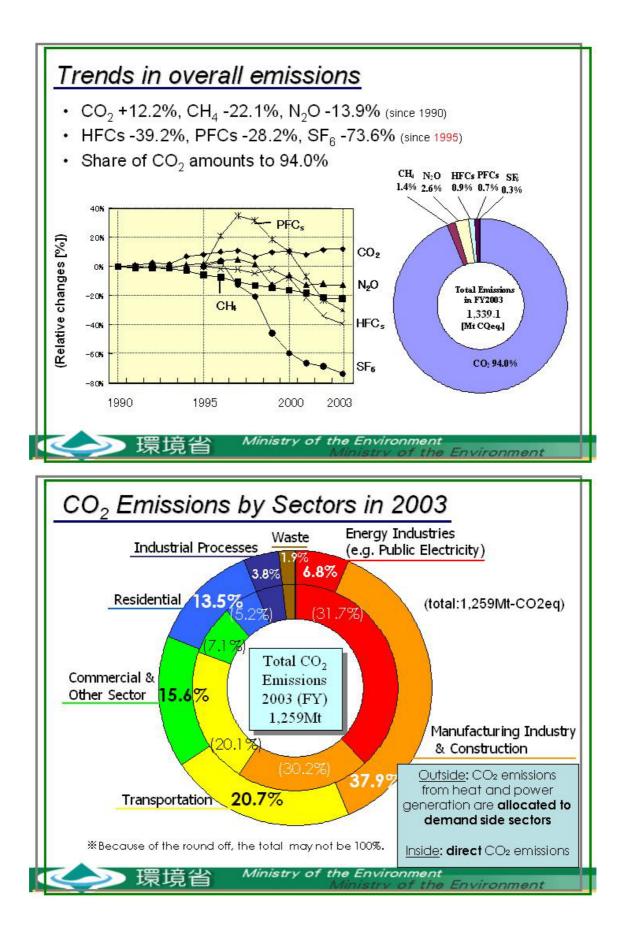

## Second National Communication: Proposal

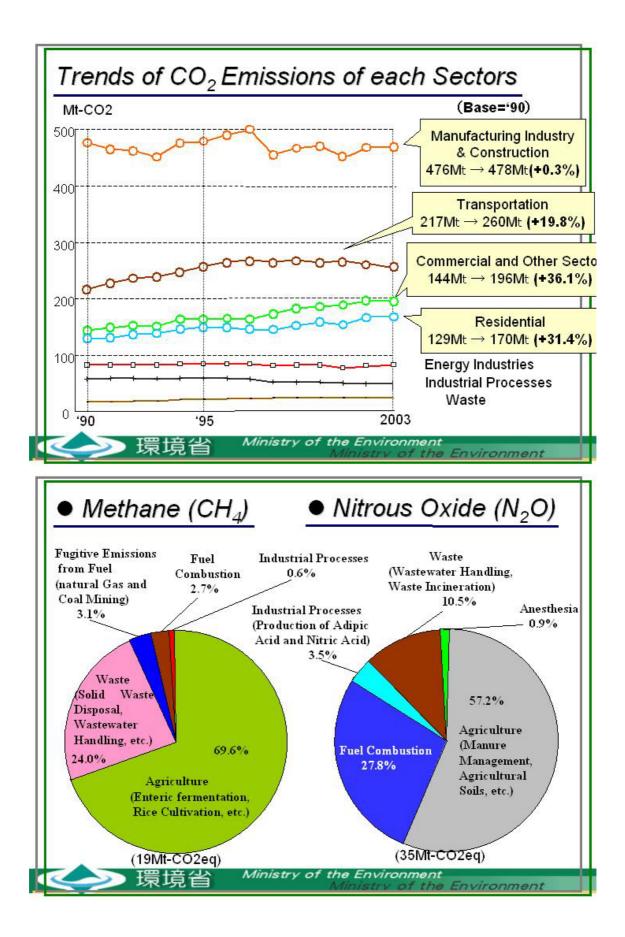

#### Status:

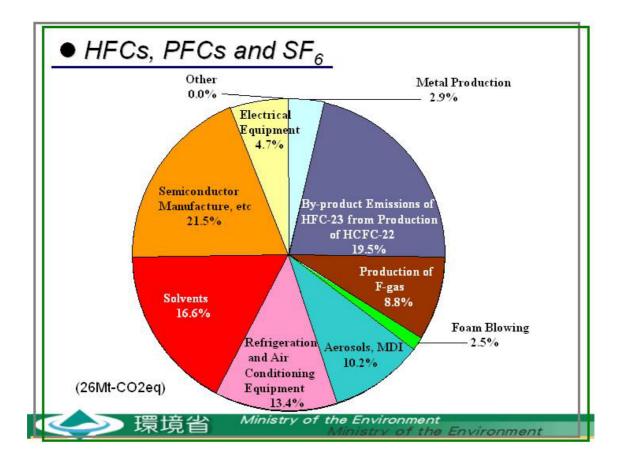
Expectedly started 2006 (Stocktaking Exercise: Final stage)


Proposal of improvement:


- The reporting period will be extended up to 2002
- improvement of emission estimates from forestry sector (As contribution of forestry sector to the total emissions was significant)
- Encouragement of relevant/ responsible sectors to be actively involve in development of the inventory














### Kyoto Protocol Target Achievement Plan

- •Established on April 2005
- Based on the review of Existing Countermeasures and Future Outlook
- Consist of various Policies and Countermeasures

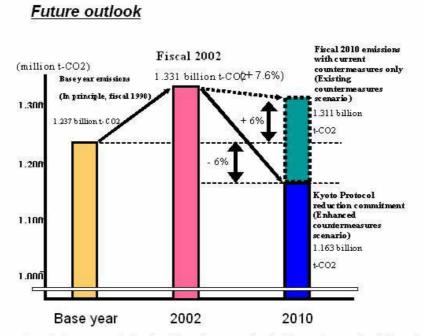



Figure Japan's six percent Reduction Commitment under the Kyoto Protocol and Japan's Greenhouse Gas Emissions

|                                       | Base<br>year                 | fisc             | al 2002                                     | count e<br>scena | sting<br>rmeasures<br>arlo in<br>al 2010 | count e<br>scen: | anced<br>rmeasures<br>ario in<br>al 2010 |
|---------------------------------------|------------------------------|------------------|---------------------------------------------|------------------|------------------------------------------|------------------|------------------------------------------|
|                                       | Million<br>t-CO <sub>2</sub> | Million<br>t-CO₂ | Ratio to<br>base year<br>total<br>emissions | Million          | Ratio to<br>base year                    | Million          | Ratio to<br>base year                    |
| Energy-originated CO <sub>2</sub>     | 1,048                        | 1,174            | 10.2%                                       | 1,115            | 5.4%                                     | 1,056            | 0.6%                                     |
| Non-energy-originated CO <sub>2</sub> | 74                           | 73               | -0.1%                                       | 74               | 0.0%                                     | 70               | -0.3%                                    |
| СҢ                                    | 25                           | 20               | -0.4%                                       | 20               | -0.3%                                    | 20               | -0.4%                                    |
| N2O                                   | 40                           | 35               | -0.4%                                       | 35               | -0.4%                                    | 34               | -0.5%                                    |
| HFC                                   | 20                           | 13               | -0.6%                                       | 46               | 2.1%                                     | 34               | 1.1%                                     |
| PFC                                   | 13                           | 10               | -0.2%                                       | 9                | -0.3%                                    | 9                | -0.3%                                    |
| SFe                                   | 17                           | 5                | -0.9%                                       | 12               | -0.4%                                    | 8                | -0.7%                                    |
| Greenhouse gas emissions              | 1,237                        | 1,331            | 7.6%                                        | 1,311            | 6.0%                                     | 1,231            | -0.5%                                    |

Source of Greenhouse Gas Absorption<u>-3.9%</u>

Utilization of the Kyoto Mechanism <u>-1.6%</u>

<u>Total -6.0%</u>



# Status on the development of GHG Inventories in Korea

February 23<sup>rd</sup> 2006 Dr. Kyoung-Sik Choi Environmental Management Corporation

ï

# Contents

- Integrated management of Air pollutants and GHG
- verification plan by using TMS
- Guidance for the estimation of sectoral emissions

# Integrated management of Air pollutants and GHG

- verification plan by using TMS
- Guidance for the estimation of sectoral emissions

## **Integrated management of air pollutants & GHG**

#### Clean Air Conservation Act amended on Dec. 2005.

- Establishment of comprehensive measures for Air quality improvement (Article 7-5)
  - 2. Status and prospect of GHG emission concentration
- 4. Establishment for GHG reduction target and measures by sectoral approach
- 5. Impact assessment and adaptation measures due to Climate Change
- 6. Integrated air quality management scheme for air pollutants and GHG
- 7. International cooperation concerning climate change
- Development of GHG emission factor and management (Article 7-6)
- Minister of MoE can develop GHG emission factor and manage it to make out official GHG emissions

T

Integrated measurement for Air pollutants and GHG

# verification plan by using TMS

Guidance for the estimation of sectoral emissions

## Verification plan by using TMS

- Stack TMS Control Center-
- As of January '04, TMS installed in 1841 stacks in 317 installations
- ✤ Target Plants
- Large scale plants generating large amount of air pollutants(1<sup>st</sup>-3<sup>rd</sup> grade industries in size)

ī.

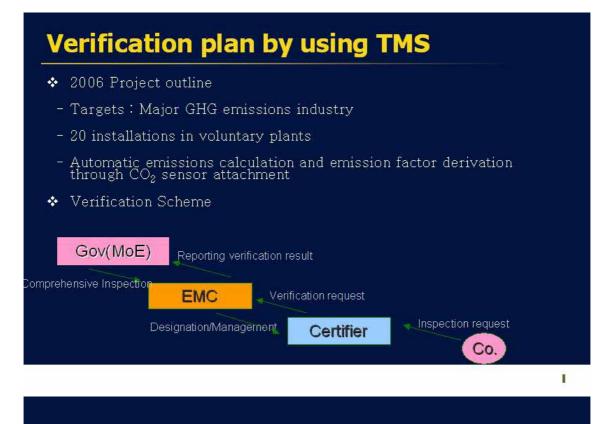
Î.

- 🔹 Objective
- To use the collected data for environmental policies such as total pollutant load management, emission trading, environmental impact assessment etc.
- To determine violation of the emission standard and estimation of the emission charge, etc

## Verification plan by using TMS

#### - Stack TMS Control Center-

✤ System Composition




## **Verification plan by using TMS**

#### - Verification -

- Main target line of business : Power plant, Iron and Steel, Petroleum, Cement, Paper, Petrochemical plant and etc
- ✤ Several methods of verification by using TMS
  - Regular measurement using CO2-sensor attached TMS
  - Automatic calculation for CO2 by use of O2 concentration & flow rate measured with the TMS system

I.





ï



The 3<sup>rd</sup> Workshop on GHG Inventories in Asia Regional (WGIA) 23-24 February 2006, Manila, Philippines

## Laos's News on GHG Inventories

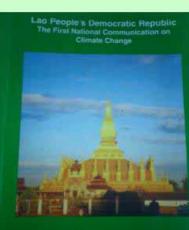
Syamphone Sengchandala

Department of Environment

Prime Minister's Office, Science Technology and Environment Agency

## **Outline of presentation**

- Background information
- Completed activities
- Ongoing activities
- Challenges experienced
- Activities need to be undertaken.


## **Background information**

- Ratified the UNFCCC on 4 April 1995 and Ratified the Kyoto Protocol on 6 February 2003.
- The Science Technology and Environment Agency (STEA), is assigned by the Government to be a UNFCCC National Focal Point and CDM Designated National Authority (DNA).
- Established a National Climate Change Committee on climate change (Chair by STEA), composed 8 members from difference line ministries
- Established Technical Working Group on climate change (Head by STEA), composed 21 members from difference institutions.

#### 3

## Completed activities

- Completed and submitted the Initial National Communication on Climate Change in November 2000, which included:
  - Greenhouse gases inventory-1990
  - Identification of mitigation options.
  - Strategies
  - > Measurement
- Assessed the technology needs and its priorities for mitigating greenhouse gases.
- Public awareness on climate change (Brochures, leaflets, Meetings/Workshops...)

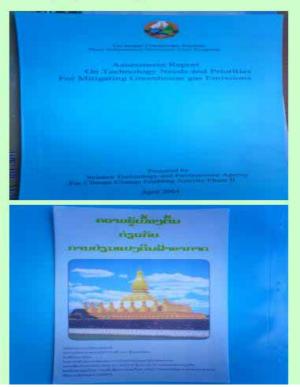


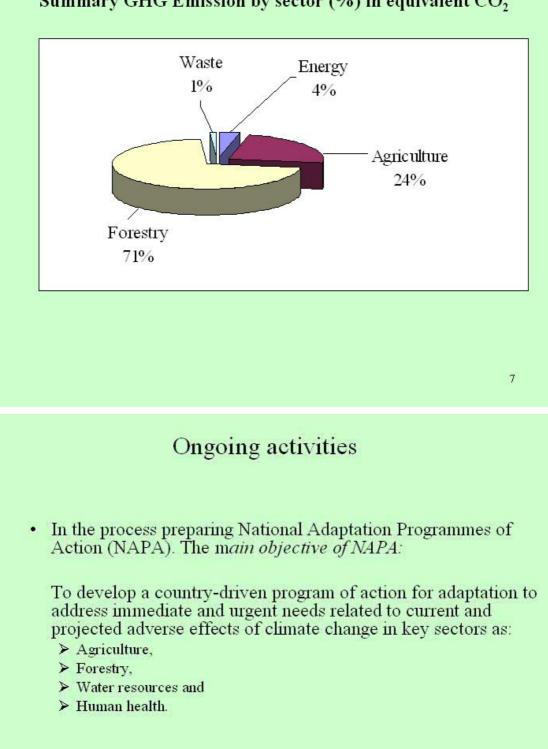
Submitted to The United Nations Framework Convent

## **GHG Inventory**

#### National Greenhouse Gas Inventory in 4 Sectors:

- 1. Energy sector:
  - Fossil fuel consumption
  - Traditional biomass burned for energy
- 2. Agriculture sector:
  - > Enteric fermentation
  - Manure management
  - > Rice cultivation




## GHG Inventory [Cont.]

#### 3. Forestry sector:

- Change in forest and woody biomass
- Forest conversion: Aboveground CO<sub>2</sub> released from on-site burning
- Forest conversion: Aboveground CO<sub>2</sub> released from off-site burning
- Aboveground CO<sub>2</sub> release from decay
- 4. Waste:
  - ➤ Landfills
  - Lao PDR is a net emitter





#### Summary GHG Emission by sector (%) in equivalent CO<sub>2</sub>

## Challenges

- Data on existing impacts and strategies to overcome climate change issues both national and local levels,
- Limited experts on climate change involved during the consultation meetings/workshops,
- Country-specific Emission Factor (EF)

## Activities need to be undertaken

- Update and the GHG inventories regularly including upgrade knowledge on how to use the IPCC software for GHG inventories by training.
- To continue public awareness on Climate Change including CDM issues.
- To Continued cooperation and exchanging information from network should be also undertaken regularly at national, regional and global levels.
- To continue develop NAPA document, which expect finalize in June 2006.
- To prepare and submit the Second National Communication expected start second half 2006.

10



#### Further information:

Prime Minister's Office, Science Technology and Environment Agency, Department of Environment Nahaidoi Rd, Ban Sisavad, P.O Box: 2279, Vientiane, Laos Tel/Fax: (856-21) 218712 Fax: (856-21) 213472 Email: syamphone\_sengchandala@yahoo.com

Thank you for your kind attention



23-24 February, 2006

The 3rd Workshop on GHG Inventories in Asia Region (WGIA), Manila, Philippines.

## Contents

- 1. Preparation for next inventories
- 2. UNDP-GEF REGIONAL PROJECT
- 3. Research program implemented for the improvement of GHG inventories.



## 1. Preparation for next inventories

- Preparation of second national communication starting up from mid 2006 to 2008 in which will be covered GHG emission inventory from 1999-2001 of Mongolia.
- ✓ The project is funded by UNEP/GEF.
- ✓ Short-term and Long-term Strategies for Improvement of GHG Inventories are developed.
- ✓ National Manual of Procedures of Preparation of GHG Inventories is developed.
- ✓ QA/QC Plan is developed.

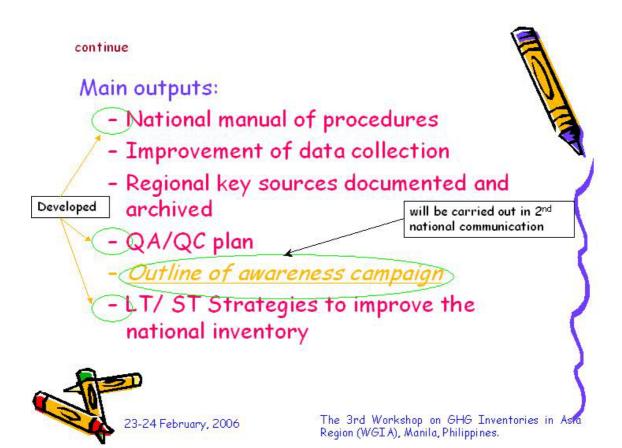


The 3rd Workshop on GHG Inventories in Asia Region (WGIA), Manila, Philippines.

#### 2. UNDP-GEF REGIONAL PROJECT

"Capacity building for improving the quality of Greenhouse Gas inventories" (Europe/GIS region)

#### Details of the project


*Goals*: To strengthen technical and institutional capacity and to improve the quality of data inputs to national GHG inventories.

#### Duration: June 2003-June 2006

Inventory team used the time between the Initial and second national communication to enhance their technical capacity within the framework of this project.

*Countries:* Albania, Armenia, Azerbaijan, Croatia, Georgia, FYR Macedonia, Moldova, Mongolia, Slovenia, Tajikistan, Turkmenistan and Uzbekistan.(12)

23-24 February, 2006



# 3. Research program implemented for the improvement of GHG inventories

In 2005, some recalculations were performed for the Second National Communication under the Project for "Capacity Building for Improving National GHG Inventories in Eastern Europe and CIS" (RER/01/G31).

#### 1. Transportation sector

 Fuel combustion activities: The main changes in estimated emissions due to methodological changes were made in the Fuel Combustion Activities (Sectoral Approach). Gasoline and diesel fuels used in the Residential sector (Other Sectors) are also included in the Transport sector

#### 2. Waste sector

 Recalculation was done for <u>solid waste section</u> and estimated by the general methodology provided by IPCC, however, there were adjusted statistical data and other parameters appropriate for Mongolian condition.

and other condition. 23-24 February, 2006

#### 1. Improvement of emissions from mobile sources

The following activities have been carried out with a purpose to improve estimations of GHG emissions from mobile sources.

- Current condition and feasibilities of road transport sector in Mongolia;
- Emission factors of mobile source engines;
- Comparison of calculated emission factors with IPCC default values ;
- Estimation of liquid fuel consumption in road transportation, railway, energy, mining and arable farming separately;
- Estimation of GHG emission from diesel fuel burning



The 3rd Workshop on GHG Inventories in Asia Region (WGIA), Manila, Philippines.

#### continue

Study on CO<sub>2</sub> and CO content in smog gas of mobile sources in Mongolia.

$$E_{co_2} = M \cdot Q \cdot EF \cdot ce \cdot \frac{44}{12} = GgCO_2$$

Country specific mass emission factor

OR

$$E_{co_2} \stackrel{\frown}{=} m_{co_2} \cdot M = GgCO_2$$

Where: M – Fuel consumption, kg; Q-heating value, GJ/kt; EFemission factor, GgC/GJ; ce- combustion efficiency;  $mco_2$  - mass emission factor, kg  $CO_2$ /kg oil

23-24 February, 2006

#### continue

## Comparison of CO<sub>2</sub> emissions estimated by the IPCC and country specific mass emission factors

|   | Fuel<br>type | By IPCC emission<br>factor | By IPCC mass<br>emission factor | By Country Specific mass<br>emission factor | Difference |
|---|--------------|----------------------------|---------------------------------|---------------------------------------------|------------|
| 1 | Petrol       | 717.9 Gg CO <sub>2</sub>   | 714.17 Gg CO <sub>2</sub>       | 634.0 Gg CO <sub>2</sub>                    | -11.2%     |
| 2 | Diesel       | 513.33 Gg CO2              | 507.73 Gg CO2                   | 466.0 Gg CO <sub>2</sub>                    | -8.2%      |
|   |              |                            |                                 |                                             | ~          |



The 3rd Workshop on GHG Inventories in Asia Region (WGIA), Manila, Philippines.

gasoline

diesel

#### Conclusion from transport sector:

- Almost most of the diesel engines used in sectors of Railway, Mining, Agriculture and Energy are running for too many years and very old. So far, for the estimations of their GHG emission, it is optional to use Emission factor that we developed.
- Therefore, it seems that CO<sub>2</sub> emission value is decreasing by 9-11% from previous inventory calculation, but the same time consumption gasoline and diesel increasing due to old engine of old cars.
- Also CO emission is increasing which is not included in GHG inventory estimation.



## 2. Improvement of inventories from solid waste in Mongolia

Estimation made by the general methodology provided by IPCC, however there were adjusted some statistical data and other parameters appropriate for Mongolian condition.

|    | Parame- | Data                                                         | 1995 2004                                |                   | 🗖 Data were calculate                 |                                                                       |                                                                 |
|----|---------|--------------------------------------------------------------|------------------------------------------|-------------------|---------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|
| No | ter     |                                                              | Value                                    | references        | Value                                 | 10                                                                    | 1.1.1.1.1                                                       |
| 1  | GR      | Waste coefficient<br>(Gg/ million people/<br>year)           | 182<br>0.498 —<br>(kg<br>/people<br>day) | IPCC<br>guideline | 122.2<br>0.334<br>(kg /people<br>day) | Ш                                                                     | ne base of<br>estic sources                                     |
| 2  | MSWF    | Fraction of MSW<br>disposed to solid<br>waste disposal sites | 0.40                                     | IPCC<br>guideline | 0.61                                  | Calculated                                                            | Data were<br>calculated on the<br>base of domestic<br>resources |
| 3  | DOC     | degradable organic<br>carbon (fraction) (kg<br>C/ kg SW)     | 0.15                                     | IPCC<br>guideline | 0.202                                 | Calculated<br>on the base<br>of Table<br>4.4, ME-<br>SWM<br>book,2004 | Data were<br>calculated on the<br>base of domestic<br>resources |
| 4  | DOCF    | Fraction of<br>degradable organic<br>carbon dissimilated     | 0.77                                     | IPCC<br>guideline | 0.77                                  | IPCC<br>guideline                                                     | Data were taken<br>from IPCC<br>guideline                       |
| 5  | F       | fraction of CH4 in<br>landfill gas                           | 0.25                                     |                   | 0.5                                   | IPCC<br>guideline                                                     | Data were taken<br>from IPCC<br>guideline                       |
| 6  | MCF     | Methane correction<br>factor                                 | -                                        | No<br>information | 0.4                                   | IPCC<br>guideline                                                     | Data were taken<br>from IPCC<br>guideline                       |

Great success to 3rd WGIA! Thank you for your attention

23-24 February, 2006

23-24 February, 2006

The 3rd Workshop on GHG Inventories in Asia Region (WGIA), Manila, Philippines.

A

# DEVELOPMENT OF GHG INVENTORIES IN THE PHILIPPINES

- The Philippine Government has consistently participated in the worldwide conferences and ratified agreements arising from these.
- The Philippines has also formed the Inter-Agency Committee on Climate Change (IACCC) through Executive Order 220 in 1991 – tasked to provide government with technical support on matters concerning climate change.
- Through the IACCC, the National Action Plan on Climate Change was created in 1997. The plan aims to integrate concerns on climate change into the mainstream processes of development planning by the various agencies of the government.

• There are also various laws that aim to protect the environment and help reduce emission of greenhouse gases. One of these is Republic Act 8749 otherwise known as "The Clean Air Act" of 1999.

 At the national level, the government, private sector and non-government organizations are continuously exerting efforts to ease up the heavy dependence on oil and other fossil fuels by harnessing new and renewable sources of energy and waste products to generate energy.

The Philippines, its government and its people has made initial steps. Still, the facts and figures speak of the poor state of our ecology.

 The last decade of the 1900's has witnessed a series of more devastating and more frequent occurrences of typhoons, rains, landslides, drought and warmer weather.

 The effects of these prolonged and extreme climatic occurrences have cost the country several billions of pesos in damages on its economy and infrastructure, and aggravated the sufferings of millions of poor Filipinos.  The increase in devastating climatic occurrences, and the damages and sufferings brought about by these were also experienced in other parts of the world.

 The preparation of the 1994 inventory was made possible under project PHI/97/G31 entitled "Enabling the Philippines to Prepare Its First National Communication in Response to its Commitment to the UNFCCC", funded by the Global Environment Facility (GEF) through the United Nations Development Programme. Following Decision 10/CP2 (Annex, no. 14), the country adopted 1994 as the national baseline for its GHG emissions inventory.

In 2002, the Environmental Management Bureau of the Department of Environment and Natural Resources through its regional offices began preparing their inventory of greenhouse gas emissions for base year 1999 followed by base year 2000 in the year 2003 and base year 2001 in the year 2004. Researches and tests were being conducted to come up with products and practices that will lessen greenhouse gas emissions and protect the Earth's environment.

New and renewable sources of energy and waste products were harnessed to generate energy. These are the following:

Biomass

Bagasses, and coconut husks and shells accounted for 12 percent of the nation's energy supply, making biomass the country's largest source of indigenous energy. An estimated 16 million tons of agricultural residue is produced annually.

Biogas

Animal wastes from poultries, piggeries and cattle farms are converted into energy.

Geothermal

The Philippines is currently producing some 1,093.7 MW from its geothermal plants. This output ranks second in the world in terms of geothermal energy generation which represents only 18% of the total geothermal resources that can be harnessed.

## Hydro-power

There are 42 mini-hydro electric plants with a total capacity of 77.39 MW already operating in the country.

#### Wind

A wind turbine system was already pilot-tested in a small town in Pagudpud, Ilocos Norte for their power needs. The National Power Corporation has identified the islands of Cuyo, Catanduanes, Basco, Guimaras and Romblon as ideal sites for harnessing wind energy.

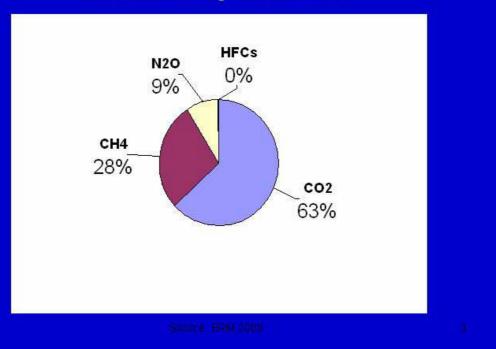
The Philippine National Standards is setting the trend for more eco-efficient practices in the industry sector. PNS 1701 is the local name of ISO 14001, the first standard in the ISO 14000 series. Its intention is to provide all industries, whether in manufacturing or services, with a structure for an environmental management system (EMS).

# Thailand's News On The Development of GHG Inventories



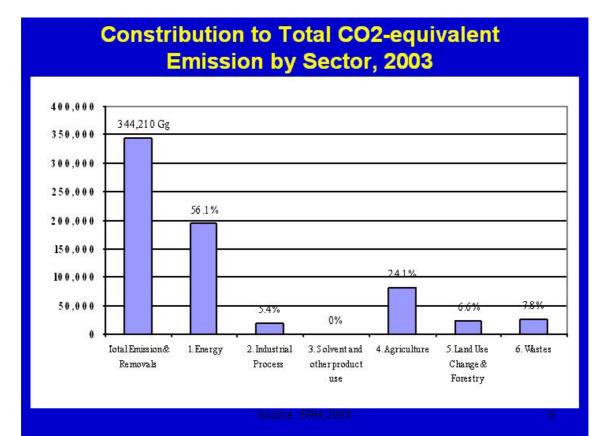


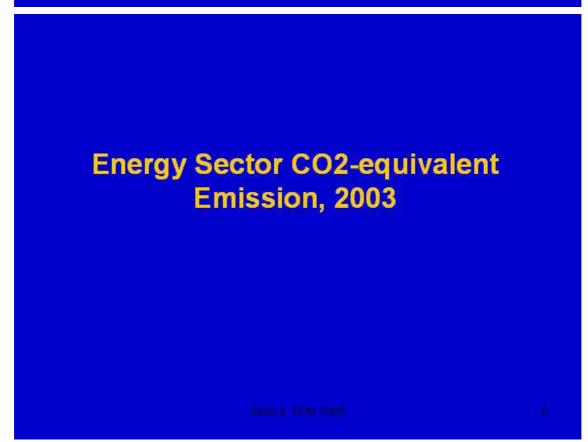



Office of Natural Resources and Environmental Policy and Planning Ministry of Natural Resources and Environment The Royal Thai Government

## Thailand Total Net National Greenhouse Gas Emission, 2003

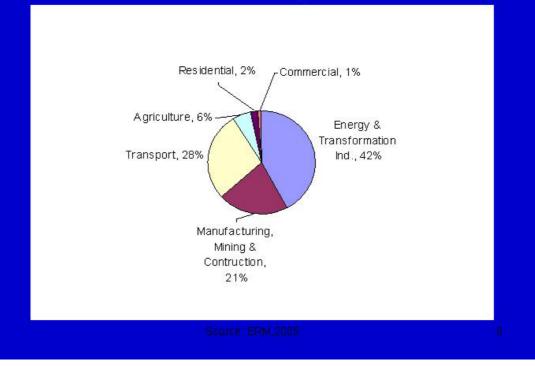
| Greenhouse Gas   | Emission<br>Mt CO <sub>2</sub> | %of<br>Total |
|------------------|--------------------------------|--------------|
| CO <sub>2</sub>  | 218.4                          | 63.4%        |
| CH <sub>4</sub>  | 95.3                           | 27.7%        |
| N <sub>2</sub> O | 29.7                           | 8.6%         |
| HFCs             | 0.8                            | 0.2%         |
| Total            | 344.2                          | 100%         |
|                  |                                |              |


Source: EFM,2089


## Constribution to Total CO2-equivalent Emissions by Gas, 2003

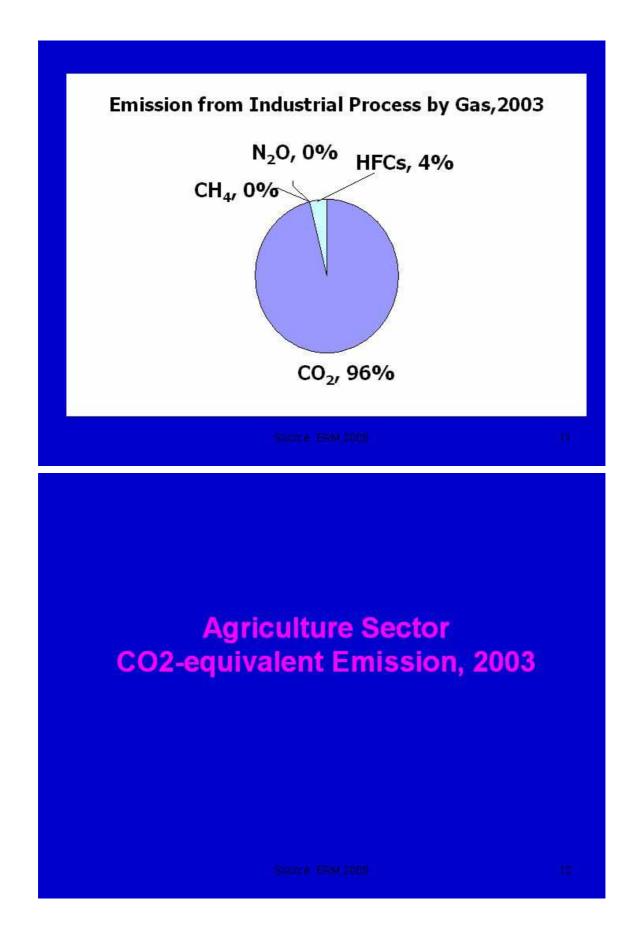


## Greenhouse Gas Emission by Sector, Thailand, 2003

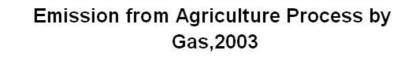

| Greenhouse Gas                      | co      | %<br>Total |                  |          |         |                     |
|-------------------------------------|---------|------------|------------------|----------|---------|---------------------|
| Source and Sink<br>Categories       | CO2     | CH₄        | N <sub>2</sub> 0 | HF<br>Cs | Total   | Net<br>Emissio<br>n |
| Total Emission & Removals           | 218,360 | 95,346     | 29,713           | 791      | 344,210 | 100%                |
| 1. Energy                           | 178,945 | 11,522     | 2,737            | _        | 193,204 | 56.1%               |
| A. Fuel Combustion                  | 178,945 | 1,837      | 2,737            | _        | 183,519 | 53.3%               |
| B. Fugitive Emissions               |         | 9,685      | 2 <u>99</u>      | _        | 9,685   | 2.8%                |
| 2. Industrial Process               | 17,904  | 42         | ( <del></del>    | 791      | 18,737  | 5.4%                |
| 3. Solvent and other<br>product use | -       |            | -                | _3       |         | 0.0%                |
| 4. Agriculture                      | <u></u> | 56,811     | 25,977           |          | 82,788  | 24.1%               |
| 5. Land Use Change &<br>Forestry    | 21,511  | 998        | 101              | _0       | 22,610  | 6.6%                |
| 6. Wastes                           | _       | 25,973     | 897              | -0       | 26,870  | 7.8%                |

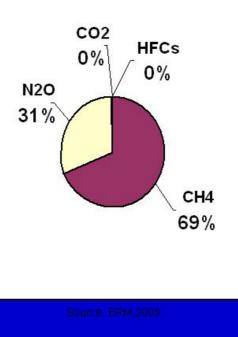





| Greenhouse Gas<br>Source and Sink<br>Categories | C                      | CO <sub>2-equivalent Emission</sub> (Gg) |                         |          |         |                                |  |  |
|-------------------------------------------------|------------------------|------------------------------------------|-------------------------|----------|---------|--------------------------------|--|--|
|                                                 | <b>CO</b> <sub>2</sub> | CH <sub>4</sub>                          | <b>N</b> <sub>2</sub> 0 | HF<br>Cs | Total   | % Total<br>Net<br>Emissio<br>n |  |  |
| Total Emission &<br>Removals                    | 218,360                | 95,346                                   | 29,713                  | 791      | 344,210 | 100 %                          |  |  |
| 1. Energy                                       | 178,945                | 11,522                                   | 2,737                   | 0        | 193,204 | 56.2%                          |  |  |
| A. Fuel Combustion                              | 178,945                | 1,837                                    | 2,737                   | 0        | 183,519 | 53.4%                          |  |  |
| Energy & Transformation<br>Ind.                 | 75,497                 | 45                                       | 1,381                   | _11      | 76,924  | 22 %                           |  |  |
| Manufacturing, Mining &<br>Contruction          | 37,293                 | 439                                      | 154                     |          | 37,886  | 11%                            |  |  |
| Transport                                       | 51,272                 | 152                                      | 874                     |          | 52,298  | 15%                            |  |  |
| Commercial                                      | 1,892                  | 6                                        | 138                     | -3       | 2,036   | 1%                             |  |  |
| Residential                                     | 2,810                  | 1,165                                    | 6                       | _8       | 3,981   | 1%                             |  |  |
| Agriculture                                     | 10,181                 | 29                                       | 184                     | -0       | 10,394  | 3%                             |  |  |
| B.Fugiti∨e Emissions                            | 1.000                  | 9,685                                    | 1776                    |          | 9,685   | 3%                             |  |  |
| Solid Fuels                                     | 1                      | 331                                      | <u> </u>                | _0       | 331     | 0%                             |  |  |
| Oil and Natural Gas                             | 89 <del>00</del>       | 9,353                                    | 0.00                    | -33      | 9,353   | 3%                             |  |  |

## Share of Activities in the Fuel Combustion, 2003

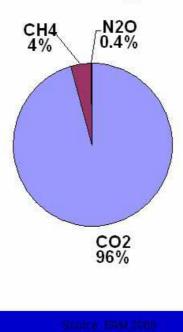




# Industrial Processes Sector CO2-equivalent Emission,2003

| Crear have Car                                              | CC              | 9∕0<br>_ Total |                  |            |         |                     |
|-------------------------------------------------------------|-----------------|----------------|------------------|------------|---------|---------------------|
| Greenhouse Gas<br>Source and Sink<br>Categories             | CO <sub>2</sub> | СН4            | N <sub>2</sub> 0 | HFCs       | Total   | Net<br>Emissic<br>n |
| Total Emission &<br>Removals                                | 218,360         | 95,346         | 29,713           | 791        | 344,210 | 100%                |
| 2. Industrial Process                                       | 17,904          | 42             | -                | 791        | 18,737  | 5.5%                |
| A.Mineral Products                                          | 17,904          |                | <b>~</b>         | e—         | 17,904  | 5.2%                |
| B.Chemical Industry                                         | -               | 42             |                  |            | 42      | 0.0%                |
| C.Metal Production                                          | _               | <u></u>        | -                | 2          | _0      | 0.0%                |
| D.Other Production                                          |                 | 1000           |                  |            |         | 0.0%                |
| E.Production of<br>halocarbons and sulphur<br>hexafluoride  |                 | 1000           |                  | _          |         | 0.0%                |
| F.Consumption of<br>halocarbons and sulphur<br>hexafluoride | _10             | <u>.</u>       | 21 <u>-</u>      | 791        | 791     | 0.2%                |
| G.Others                                                    | _0              | 8 <u>22</u> 9  | 3_               | 5 <u>-</u> | _8      | 0.0%                |



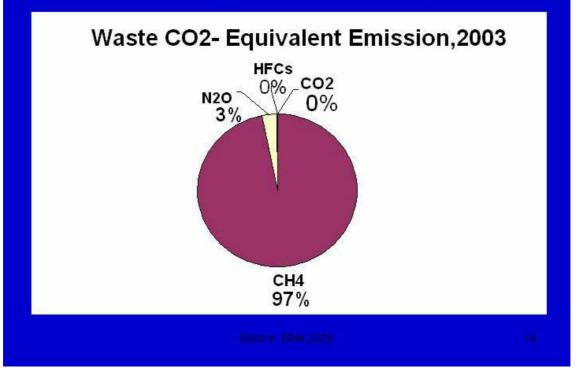
|                                                     | CO <sub>2-equivalent Emissions</sub> (Gg) |                 |                  |                 |         |                                   |  |  |  |
|-----------------------------------------------------|-------------------------------------------|-----------------|------------------|-----------------|---------|-----------------------------------|--|--|--|
| Greenhouse<br>Gas Sources<br>and Sink<br>Categories | <b>CO</b> <sub>2</sub>                    | CH <sub>4</sub> | N <sub>2</sub> 0 | HFC<br>s        | Total   | %<br>Total<br>Net<br>Emissi<br>on |  |  |  |
| Total Emissions &<br>Removals                       | 218,360                                   | 95,346          | 29,713           | 791             | 344,210 | 100%                              |  |  |  |
| 4.AGRICULTURE                                       | 8. <del>5.</del>                          | 56,811          | 25,977           | ( <del></del> ) | 82,788  | 24.1%                             |  |  |  |
| A.Enteric<br>Fermentation                           | 100                                       | 8,163           |                  | 1 <u>11</u> 1   | 8,163   | 2.4%                              |  |  |  |
| B.Manure<br>Management                              | 19 <del>30</del> 8                        | 1,742           | 2,180            | 1900            | 3,922   | 1.1%                              |  |  |  |
| C.Riœ Cultivation                                   | 2                                         | 46,467          | -                |                 | 46,467  | 13.5%                             |  |  |  |
| D.Agricultureal Soil                                |                                           | -               | 23,674           |                 | 23,674  | 6.9%                              |  |  |  |
| E.Prescribed Burning<br>of Savannas                 | 1000                                      |                 | s.=:             | 1.77            |         | 0.0%                              |  |  |  |
| F.Fild Burning of<br>AgricultureResidues            | 1000                                      | 439             | 123              |                 | 562     | 0.2%                              |  |  |  |






## Land Use Change and Forestry CO2-equivalent Emission, 2003

| Greenhouse Gas                                        | Emissions       | ⁰⁄₀<br>Total<br>Net |                  |      |         |              |
|-------------------------------------------------------|-----------------|---------------------|------------------|------|---------|--------------|
| Sources and Sink<br>Categories                        | CO <sub>2</sub> | СН₄                 | N <sub>2</sub> O | HFCs | Total   | Emissio<br>n |
| Total Emission &<br>emovals                           | 218,360         | 95,346              | 29,713           | 791  | 344,210 | 100%         |
| 5.LAND USE CHANGE<br>& FORESTRY                       | 21,511          | 998                 | 101              | -    | 22,610  | 6.6%         |
| A.Changes in Forest &<br>Other Woody<br>Biomass Stock | 21,240          | <u></u>             | -                |      | 21,240  | 6.2%         |
| B.Forest and<br>Grassland<br>Conversion               | 29,826          | 998                 | 101              |      | 30,926  | 9.0%         |
| C.Abandon of Managed<br>Land                          | -29,556         | _                   | -                | _    | -29,556 | -8.6%        |


## Emission from Land Use Change and Forestry by Gas, 2003



#### Waste CO2-equivalent Emission, 2003

| Greenhouse Gas                 |              | %Total     |                                |      |             |                     |
|--------------------------------|--------------|------------|--------------------------------|------|-------------|---------------------|
| Sources and Sink<br>Categories | CO2          | СН₄        | -equivaler<br>N <sub>2</sub> O | HFCs | Total       | Net<br>Emissi<br>on |
| Total Emission &<br>Removals   | 218,360      | 95,346     | 29,713                         | 791  | 344,2<br>10 | 100%                |
| 6.WASTES                       |              | 25,97<br>3 | 897                            | -    | 26,87<br>0  | 7.8%                |
| A.Solid Waste<br>Disposal      | <u></u> 25   | 20,146     |                                | _    | 20,146      | 5.9%                |
| B.Wastewater<br>Treatment      |              | 5,827      |                                |      | 5,827       | 1.7%                |
| C.Human Sewage                 | <b>-</b> (4) |            | 897                            | 1000 | 897         | 0.3%                |

#### Waste CO2-equivalent Emission, 2003



# Thank you

AREE WATTANA TUMMAKIRD E-mail: areewat@onep.go.th

1.9

The 3<sup>rd</sup> Workshop on GHG Inventories in Asia Region (WGIA) 23-24 February 2006, Manila, Philippines

Preparation of National GHG Inventory for the year 2000 in Viet Nam under Viet Nam Second National Communication to UNFCCC

Hoang Manh Hoa, Senior Expert on Climate Change, National Office for Climate Change and Ozone Protection, International Cooperation Department, Ministry of Natural Resources and Environment of Viet Nam

#### Content

- A. Previous activities in the National GHG Inventory for the year 1994 in Viet Nam under Viet Nam Initial National Communication (INC) to UNFCCC
- B. Proposed activities in the National GHG Inventory for the year 2000 in Viet Nam under Viet Nam Second National Communication (SNC) to UNFCCC

**C.** Conclusions

#### A. Previous activities in the National GHG Inventory for the year 1994 in Viet Nam under Viet Nam INC to UNFCCC

The results of 1994 National GHG Inventory in Viet Nam were presented at the Workshop of GHG Inventories in Asia Region, 13-14 November 2003, Phuket, Thailand

The methodology of Inventory: IPCC 1996 revised Guidelines for National GHG Inventories

In the INC, Viet Nam has undertaken a National GHG Inventory for direct GHGs carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>), nitrous oxide (N<sub>2</sub>O) and indirect GHGs nitrogen oxides (NOx), carbon monoxide (CO) and non-methane volatile organic compound (NMVOC) and sulphur dioxide (SO<sub>2</sub>) for the base year 1994 in 5 source categories: Energy, Industrial processes, Agriculture, Land-use Change and Forestry and Waste

Based on this inventory, projections of national GHGs emissions to 2020 had been made and the options for mitigation of GHGs emissions have been identified and developed for the energy, land-use change and forestry and agriculture sectors

#### > Major gaps:

CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O, NOx, CO, NMVOC and SO<sub>2</sub> data in the 5 source categories need to be updated and extended based on the COP8 Guidelines and to be stored in the existing GHG database;

Inventory was not extensive and comprehensive due to the lack of data or poor data quality in certain source categories (e.g., not all industries and industrial processes were considered; data quality in agriculture and forestry sectors are not as good as those in fuel combustion sector);

Emissions from energy consumption in different sectors are calculated using the reference approach only and there is a need for the sectoral or bottomup approach for emission estimation;

- The role of savannas and abandonment lands in  $CO_2$  uptake needs to be studied;
- Activity data for solvent and other product use sector have not been collected and hence emission from this sector was not estimated;
- Lack of country-specific emission factors (e.g., coal, gas, and mining, soils, etc);
- Uncertainties for sources and sinks were not estimated;
- User-friendly software for GHG emission projection is needed;
- Capacity-building in IPCC methodologies for GHG inventory is still very much needed.

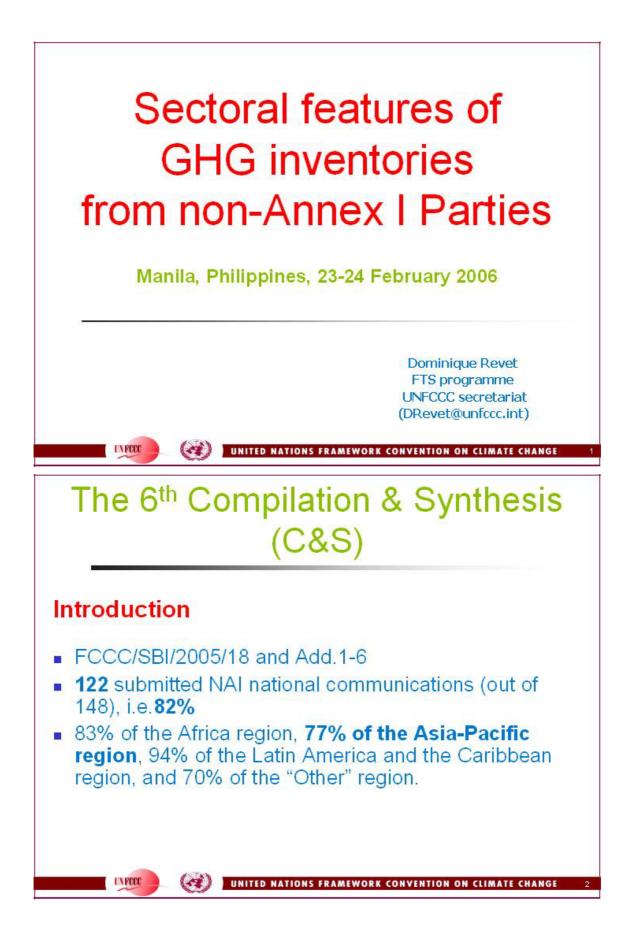
#### B. Proposed activities in the National GHG Inventory for the year 2000 in Viet Nam under Viet Nam SNC to UNFCCC

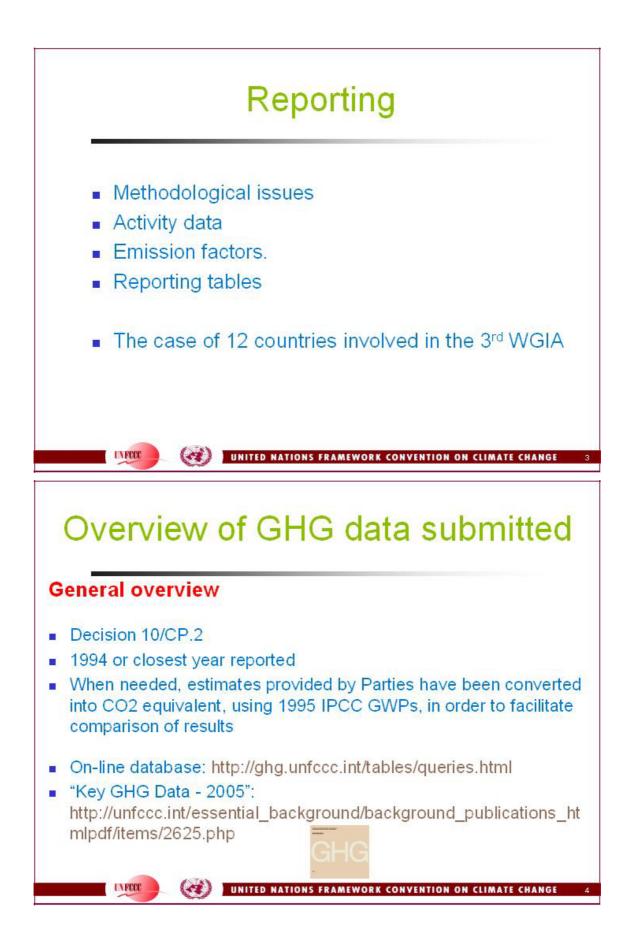
With the financial and technical support from UNEP/GEF, Viet Nam have been implementing the stocktaking and stakeholder consultations for the preparation of SNC to UNFCCC

A national workshop for stocktaking and stakeholder consultations was organized by Ministry of Natural Resources and Environment (MONRE) of Viet Nam, 18-19 January 2006, Ha Noi, Viet Nam before the preparation of this project proposal. This workshop identified the above-mentioned gaps in the National GHG Inventory in Viet Nam for the year 1994

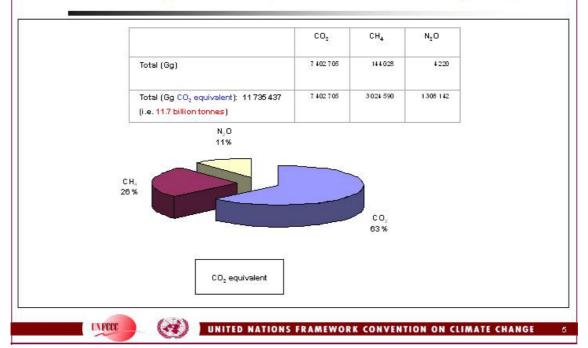
In March 2006, the proposal of Viet Nam SNC project will be submitted to UNEP/GEF for approval. This project will start in May 2006 with a duration of 3 years

Proposed activities:


 $\checkmark$  A national inventory for CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, CO, NOx, NMVOC and SO<sub>2</sub> will be undertaken for the year 2000 in 5 source categories: energy (fuel combustion, energy industries, transport, commerce, residence, solid fuels, industrial etc). processes. agriculture (enteric fermentation from domestic livestock, manure management, rice cultivation, agricultural soils and field burning of agricultural residues, etc), land-use change and forestry (changes in forest and other woody biomass stock, forest and grassland conversion, abandonment of managed lands, etc) and waste (solid waste disposal on land, wastewater handling, human sewage, etc);


- ✓ Emissions of CH<sub>4</sub> and N<sub>2</sub>O from international bunkers and aviation will also be estimated for the year 2000;
- The activity data of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulphur hexafluoride (SF<sub>6</sub>) will also be collected for the same base year where available;
- Appropriate national or regional emission/sink factors will be used to estimate GHG emissions/sinks where available;
- ✓ The database for CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, NOx, CO, NMVOC and SO<sub>2</sub> will be updated and improved. New inventory data for HFCs, PFCs, SF<sub>6</sub> for the year 2000 will be established and used as a basis for assessment and selection of mitigation options;
  - The COP8 Guidelines will be used for reporting the National GHG Inventory;
- ✓ 2006 IPCC guidelines for National GHG Inventories will be used when it becomes available in 2006;
- ✓ Top-down and bottom-up approaches will be used;
- New emission factors for specific activities will be applied;
- All concerned data will be collected, analysed and managed;
- The GHG inventory team based on the INC project will be reconstituted;
- A long-term programme on the improvement of future GHG inventories will be developed.

#### C. Conclusions


- A National GHG Inventory in Viet Nam for the year 2000 is an important component of Viet Nam SNC to UNFCCC, as it forms the basis for mitigation measures
- A reliable and accurate GHG inventory would also be very useful for the formulation of any projects
- Viet Nam hope to receive the assistance from other International organizations and countries in carrying out a National GHG Inventory for the year 2000 in Viet Nam under Viet Nam SNC for the period 2006-2009

# Thank you very much for your attention

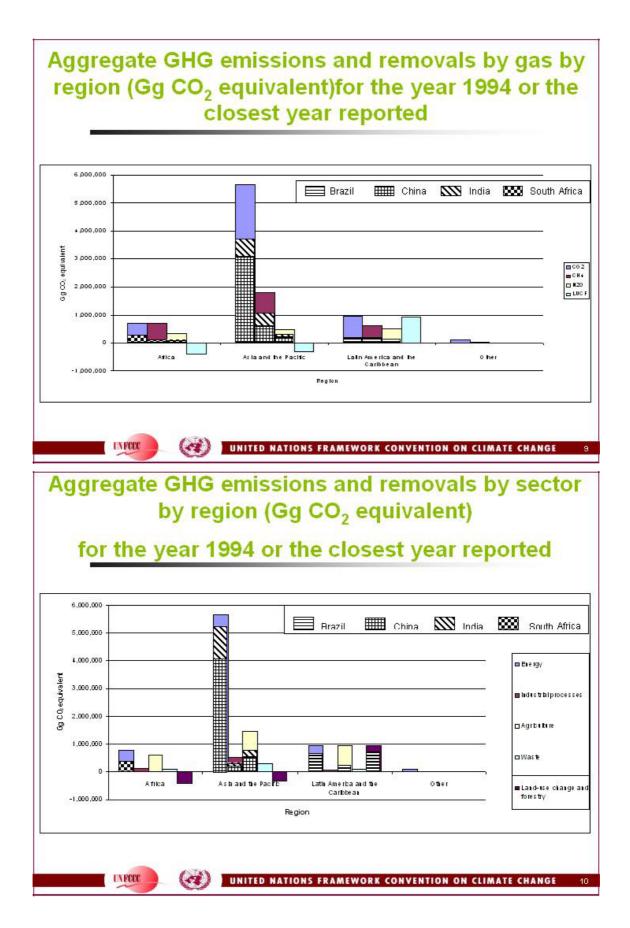




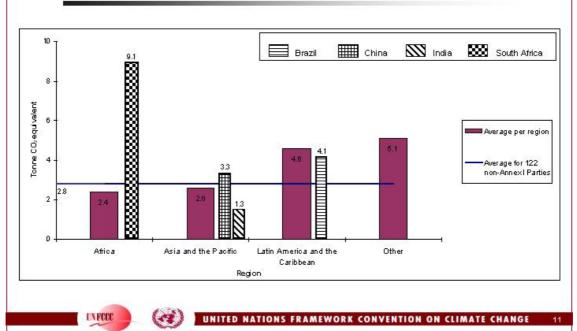
# Total GHG emissions from 122 NAI Parties, excluding LUCF (1994 or closest year)



#### Aggregate emissions and removals of CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O in CO<sub>2</sub> equivalent by major source/sink category, including and excluding land-use change and forestry (Gg and percentages of total by Party)


| Party                         | Year    | Energy     |     | Industri<br>process  |       | Agiatu      | e          | Waste      |     | Total<br>(vithout<br>LUCF) | LLFC        | Total (vith<br>LUCF) | Percentage<br>of LUCF in<br>total GHG |
|-------------------------------|---------|------------|-----|----------------------|-------|-------------|------------|------------|-----|----------------------------|-------------|----------------------|---------------------------------------|
| -                             |         | Gg         | %   | Gg                   | %     | Gg          | %          | Gg         | %   | Gg                         | Gg          | Gg                   | %                                     |
| ASIAANDTHE                    | PACIFIC |            |     |                      |       |             |            |            |     | -                          |             | -                    |                                       |
| Cambodia                      | 1994    | 1881.11    | 147 | 4985                 | 0.4   | 10559.05    | 827        | 272.37     | 21  | 12762.38                   | - 17 907.69 | - 5 145 31           | - 140.3                               |
| China                         | 1994    | 300779000  | 741 | 282,63000            | 7.0   | 604776.00   | 149        | 162 120.00 | 40  | 4057306.00                 | -407479.00  | 3649827.00           | - 10.0                                |
| India                         | 1994    | 74382000   | 613 | 10271000             | 85    | 344485.00   | 284        | 23233.00   | 19  | 1214248.00                 | 1129214     | 122854014            | 12                                    |
| Indonesia                     | 1994    | 222 102 37 | 687 | 821292               | 25    | 84506.61    | 261        | 8440.32    | 26  | 323262.22                  | 164 11832   | 487 390 54           | 50.8                                  |
| LaoPeoples                    | 1990    | 92985      | 135 | 40<br><del>1</del> 3 | - (H) | 5696.67     | 830        | 240.03     | 35  | 686655                     | - 104 30383 | - 97 437.28          | - 1519.0                              |
| Democratic<br>Republic        |         |            |     |                      |       |             |            |            |     |                            |             |                      | 11.0000000                            |
| Malaysia                      | 1994    | 9786123    | 718 | 497300               | 36    | 6932.04     | 51         | 26596.50   | 195 | 196362.77                  | -61077.96   | 7528481              | -44.8                                 |
| Minpolia                      | 1994    | 979130     | 646 | 9500                 | 0.6   | 5 184.90    | 342        | 88,20      | 0.6 | 15 159,40                  | 40000       | 1555940              | 26                                    |
| Philippines                   | 1994    | 5004033    | 496 | 1060293              | 10.5  | 33 128 57   | 328        | 709478     | 7.0 | 100 866.61                 | - 126.49    | 10074012             | -0.1                                  |
| Republic of<br>Karea          | 1990    | 24854600   | 859 | 17617.00             | 61    | 12889.00    | 45         | 10406.00   | 36  | 289458.00                  | -26235.00   | 26322300             | - 9.1                                 |
| Singapore                     | 1994    | 26617.92   | 992 |                      |       | -           |            | 211.16     | 0.8 | 26859.08                   | -           | 2685908              |                                       |
| Thailand                      | 1994    | 129867.65  | 580 | 1597691              | 7.1   | 77 398 30   | 346        | 739.62     | 0.3 | 223977.48                  | 6185382     | 28588130             | 27.6                                  |
| VietNam                       | 1994    | 2563269    | 304 | 3807.19              | 45    | 52444.90    | 621        | 2565.02    | 30  | 84 449,80                  | 1938478     | 10383458             | 230                                   |
| Total Asia and<br>the Pacific |         | 5657 17698 |     | 50946678             | 64    | 1467 163.21 | <b>B</b> 5 | 295882.72  | 37  | 792968869                  | -3568 P     | 761407157            | - 40                                  |
| Total 122non+/<br>Parties     | Arned   | 7501148.06 | 639 | 708 50383            | 6.0   | 3038040.59  | 258        | 49774142   | 42  | 1173543690                 | 196 05895   | 1193149585           | 1                                     |

#### Total aggregate emissions and removals of CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O in CO<sub>2</sub> equivalent excluding and including land-use change and forestry (Gg)


| Party                         | Total (without<br>LUCF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total (with<br>LUCF) |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| ASIA AND THE PACIFI           | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100000000000         |
| Cambodia                      | 12 762.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 5 145.31           |
| China                         | 4 057 306.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 649 827.00         |
| India                         | 1 214 248.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 228 540.14         |
| Indonesia                     | 323 262.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 487 380.54           |
| Lao People's<br>Democratic    | 6 866.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 97 437.28          |
| Republic                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| Malaysia                      | 136 362.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75 284.81            |
| Mongolia                      | 15 159.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15 559.40            |
| Philippines <b>-</b>          | 100 866.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100 740.12           |
| Republic of Korea             | 289 458.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 263 223.00           |
| Singapore                     | 26 859.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26 859.08            |
| Thailand                      | 223 977.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 285 831.30           |
| Viet Nam                      | 84 449.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 103 834,58           |
| Total Asia and the<br>Pacific | 7 929 689.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7 614 071.57         |
| Total 122 non-Annex I         | IN THE REAL PROPERTY OF THE RO | A DESCRIPTION OF     |
| Parties                       | 11 735 436.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11 931 495.85        |

# **Emissions (excluding LUCF) for** three gases

|                                  | CO2          | с <b>н</b> | Nੂo      |
|----------------------------------|--------------|------------|----------|
| Party                            |              | Gg         |          |
| ASIA AND THE PACIFIC             |              | N- 1       |          |
| Cambodia                         | 1 321.93     | 370.15     | 11.83    |
| China                            | 3 073 469.00 | 34 287.00  | 851.00   |
| India                            | 779 348.00   | 18076.00   | 178.40   |
| Indonesia                        | 178 215.42   | 6041.96    | 58.60    |
| Lao People's Democratic Republic | 414.90       | 305.45     | 0.12     |
| Malaysia                         | 89 388.00    | 2 230.93   | 0.40     |
| Mongolia                         | 9479.40      | 269.00     | 0.10     |
| Philippines                      | 57932.00     | 1 377.71   | 45.17    |
| Republic of Korea                | 256 514.00   | 1 361.80   | 14.02    |
| Singapore                        | 26800.18     | -          | 0.19     |
| Thailand                         | 141 453.20   | 3 111.18   | 55.45    |
| Viet Nam                         | 25 382 79    | 2328.29    | 32.82    |
| Total Asia and the Pacific       | 5 661 993.80 | 85242.75   | 1 540.64 |
| Total 122 non-Annex   Parties    | 7 402 705.22 | 144 028.08 | 4219.81  |



#### Per capita GHG emissions (tonnes CO<sub>2</sub> equivalent (excluding LUCF)) for the year 1994 or the closest year reported



# <section-header><list-item><list-item><list-item><list-item><list-item></table-row><table-container><table-container></table-row></table-row>

#### GIO Greenhouse Gas Inventory Office of JAPAN

# Overview and Schedule for Session II

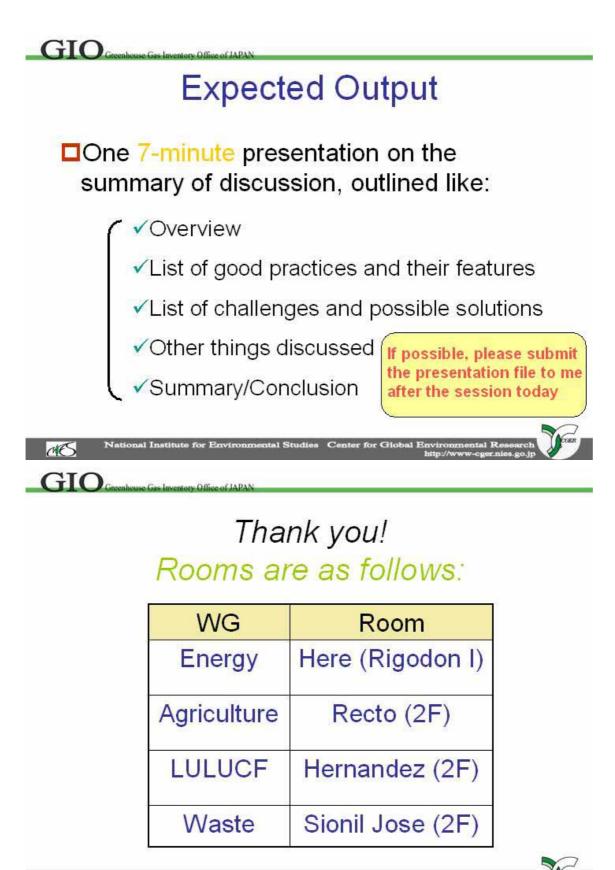
#### Prepared by the WGIA Secretariat

umemiya.chisa@nies.go.jp

The 3<sup>rd</sup> Workshop on GHG Inventories in Asia Region

Manila, Feb. 23-24, 2006




# Working Group Info.

| WG          | # of<br>Participants | Chair / Reporter                    | Room                      |
|-------------|----------------------|-------------------------------------|---------------------------|
| Energy      | 8                    | Mr. Aizawa /<br>Ms. Tummakird       | Here:<br><i>Rigodon I</i> |
| Agriculture | 8                    | Dr. Punsalmaa /<br>Mr. Sengchandala | Recto<br>(2F)             |
| LULUCF      | 5                    | Dr. Bore /<br>Ms. Umemiya           | Hernandez<br>(2F)         |
| Waste       | 6                    | Dr. Towprayoon/<br>Dr. Gao          | Sionil Jose<br>(2F)       |

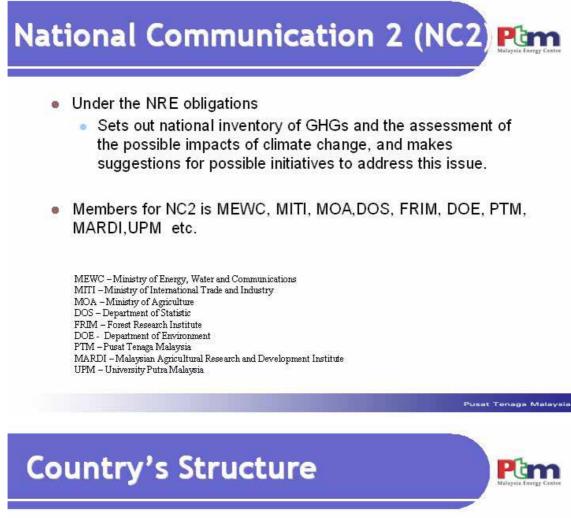


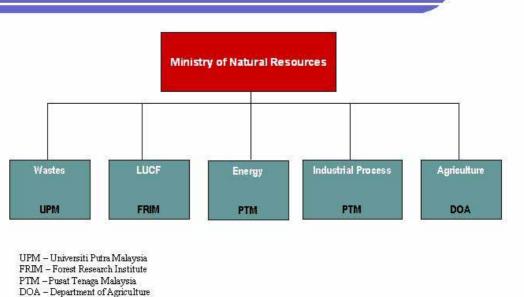
# **Basic Structure**

| Part A | <ul> <li>Presentations on the country's good<br/>practices, as indicated on the guidance</li> <li>Listeners will fill the worksheet for each</li> </ul>                       |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Part B | <ul> <li>Discussion challenges to be tackled and possible solutions</li> <li>Some discussion topics were submitted earlier</li> <li>Based on the worksheets filled</li> </ul> |
|        | Summary of discussion     Completion of a presentation material                                                                                                               |

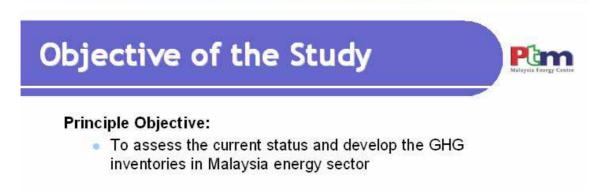


National Institute for Envir


i) Presentations


 ${\rm Session}\, {\rm I\!I}$ 






- Background of the Study
- Data collection methodology
- **Discussion by Sectors** 
  - Approach and estimation used in the GHG Inventory
  - Emission calculation methodology used in the inventory (Tier 1, Tier 2 and Tier 3)
  - Issues and challenges faced in the development of the inventory
- Recommendations to improve GHG inventory preparation





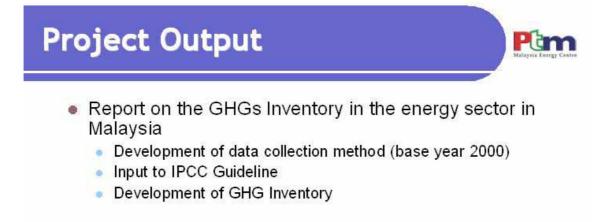
# OFTM has been assigned to undertake the inventory part for energy and industrial processes In line with the 1996 IPCC guidelines, emissions are estimated from major sources of the following categories: Energy – fuel combustion Industrial processes Three priority GHGs will be estimated, namely carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O).



#### Other Objectives:

- In support of the Second National Communication development
- Emission baseline for energy sector
- Establish GHG database management system

# Scope of the Inventory




Pusat Tenaga Malaysia

Pusat Tenaga Malaysia

The scope of the study shall include:

- Inventories in Energy Sector i.e. Power, Transport (Aviation, Road, Rail, Navigation) Industry, Residential, Commercial and Non-energy
- Inventories in Industrial processes (metal, chemical & mineral)



 Suggestions for areas of improvement in the preparation of the GHG Inventory

# **Project Activities**



- 1. Establishing methodology to be used
  - Review of data requirement (Revised 1996 IPCC Guidelines)
- 2. Data listing and data collection
  - Development of GHG database
  - Development of data collection method
  - Data collection activities
- 3. Data input in IPCC Worksheet - Analyze data based on data input
- 4. Analyses & Recommendation - Areas of improvement in the preparation of the GHG Inventory





Pusat Tenaga Malaysia

- Review of 3 different methodologies have been undertaken
   <u>Tier 1, Tier 2 and Tier 3</u>
- The Tier 1 Methodology Revised IPCC 1996 Guidelines was chosen based on study conducted with DANIDA
- Review of NEB has been made to find out the level of detail of data available to be used in the GHG Inventory
  - NEB data used for the Reference Approach
  - No details on each of the end-use sectors e.g. for transport, no indication if the fuel is for road transport or rail transport

# Methodological Framework



- Tier 1 methods rely on widely available fuel data
- Tier 2 methods may be regarded as those dividing fuel consumption on the basis of sample or engineering knowledge between technology types which are sufficiently homogenous to permit the use of representative emission factors
- Tier 3 methods generally estimate emissions from activity figures (km travelled or ton x km carried, not fuel cons.) and specific fuel efficiency or fuel rates or, alternatively, using an EF expressed directly in terms of a unit of activity.

# **Data Collection Strategy**



Pusat Tenaga Malaysia

Pusat Tenaga Malaysi

- Initial contact with data provider
- Follow up with written data request example: table with indication of default value
- Follow up with telephone call, visit

Support data collection with

- Ietter explaining GHG-inventory
- Supporting letter from NRE



### **Identification of GHG Sources**



- For the inventory, emissions from energy sector are estimated from the following categories/sources:
  - Fuel Combustion
  - Fugitive Emissions from Coal Mining
  - Fugitive Emissions from Oil and Gas System
  - Burning of biomass fuel in energy industries sector
  - GHGs that need to be addressed are CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O

# Structure of Methodology



Pusat Tenaga Malaysia

- Tier 1 structure is used which relies on widely available fuel data
   Reference Approach
  - - Top down approach
    - Fundamental: overall energy balance
  - Sectoral Approach
    - Bottom up approach
    - Fundamental: energy consumption for sectors
    - Default Emission Factors or national/sector specific Emission Factors
- Base year : 2000

# <section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

#### Structure of Methodology (Cont'd)



- Sectoral approach (Tier 1: CH<sub>4</sub>, N<sub>2</sub>O, NOx, CO, NMVOC and SO<sub>2</sub>)
  - Step 1: Estimate annual fuel consumption per sector in energy units
  - Step 2: Estimate emission factors for each gas
  - Step 3: Estimate the emission for each gas
  - Estimate EF for SO<sub>2</sub> from S-content of fuel

# **Data Requirement**

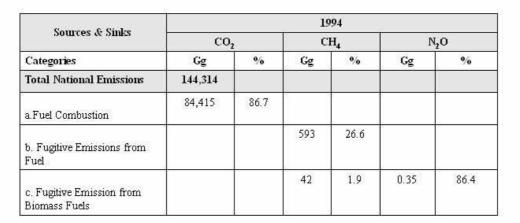
Tier 1

- Fuel consumption based on type of fuel
- Fuel consumption aggregated (coal, natural gas, oil, etc.)
- Default Emission Factors (IPCC 1996 Guidelines)

Par

# **Preliminary Result**




#### ENERGY SECTOR

|                                               | 55                 | 1994    | 2000    | Increase<br>(%) |
|-----------------------------------------------|--------------------|---------|---------|-----------------|
| GDP at 1987 prices                            | million RM         | 153,881 | 209,365 | 36%             |
| Population                                    | '000               | 20,112  | 23,275  | 16%             |
| Apparent energy consumption                   | ktoe               | 31,858  | 54,135  | 70%             |
| CO <sub>2</sub> emission per capita           | ton/capita         | 4.195   | 5.782   | 38%             |
| CO <sub>2</sub> emission (Reference approach) | Gg CO <sub>2</sub> | 84,415  | 140,110 | 66%             |

Pusat Tenaga Malaysia

Pam

# **Result from NC1**



% derived from total emissions by total categories in NC1

# Preliminary Result (NC2)



|                                            | 2000    |       |                  |  |  |  |
|--------------------------------------------|---------|-------|------------------|--|--|--|
| Sources                                    | CO2     | CH4   | N <sub>2</sub> O |  |  |  |
| Categories                                 | Gg      | Gg    | Gg               |  |  |  |
| Total National Emissions                   | 140,110 |       |                  |  |  |  |
| Reference Approach                         | 140,110 |       | 1                |  |  |  |
| Sectoral Approach                          | 130,747 |       |                  |  |  |  |
| a. Fuel Combustion                         | 130,747 |       |                  |  |  |  |
| b. Fugitive Emissions from Fuel            |         | 1,199 |                  |  |  |  |
| c. Fugitive Emission from Biomass<br>Fuels | 5       |       | 8.12             |  |  |  |

#### Pusat Tenaga Malaysia

Pam

#### Issues & Challenges

Energy Sector (esp. for Sectoral Approach)

- 1. Unavailability of relevant data e.g. data for fuel consumption in transport, agriculture sector
- 2. Data are scattered around in many organizations; hence, timeconsuming to compile the data
- 3. Delays in receiving data from relevant agencies
- 4. Further info required, that include:
  - Fuel Consumption for domestic/international aviation and maritime (navigation)
  - Fuel Consumption for railways, pipeline transport
  - Fuel Consumption for agriculture/forestry/fishery sector segregation between mobile and stationary sources



# **Identification of GHG Sources**



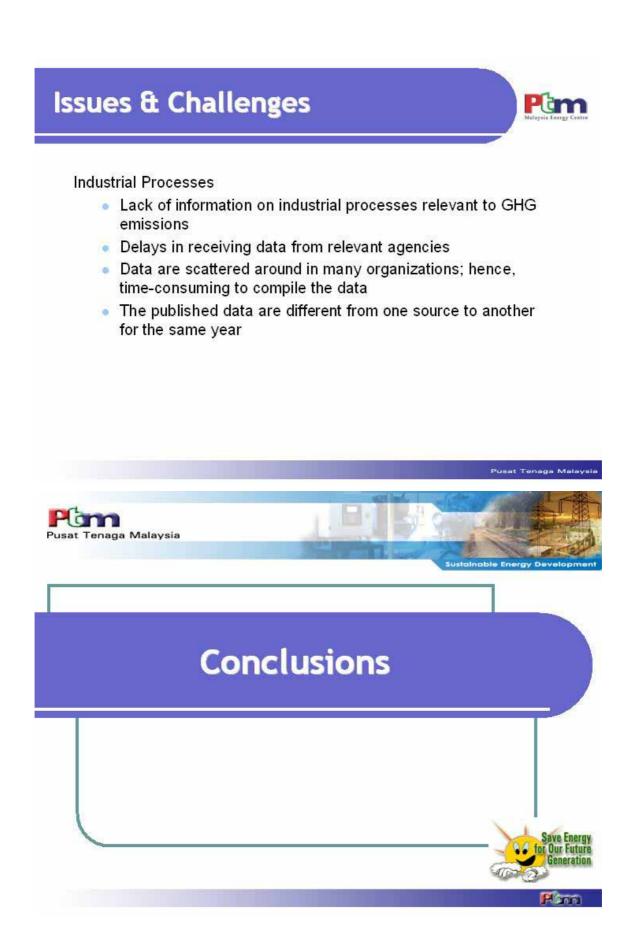
- Emissions from industrial processes are identified from the following sources:
  - Mineral Production and Use
  - Chemical Production and Use
  - Metal Production
  - Halocarbons (e.g. HFCs, PFCs) Production and Use
  - Others sources (e.g. Pulp & Papers, Food & drink production)
- Data required for inventory
  - The GHGs that need to be addressed are CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O
  - Encouraged to report the halocarbons emissions
  - Optional to address other GHG emissions depending on availability of data

# Structure of Methodology



 The Tier 1 Methodology of Revised 1996 IPCC Guidelines will be used

- based on recent PTM/DANIDA study on GHG Inventory - Industrial Processes


- Review of publications has been made to assess the availability of data to be used in the inventory
- Surveys on industries are necessary to support the readily available data from publications or studies
- Assumptions will be made depending on the processes in the relevant industries

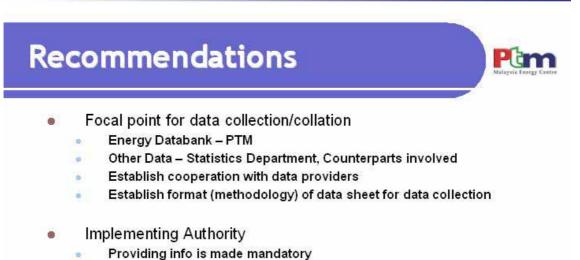


Pam

#### **Data Sources**

| Sources                                                                                            | Necessary data required                                                                                                                                                                    | Comments                                                                  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Department of Statistics                                                                           | Statistics of production, import and export data of minerals     Information on production of specific chemical substances                                                                 | <ul> <li>Dept. of Statistic doesn't cover all the products</li> </ul>     |
| Department of Minerals &<br>Geosciences                                                            | <ul> <li>Information on extraction of minerals</li> <li>Information on consumption of minerals</li> <li>Production of metals</li> </ul>                                                    | Mineral Yearbooks and other relevant<br>publications available            |
| Ministry for International<br>Trade and Industry                                                   | Statistics imports and export<br>•HFCs/PFCs/SF6<br>•Chemicals                                                                                                                              | Statistics are in RM value                                                |
| Department of Environment                                                                          | <ul> <li>Production/Import/Export of HFCs/PFCs</li> <li>Producers of HFCs/PFCs</li> <li>Legal requirements to producers</li> <li>Information on products containing halocarbons</li> </ul> | Any studies in DOE for past 15 years<br>may help to get the relevant data |
| Companies producing the<br>minerals, metals, chemicals,<br>halocarbons and others<br>e.g. PETRONAS | Processes in the plant to get the most relevant data                                                                                                                                       |                                                                           |




### Conclusions



Pusat Tenaga Malaysia

- Fundamental issues on data collection still to be addressed
- Need to establish effective networking with data/information providers
- Capacity building for data providers
- Need to establish a central data repository, specifically to cater to GHG inventory needs

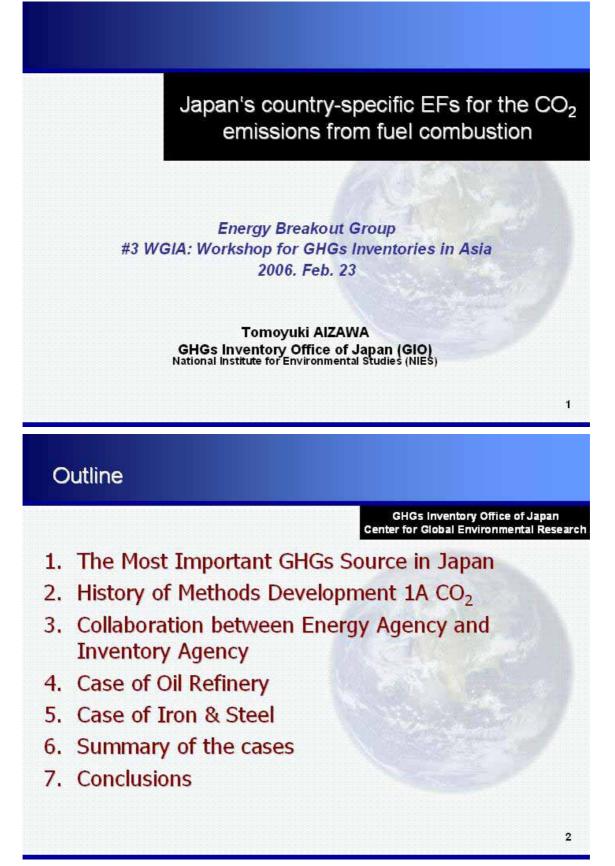
Notwithstanding the abovementioned, much progress has been made in the GHG inventory exercise

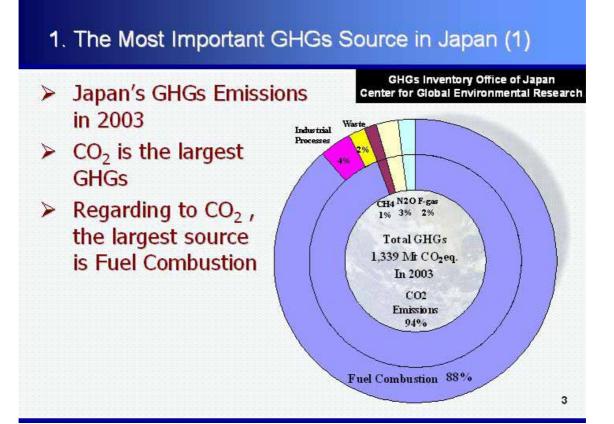


- Use existing regulations from authorities e.g. Dept. of Environment, Statistics department to add in extra info required in the IPCC guidelines
- Regular Updates
  - Required to ensure sustainability of GHG Inventory
  - Monitoring of emissions level in Malaysia

131

# Thank You



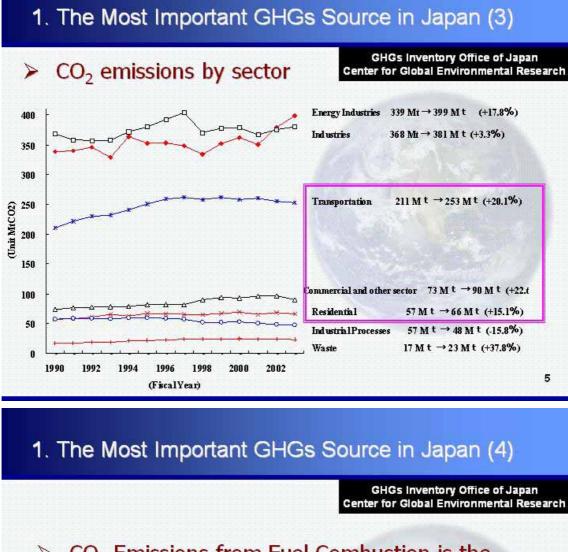




#### Pusat Tenaga Malaysia

Level 8, SAPURA@MINES No. 7, Jalan Tasik The Mines Resort City 43300 Seri Kembangan Selangor Website: www.ptm.org.my E-mail: info@ ptm.org.my








#### 1. The Most Important GHGs Source in Japan (2)

GHGs Inventory Office of Japan Center for Global Environmental Research

# CO<sub>2</sub> from fuel combustion is only one increasing source

|                                 | Base Year<br>of KP | 2003    | vs B.Y.  |
|---------------------------------|--------------------|---------|----------|
| Total                           | 1,237.0            | 1,339.1 | (+8.3%)  |
| CO <sub>2</sub> Fuel Combustion | 1,048.3            | 1,188.1 | (+13.3%) |
| other than F.C.                 | 73.9               | 71.3    | (-3.5%)  |
| CH <sub>4</sub>                 | 24.8               | 19.3    | (-22.3%) |
| N <sub>2</sub> O                | 40.2               | 34.6    | (-13.9%) |
| HFCs                            | 20.2               | 12.3    | (-39.2%) |
| PFSs                            | 12.6               | 9.0     | (-28.2%) |
| SF <sub>6</sub>                 | 16.9               | 4.5     | (-73.6%) |



- CO<sub>2</sub> Emissions from Fuel Combustion is the most important source
- Accurate and Transparent Inventory is needed
  - Accurate estimation
    - knowing effect of each counter measure
    - reviewing the effort of each stakeholder
  - Making with Transparent manner
    - having Accountability
    - establishing the basis of burden sharing among domestic stakeholders

6

#### 2. History of Methods Development 1A CO<sub>2</sub>

| Year      | Event                                 | EF            | Activity Data     |                 | Uncertainty |           |
|-----------|---------------------------------------|---------------|-------------------|-----------------|-------------|-----------|
|           |                                       |               | Calorific Value   | Energy Stats    | Total       | Sector    |
| 1992 M C  | )E study on CO <sub>2</sub> emissions | EFF veu'922   | CV ver'75         | former EB       | 3%          | over 10%  |
| 1994 #1 1 | National Communications               | 1             | 1 I               | 1               | 1           | 1         |
| 1997 #21  | National Communications               | ţ             | 1                 | 1               | 1           | 1 (se     |
| co        | P3+KP                                 | 1             | 1                 | L L             | 4           | 1         |
| 2000 Rev  | ision of CVb y Energy Agency          | Ļ             | (CW ver'000       | ŧ               | +           | - +       |
| 2001 Rev  | ision of Energy Stats by EA           | 4             | 1                 | nnew EB ver 10  | 1%          | under 10% |
| 2002 (M   | OE study on EF)                       | (EF ver'02)*n | ot to be addopted | The second      | 1           | L I       |
| Jap       | an's acception of the KP              | ļ             | 1 No              | 1               | 1           | L .       |
| 2003 In ( | Country Visit (Review)                | EF ver'92     | CV ver'00         | 1               | Ţ           | 1 I       |
| 2004 Rev  | ision of Energy Stats by EA           | 4             | annual CW         | nnew EB veral 1 | 1           | under 5%  |
| 2006 EA   | & M OE stud y on EF                   | EEF veg'006   | 1                 | 1               | 1 I         | 1         |

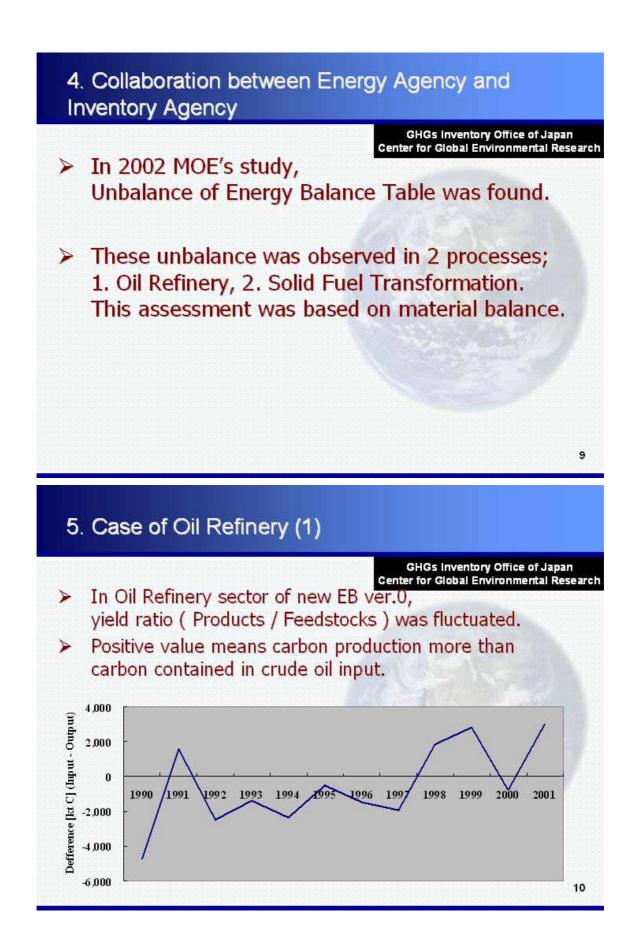
GHGs Inventory Office of Japan Center for Global Environmental Research

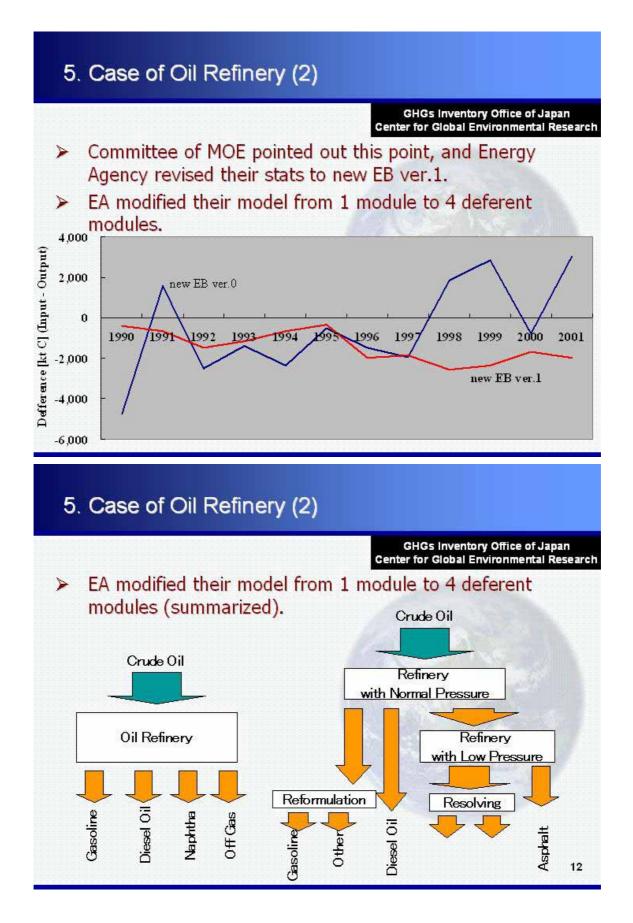
#### 3. Difficulties of Methodology Development in CO<sub>2</sub> from Fuel Combustion

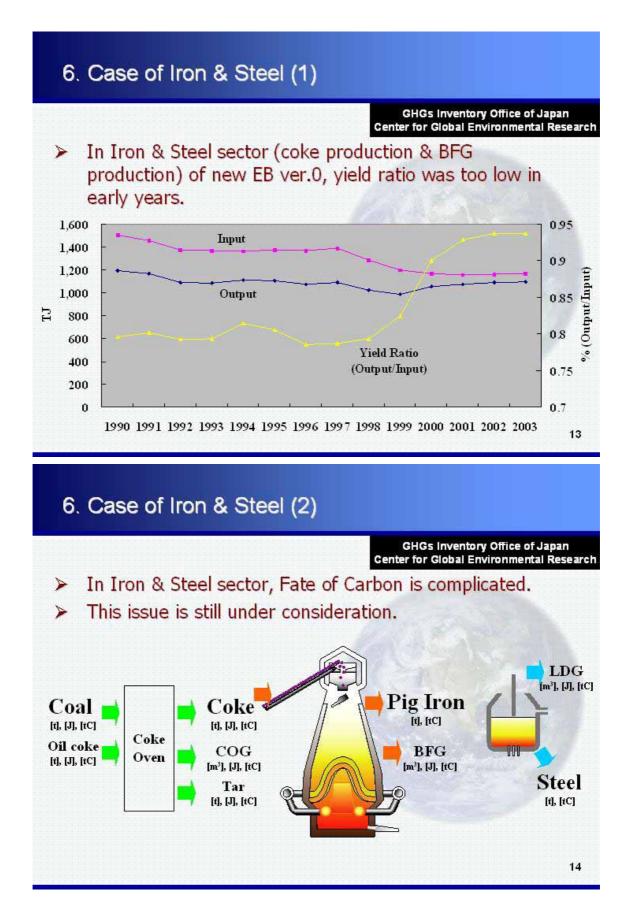
EF (Emission Factor)

GHGs Inventory Office of Japan Center for Global Environmental Research

8


 Representativeness: difficulties of sampling (especially coal)


#### AD (Activity Data)


- Resolution of Statistics
- Mass Balance, Energy Balance, Carbon Balance
- Off gas, by-product gas in Japan, many kind of by-products are used as fuel or feedstocks for effective use of natural resources, so called CASCADE ENERGY USE

#### Estimation

Sectoral Approach vs. Reference Approach







#### 7. Summary of the cases

GHGs Inventory Office of Japan Center for Global Environmental Research

#### Assessment by deferent entities are effective

#### Based on balance approach,

- 1. Mass should be balanced
- 2. Carbon should be balanced
- 3. Energy almost be balanced ex. Energy-losses.

15

# 7. Conclusion Carter of Clobal Environmental Research Center of Clobal Environmental Research In the sector "CO<sub>2</sub> from fuel combustion", methodology development EF and AD, one after the other Assessment by deferent entities are effective These processes enhanced understanding scientific aspects of GHG inventories. These processes made good and strong relationship among stakeholders.

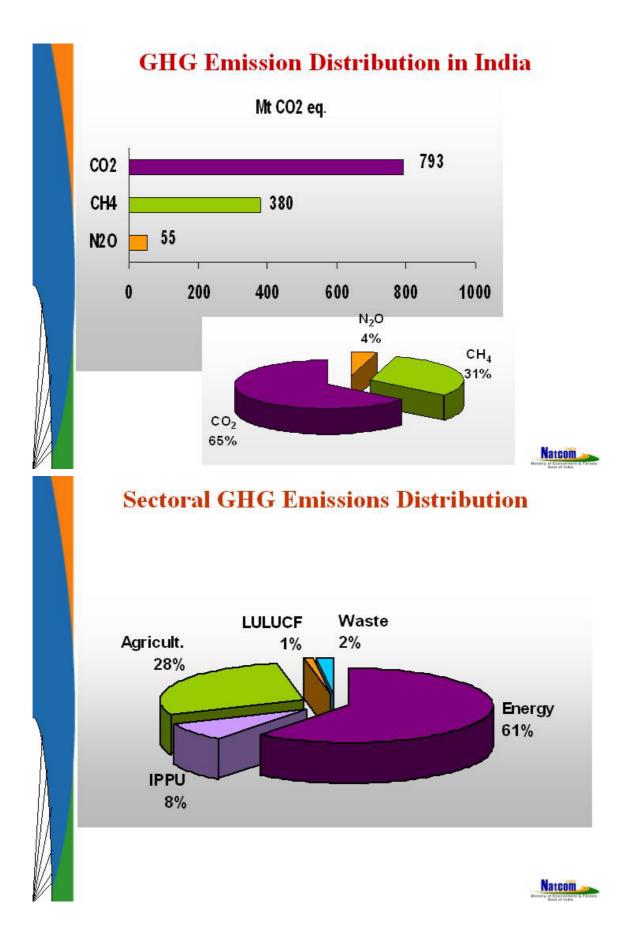
GHGs Inventory Office of Japan Center for Global Environmental Research

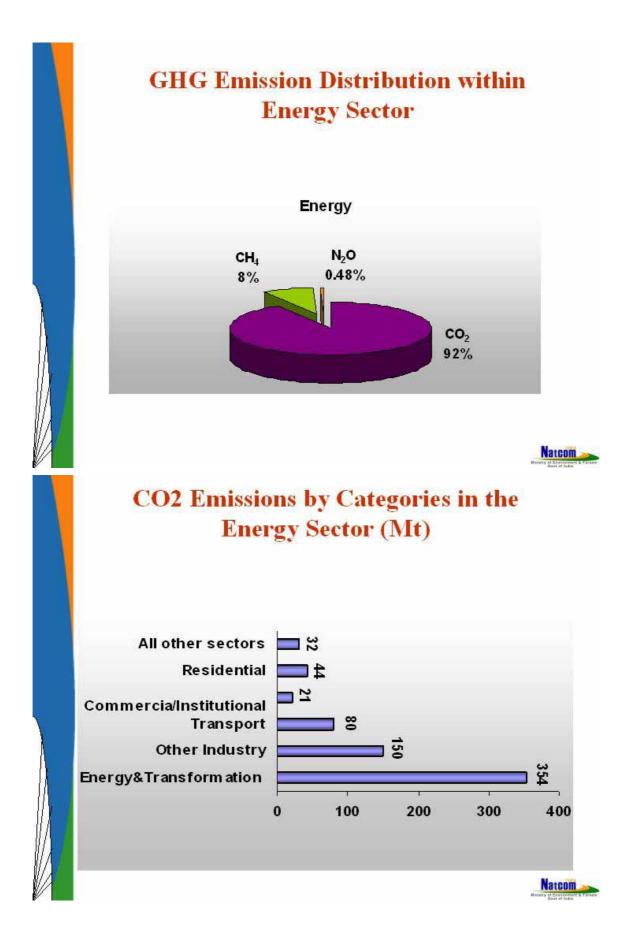
## Thank you for your attention !!

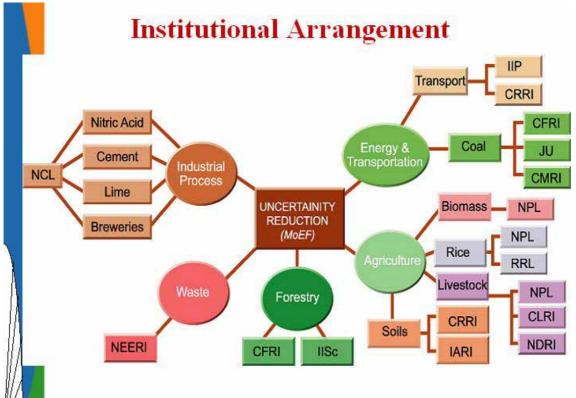
http://www-gio.nies.go.jp/

# GHG Emission Factors Developed for the Energy Sector in India

Energy Breakout Group 3<sup>rd</sup> WGIA: Workshop for GHG Inventories in Asia February 23-24, Manila. Phillipines


Sumana Bhattacharya National Communication Project Management Cell Ministry of Environment and Forests, Government of India


Natcom


#### GHG Emissions from Sources and Removals by Sinks

| Total National<br>Emissions (Gg/yr) | CO2<br>Emissions | CO2<br>Removal<br>s | CH4   | N20      | CO2-eq.     |
|-------------------------------------|------------------|---------------------|-------|----------|-------------|
| All Energy                          | 679470           |                     | 2896  | 11.4     | 743820      |
| Industrial Processes                | 99878            |                     | 2     | 9        | 102710      |
| Agriculture                         | ;                |                     | 14175 | 151      | 344485      |
| LULUCF                              | 37675            | 23533               | 0.04  | <u>.</u> | 14292       |
| Waste                               |                  |                     | 1003  | 7        | 23233       |
| Bunker fuels                        | 3373             | i                   |       |          | 3373        |
| Total Emissions                     | 817023           | 23533               | 18083 | 178      | 122854<br>0 |









**17 Institutions** 

Natcom

## Some of the proposed activities for developing GHG inventories in the Energy Sector

Development of an energy balance matrix to ascertain energy flow across sectors

Measurement of Plant specific CO2 EF

Refine NCV of coking, non coking and lignite consumed in thermal power plants

Refine the GHG emission estimates from the road transport sector

Develop methodology to generate data related to oil and natural gas venting, flaring, transmission and distribution



# Key Category Analysis – Level Analysis

| Sources of emission                         | CO <sub>2</sub><br>equivalent (Gg) | Percentage<br>of total<br>emissions | Cumulative<br>emission<br>(Gg) | Cumulative<br>emission vs total<br>emission (%) | Tier used | EF used |
|---------------------------------------------|------------------------------------|-------------------------------------|--------------------------------|-------------------------------------------------|-----------|---------|
| Energy and transformation industries        | 355,037                            | 28.9                                | 355,037                        | 28.9                                            | Tier II   | CS      |
| Enteric fermentation                        | 188,412                            | 15.3                                | 543,449                        | 44.2                                            | Tier III  | CS      |
| Fossil fuel combustion in industry          | 150,674                            | 12.3                                | 694,123                        | 56.5                                            | Tier I    | D       |
| Rice cultivation                            | 85,890                             | 7.0                                 | 780.013                        | 63.5                                            | Tier III  | CS      |
| Transport                                   | 80,286                             | 6.5                                 | 860,299                        | 70.0                                            | Tier II   | CS      |
| Emission from soils                         | 45,260                             | 3.7                                 | 905,559                        | 73.7                                            | Tier I    | D       |
| Iron and steel production                   | 44445                              | 3.6                                 | 950,004                        | 77.3                                            | Tier I    | D       |
| Energy use in residential sector            | 43,918                             | 3.6                                 | 993,922                        | 80.9                                            | Tier I    | D       |
| Biomass burnt for energy                    | 34,976                             | 2.8                                 | 1,028,898                      | 83.7                                            | Tier I    | D       |
| All other energy sectors                    | 32,087                             | 2.6                                 | 1,060,985                      | 86.4                                            | Tier I    | D       |
| Cement production                           | 30,767                             | 2.5                                 | 1,091,752                      | 88.9                                            | Tier II   | CS      |
| Energy consumed in commercial-institutional | 20,571                             | 1.7                                 | 1,112,323                      | 90.5                                            | Tier I    | D       |
| Manure management                           | 20,176                             | 1.6                                 | 1,132,499                      | 92.2                                            | Tier I    | D       |
| Ammonia production                          | 14,395                             | 1.2                                 | 1,146,894                      | 93.4                                            | Tier I    | D       |
| Land use, land-use change and forestry      | 14,292                             | 1.2                                 | 1,161,186                      | 94.5                                            | Tier II   | CS      |
| /                                           |                                    |                                     |                                |                                                 |           |         |



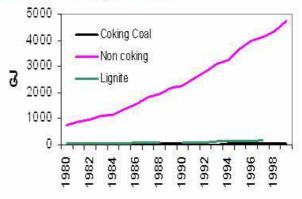


Natcom

## Key Sectors identified in the Energy Sector\*

| Category                                   | Level analysis | EF Used in<br>INC | SNC<br>Improvement<br>envisaged |
|--------------------------------------------|----------------|-------------------|---------------------------------|
| Energy and<br>transformation<br>industries | 29%            | CS                | R                               |
| Transport                                  | 6.5%           | cs                | R                               |
| Iron and steel                             | 3.6%           | D                 | cs                              |

\*Considering their high rates of growth in production in the last decade




# **Coal Consumption**

#### Coal Consumption:

Coal Shall Remain India's Primary Energy Source till 2031-32,

Coal accounts for over 50% of India's commercial energy consumption and some 78% of domestic coal production is dedicated to power generation



It is recommended, to increase coal use efficiency in power generation from the current average of 30.5 percent to 39 percent for all new plants.

Introduction of clean coal technologies, improving energy efficiency, Renewable energy resources, hydro power, and various other measures is bringing down the CO2 emission intensity from this sector.

Natcom

## Country specific EF Developed for Indian Coal

|                 |                    | Emission Factor<br>(EF) | Reference                 |
|-----------------|--------------------|-------------------------|---------------------------|
| Indian Coal     | NCV<br>TJ/Kt       | t CO <sub>2</sub> /TJ   | Choudhury et al.,<br>2004 |
| Coking coal     | 24.18 <u>+</u> 0.3 | 25.53                   |                           |
| Non-coking coal | 19.63 <u>+</u> 0.4 | 26.13                   |                           |
| Lignite         | 9.69 <u>+</u> 0.4  | 28.95                   |                           |



## Source of Uncertainties in estimation of CO2 EF from coal combustion

Activity Data

Carbon emission factor

- variation with the rank and type of coal
- Contribution from carbonates in high ash coals

Basis of CO2 emission – NCV/GCV

- assumption of NCV being 5% less than GCV for any coal may not be correct. Variation can be 2% for anthracite to 10% for Lignite.
- may lead to underestimate of CO<sub>2</sub> from low rank and overestimate of CO<sub>2</sub> from high rank coals

Fraction of carbon oxidised

- coal & plant dependent.

Natcom

## Refinement Being Considered for SNC-Combustion of Coal

| Category       | EF<br>Used<br>in INC | SNC<br>Impro<br>veme<br>nt | Activities proposed                                       | Rationale                              |
|----------------|----------------------|----------------------------|-----------------------------------------------------------|----------------------------------------|
| Coal           | CS                   | R                          | Refinement of NCV                                         | Inadequate<br>sample size              |
| Power<br>Plant | -                    | CS                         | Determine point<br>source specific CO2,<br>NOX and CO EFs | Thermal power<br>plants- key<br>source |





#### Transport Sector – e.g. of growth rates in Delhi

| S.No. | Category                                | registered (<br>( In lakh) | Decadal<br>growth<br>rate % | Annual<br>Compound<br>Growth rate |      |  |
|-------|-----------------------------------------|----------------------------|-----------------------------|-----------------------------------|------|--|
|       |                                         | 1993-94                    | 2003-04                     | (1993-94 to<br>2003-04)           | %    |  |
| A.    | Private Vehicles                        |                            |                             |                                   |      |  |
|       | Four wheelers<br>(Cars, Jeeps,St.Wagon) | 5.22                       | 12.68                       | 142.92                            | 9.27 |  |
| ii.   | Two wheelers                            |                            |                             |                                   |      |  |
|       | (Scooter, Motorcycle)                   | 14.92                      | 26.50                       | 77.61                             | 5.91 |  |
|       | Sub-Total                               | 20.14                      | 39.18                       | 94.54                             | 6.64 |  |
| В.    | <b>Commercial Vehicles</b>              |                            |                             |                                   |      |  |
| iii.  | Auto-Rickshaw                           | 0.72                       | 0.75                        | 4.17                              | 0.38 |  |
| iv.   | Taxis                                   | 0.12                       | 0.16                        | 33.33                             | 3.09 |  |
| ۷.    | *Buses                                  | 0.24                       | 0.39                        | 62.50                             | 4.84 |  |
| Vİ.   | Goods Vehicle                           | 1.17                       | 1.36                        | 16.24                             | 1.55 |  |
|       | Sub-Total                               | 2.25                       | 2.66                        | 18.22                             | 1.69 |  |
|       | Total                                   | 22.39                      | 41.84                       | 86.87                             | 6.45 |  |

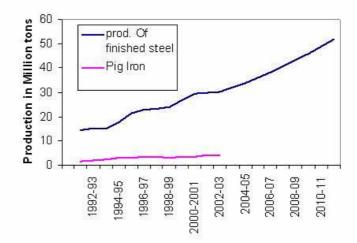
## Country specific EF Developed for Road Transport Sector

|                          |          | Emission Factor (EF)             | Reference           |
|--------------------------|----------|----------------------------------|---------------------|
| Road Transport<br>sector |          | TCO/Tj                           |                     |
| Gasoline                 | 2W/3W    | $\textbf{43.9} \pm \textbf{7.3}$ | Singh et al.,       |
|                          | Car/Taxi | 61.5 ± 4.0                       | 2004a,              |
| Diesel Oil               | MCV/HCV  | 71.4 ± 0.55                      | Singhal et al, 2004 |
|                          | LCV      | 71.4 ± 0.5                       | 2004                |

Natcom

Natcom

## Sources of Uncertainty in the Road Transport Sector


#### Activity data

- The vehicle population by type
- Diesel/petroleum consumed by each vehicle type
- Details of other fuel consumed
- Kilometer traveled by each type of vehicle
  - (reflecting the driving cycle)

## Refinement Being Considered for SNC-Transport Sector

| Category  | EF<br>Used<br>in INC | SNC<br>Improv<br>ement | Activities<br>proposed                                                  | Rationale                                                   |
|-----------|----------------------|------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------|
| Transport |                      | CS                     | Surveys to<br>apportion fuel<br>used in<br>various types<br>of vehicles | Reconcile the<br>top down with<br>the bottom up<br>approach |
|           | CS<br>Fuel<br>based  | CS                     | EFs using<br>driving cycle                                              |                                                             |

**Steel Sector** 



Between 1990-1991, steel prod. Grew by 7.6 % and it is expected to grow by 6.5% per annum upto 2012

However, considering a boom in infrastructure, the prod. Capacity is likley to increase with mega steel prod. Projects coming up

|             | a    | tC     | OM     | >         |
|-------------|------|--------|--------|-----------|
| diminista : | r gl | Easter | 8450.7 | & Cornels |

Natcom

# Sources of uncertainty in estimating CO2 EF from steel sector

Emission from reducing agent (coal, coke) in blast furnace (BF), EAF, Sinter Strand

CO2 emission from calcinations of carbonate fluxes in BF, EAF, SS

CO2 emission from steel production in Basic oxygen furnace (BOF) or EAF - Plant specific technologies

Emission from on site combustion of carbon bearing products – Coke oven Gas/ Blast Furnace Gas

Emission due to combustion of other fossil fuel (e.g. from on site power production)



Natcom

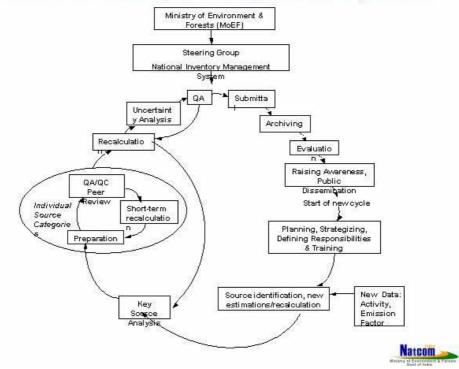
#### Activities planned for developing CS EF of CO2 from Iron and Steel Sector

Separate out emissions from

reducing agent

calcination of carbonate fluxes

CO2 emission from technology specific steel production – BOF/ EAF


Assess emission from on site combustion of carbon bearing products – Coke oven Gas/ Blast Furnace Gas

Assess emission due to combustion of other fossil fuel (e.g. from on site power production)

#### Refinement Being Considered for SNC-Iron and Steel Sector

| Category       | EF Used<br>in INC | SNC<br>Impr<br>ove<br>ment | Activities proposed                                                                                  | Rationale                                                                                                                    |
|----------------|-------------------|----------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Iron and Steel | D                 | CS                         | Plant specific CO2 EF<br>assessment<br>Assessment of Carbon<br>content of Coke<br>CO2 EF measurement | It is a fast<br>growing<br>sector of<br>the<br>economy in<br>addition to<br>being a<br>major<br>source of<br>CO2<br>emission |

## National Inventory Management System



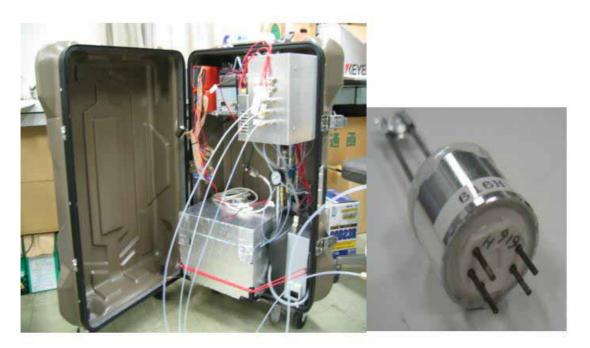
## National Inventory Management System

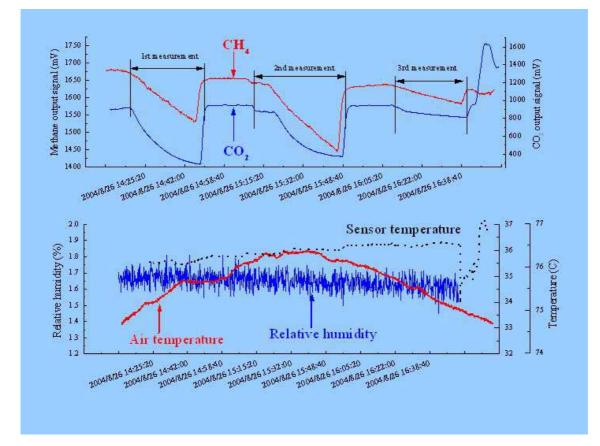
NIMS will address the requirements of documentation, archiving and continuous updating of the databases as well as the QA/QC and uncertainty management issues of the inventory. A separate steering group will be instituted to oversee the operations of the NIMS and provide technical guidance.

- Develop systemic tools and procedures
  - procedures for documenting methodologies,
  - creating a database of emissions factors, activity data and assumptions;
  - data management and collection;
  - strategies for data generation and improvement;
  - systems for data archiving and record keeping;
  - mechanisms for synchronization and cross-feeding between emission inventories, national energy balances and relevant sector surveys;
  - guidance for technical peer reviews, procedures for QA/QC and uncertainty management.
- Design for dissemination of information through web-based management system.






#### Amnat Chidthaisong

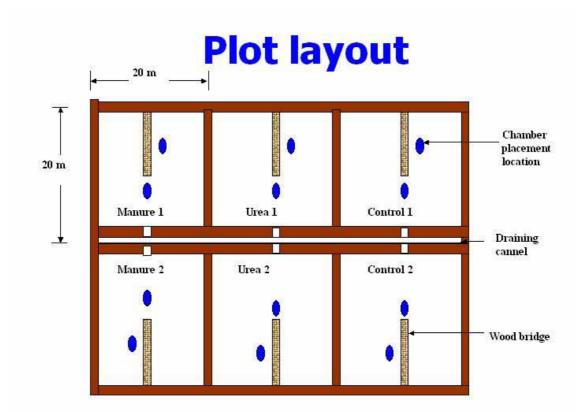

Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi Bangkok, Thailand

# **Backgrounds**

- APN CAPaBLE GHG Inventory Project; NIES (Japan) and JGSEE (Thailand), 2004-2006
- 2004: Training in Japan
  - Reported in 2nd Workshop on GHG Inventories in Asia Region (WGIA) in Shanghai
- 2005: Measurements in Thailand paddy fields

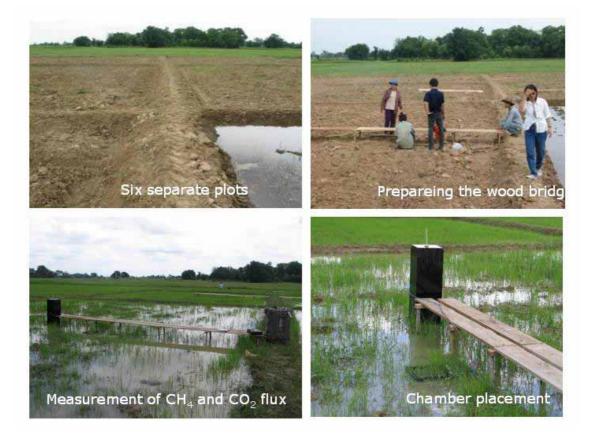
# **Portable methane sensor**






# **Measurements in Thailand**



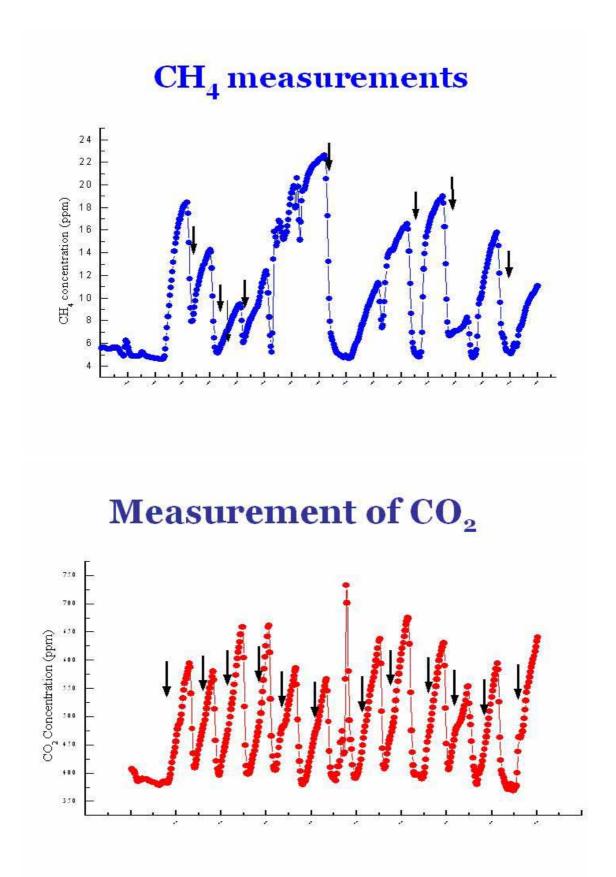

#### **Experiment Designs**

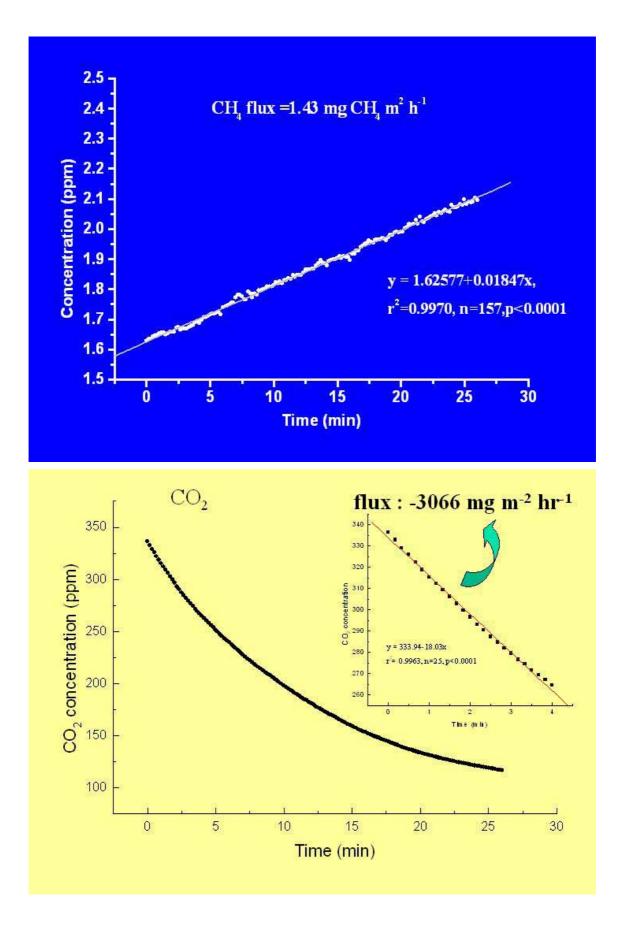
- Irrigated fields
- Continuous flooding
- Treatments:
  - No fertilizer
  - Chemical fertilizer only
  - Manure fertilizer only

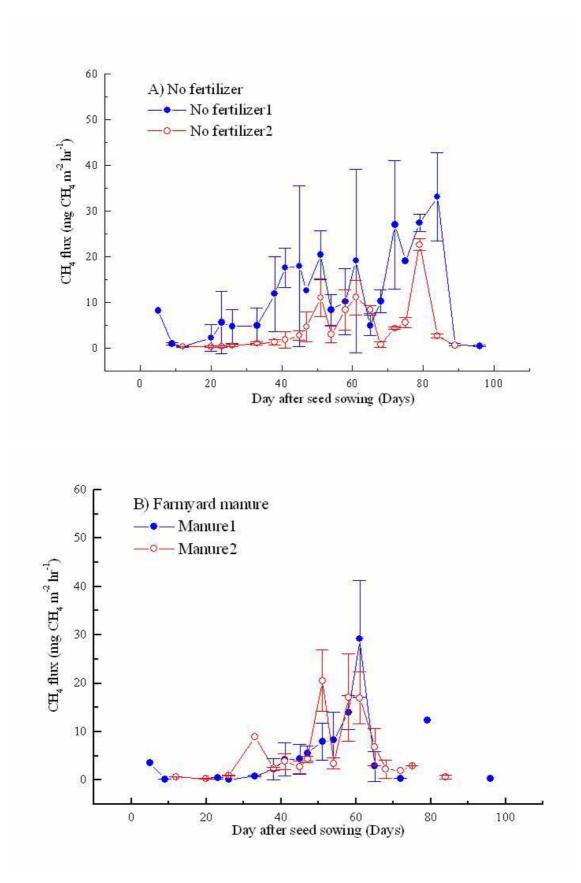


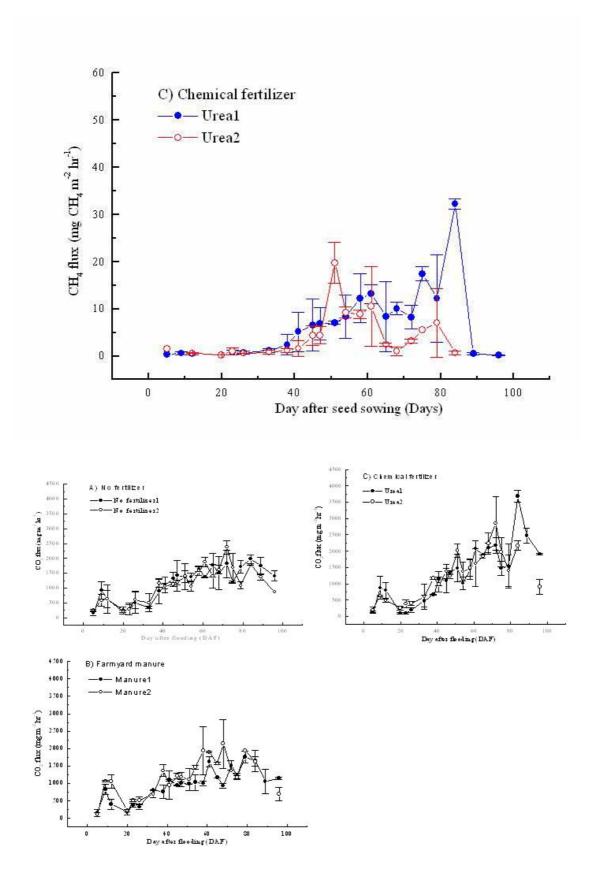
- Field preparation for rice cultivation was begun in the end of April 2005.
- Seeds of rice (Rachinee cultivar) were sown by hands on 22 April 2005.
- Chemical fertilizer (urea) was applied on 14 days after seed sowing (DAS) at the rate of 12.5 kg per plot and again on 26 DAS at the same application rate.

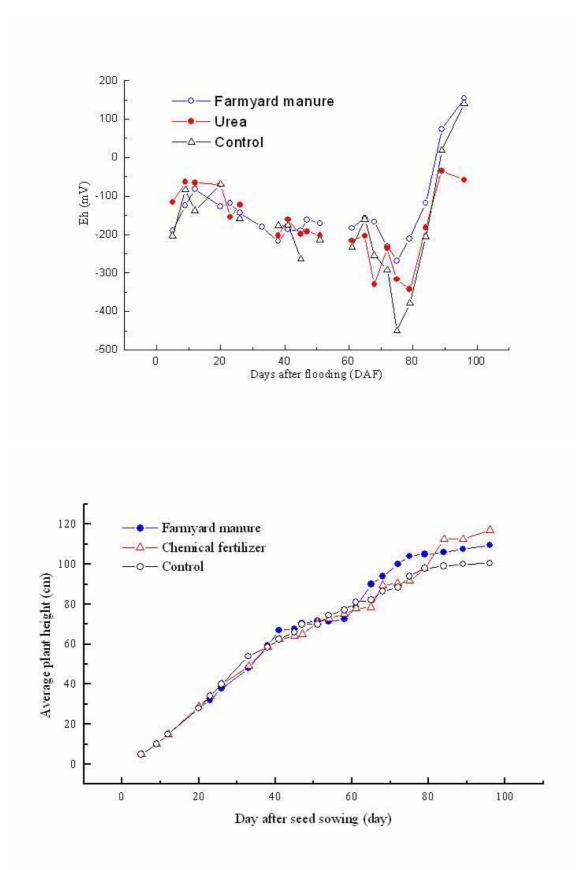
- Farmyard manure was applied only once at the beginning of rice cultivation at the rate of 45 kg per plot.
- Drained water from all fields at the end of growing season on 79 DAS to facilitate harvest by farm machinery
- Rice in all treatments was harvested on 30 July 2005 or 99 DAS.



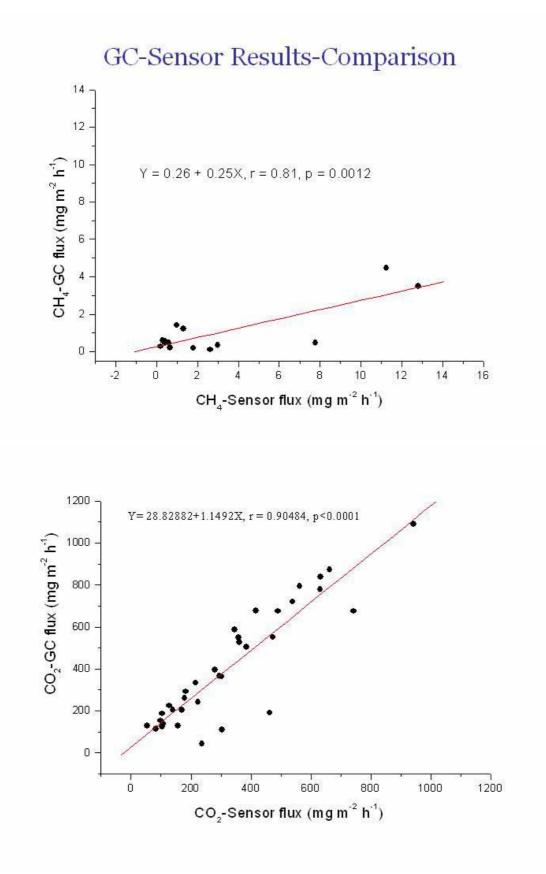












# Flux Summary: first crop 2005

| Treatment | CH <sub>4</sub> flux | CO <sub>2</sub> flux |  |  |
|-----------|----------------------|----------------------|--|--|
|           | g/m²/crop            |                      |  |  |
| Control   | 8.5                  | 2420.9               |  |  |
| Chem.     | 11.0±3.6             | 2700.2               |  |  |
| Manure    | 13.8±2.9             | 2308.6               |  |  |

# **Grain Yield**

| Treatment | Grain (ton/ha) |
|-----------|----------------|
| Control   | 4.3            |
| Chem.     | 5.2            |
| Manure    | 4.7            |



#### **Issues needed further investigation**

- Effects of fertilization—2<sup>nd</sup> and 3<sup>rd</sup> crops.
- Discrepancies in methane flux between GC and Sensor technique—need more measurement data, cross calibration



## Nitrous Oxide and Methane emissions and Nitrogen Dynamics in Hedgerow Systems in the Uplands of Southern Philippines

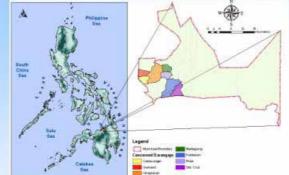
D.B. Magcale-Macandog<sup>1</sup>, E.R. Abucay<sup>1</sup>, R.G. Visco<sup>1</sup>, R.N. Miole<sup>2</sup>, E.L. Abas<sup>3</sup>, G.M. Comajig<sup>4</sup> and A.D. Calub<sup>4</sup>

<sup>1</sup>University of the Philippines Los Baños, <sup>2</sup>Mindanao State University, <sup>3</sup>Cotabato Foundation College of Science and Technology, <sup>4</sup>UPLB Foundation Inc., College, Laguna



# Overview

- Agricultural soils are the most important anthropogenic source of nitrogen oxide emissions (N<sub>2</sub>O and NO).
- Agroforestry is a dynamic, ecologically-based, natural resource management system.
- In hedgerow systems tree litter, crop residues and animal manure are used as green manure to restore or maintain soil fertility.
- Such systems may serve as source of N<sub>2</sub>O and methane (CH<sub>4</sub>).
- *Eucalyptus deglupta* and *Gmelina arborea* are the two top ranking trees planted in the agroforestry farms in Claveria, Misamis Oriental, Philippines.




### Objective

This study aims to estimate the methane emissions from livestock holdings and nitrous oxide emissions through fertilization, tree litterfall and decomposition, maize residue incorporation and livestock manure in *G. arborea* and *E. deglupta* hedgerow systems. It also aims to present the nitrogen dynamics and other possible source of  $N_2O$ emissions in hedgerow agroforestry systems.



#### **Description of the Study Area**



The SAFODS Philippines Research Site



Claveria is a land-locked agricultural municipality in the province of Misamis Oriental in Northern Mindanao.

It is composed of 24 barangays.

Its topography is generally rugged, characterized by gently rolling hills and mountains with cliffs and escarpments.

The climate of Claveria is classified as having a C2 rainfall distribution, with 5 or 6 wet months (>200 mm/mo) and 2 or 3 dry months (<100 mm/mo).



### Methodology



#### Experimental treatments

The experimental treatments (tree species, tree age, spacing) and number of replicates employed in the study.

| Experiment No. 1 (7 year-old trees, 2 replicates per treatment)                                                                                                                                                                                                                                                                           | Experiment No. 2 (1 year-old trees,<br>3 replicates per treatment)                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Control for <i>G. arborea</i> , pure maize ( <i>Z. mays</i> )<br>1 x 3 m ( <i>G. arborea</i> + <i>Z. mays</i> )<br>1 x 9 m ( <i>G. arborea</i> + <i>Z. mays</i> )<br>Control for <i>E. deplupta</i> , pure maize ( <i>Z. mays</i> )<br>1 x 3 m ( <i>E. deglupta</i> + <i>Z. mays</i> )<br>1 x 9 m ( <i>E. deglupta</i> + <i>Z. mays</i> ) | Control, pure maize (Z. mays)<br>1 x 3 m (G. arborea + Z. mays)<br>1 x 9 m (G. arborea + Z. mays)<br>1 x 3 m (E. deglupta + Z. mays)<br>1 x 9 m (E. deglupta + Z. mays) |





#### Management practices

- Planting: 1 seed per hill (Pioneer Hybrid 3014) at 60cm between furrows and 25-30cm between rows
- Fertilizer application:

| Type of fertilizer   | Application rate       | Time of application |
|----------------------|------------------------|---------------------|
|                      | (kg ha <sup>-1</sup> ) |                     |
| 1. Solophos (0-18-0) | 166.67                 | Before seed sowing  |
| 2. Urea (46-0-0)     | 195.65                 | 30 DAE              |

- Other practices:
  - Inter-row cultivation at 30 and 60 DAE
  - Hand weeding



### Litterfall

- Set-up: Four (4) litter traps were randomly positioned under the trees per plot.
- Litterfall collection: monthly



### Soil erosion and runoff

• A micro-plot with a dimension of 4 x 6 m was constructed in each plot. A locally made galvanized iron with dimension of 7 ft in length, 1 ft in width and a depth of 0.5 ft were installed in each plot. A water meter was also attached to the collector for water runoff recording. Connected to the water meter is a 64 L capacity plastic for sediment load collection.







Collection and recording

Soil erosion: after an erosive rainfall event

Surface runoff: every after rainfall event





### Stemflow

- Open plastic hose fitted around the trunk of 4 randomly selected hedgerow trees
- Collection and recording: after every rainfall event

### Throughfall

- 16 plastic container were randomly placed within the plot
- Collection and recording: after every rainfall event

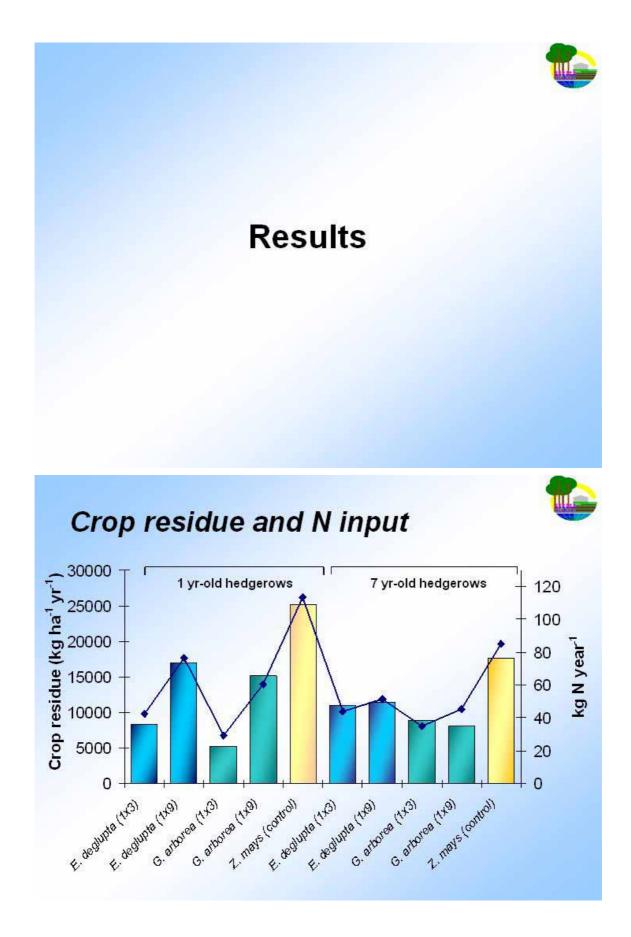
# Harvesting and biomass determination of maize

- Harvesting: 105-110 days after planting
- Plant Biomass: destructive sampling of 16 sample plants per plot. Root, stalk, leaf and cob were segregated.
- Dry weight: One hundred fifty grams (150g) fresh weight of the sub-sample for each component was taken for oven drying at 70° C for 48 hours.





#### Leaf litter decomposition

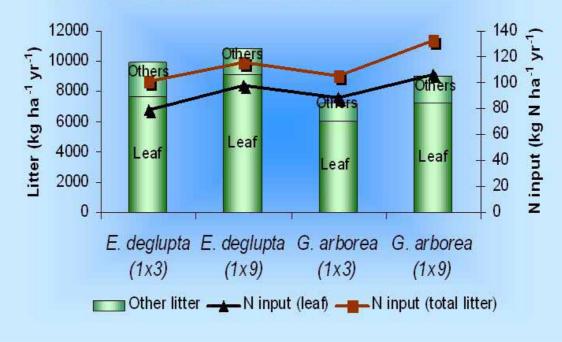

- Set-up: A total of eight (8) net bags (12 x 12 in) containing 50g leaf samples were randomly placed inside each plot.
- Collection: Two bags per plot were collected every 21 days. Collected samples were weighed for fresh weight and oven-dried.
- Decomposition rate: percent loss in weight



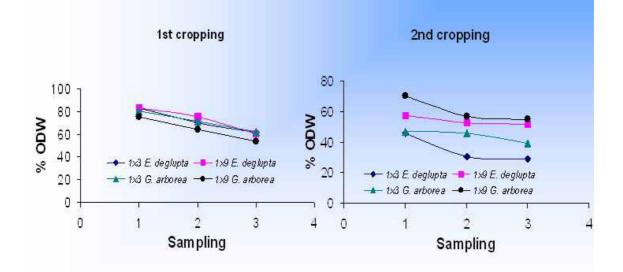
### Livestock survey in Claveria

- Sampling technique: stratified random sampling
- Respondents: 300 farmers were randomly selected for the household interview
- Basis: elevation and agroforestry system classes
- Survey instrument: composed of set of questions related to livestock holdings and feed requirements









| Tree<br>Species | Tree Age<br>(yrs) | Tree spacing<br>(m x m) | Plot size<br>(ha) | N applied<br>(kg N ha <sup>-1</sup><br>yr <sup>-1</sup> ) | 1-Frac <sub>GASF</sub> | F <sub>SH</sub><br>(kg N ha⁻¹<br>yr⁻¹) |
|-----------------|-------------------|-------------------------|-------------------|-----------------------------------------------------------|------------------------|----------------------------------------|
| E. deglupta     | 1                 | 1 x 3                   | 0.018             | 221                                                       | 0.9                    | 199                                    |
| E. deglupta     | 1                 | 1 x 9                   | 0.018             | 188                                                       | 0.9                    | 169                                    |
| G. arborea      | 1                 | 1 x 3                   | 0.018             | 221                                                       | 0.9                    | 199                                    |
| G. arborea      | 1                 | 1 x 9                   | 0.018             | 188                                                       | 0.9                    | 169                                    |
| Z. mays         |                   |                         | 0.018             | 201                                                       | 0.9                    | 181                                    |
| E. deglupta     | 7                 | 1 x 9                   | 0.032             | 346                                                       | 0.9                    | 311                                    |
| E. deglupta     | 7                 | 1 x 3                   | 0.032             | 221                                                       | 0.9                    | 199                                    |
| G. arborea      | 7                 | 1 x 9                   | 0.032             | 346                                                       | 0.9                    | 311                                    |
| G. arborea      | 7                 | 1 x 3                   | 0.032             | 221                                                       | 0.9                    | 199                                    |
| Z mays          |                   |                         | 0.032             | 201                                                       | 0.9                    | 181                                    |

#### Fertilizer nitrogen applied in the different plots

Leaf and total (leaf, twigs, branches) litter from 7year old E. deglupta and G. arborea



Decomposition of 7 year-old E. deglupta and G. arborea leaf litter





### Livestock Survey

Local values for nitrogen input from animal wastes based on average live weight

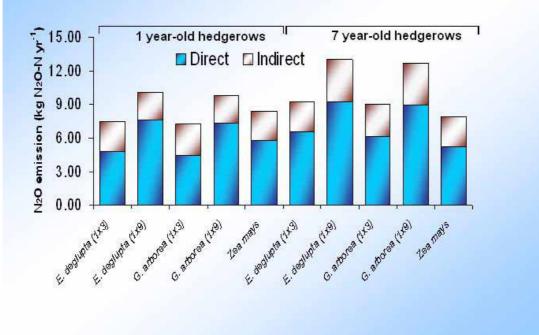
| Animal  | Average<br>animal<br>live<br>weight<br>(kg) | Daily<br>manure<br>production<br>(% of LW) | Daily manure<br>production<br>(FW, kg) | Dry<br>matter<br>(%) | Daily<br>manure<br>productio<br>n<br>(ODW,<br>kg) | Nitrogen<br>content<br>(%) | Total N<br>animal <sup>-1</sup><br>yr <sup>-1</sup><br>(kg N yr <sup>-1</sup> ) |
|---------|---------------------------------------------|--------------------------------------------|----------------------------------------|----------------------|---------------------------------------------------|----------------------------|---------------------------------------------------------------------------------|
| Cattle  | 300                                         | 5                                          | 15.0                                   | 15                   | 2.25                                              | 1.5                        | 12.3                                                                            |
| Carabao | 350                                         | 5                                          | 17.5                                   | 15                   | 2.60                                              | 1.5                        | 14.2                                                                            |
| Goat    | 15                                          | 3                                          | 0.45                                   | 25                   | 0.11                                              | 1.5                        | 0.6                                                                             |
| Pig     | 80                                          | 5                                          | 4.00                                   | 20                   | 0.80                                              | 2.0                        | 5.84                                                                            |
| Chicken | 1.2                                         | 3                                          | 0.04                                   | 20                   | 0.01                                              | 3.0                        | 0.11                                                                            |

# Sources of nitrogen inputs, N<sub>2</sub>O and CH<sub>4</sub> emissions in hedgerow systems

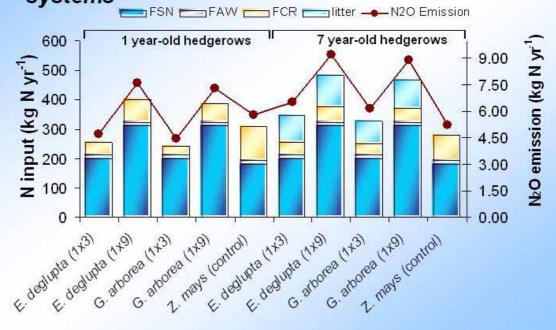


Nitrous oxide emissions from grazing animals (N<sub>EXPR</sub>) using local values for N excretion per animal type

| Livestock<br>Type   | Number<br>of<br>animals | N<br>excretion<br>per animal<br>type (kg<br>head <sup>-1</sup> yr <sup>-1</sup> ) | Total<br>annual N<br>excretion<br>(kg N) | Fraction<br>pasture<br>range and<br>paddock | N <sub>EXPR</sub> (kg<br>N yr¹) | EF3 (kg<br>N <sub>2</sub> O-<br>N/kg N) | N <sub>2</sub> O <sub>GRA2ING</sub><br>(kg N <sub>2</sub> O yr<br>1) |
|---------------------|-------------------------|-----------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------|-----------------------------------------|----------------------------------------------------------------------|
| Non-dairy<br>cattle | 258                     | 12.3                                                                              | 3,173.4                                  | 1                                           | 3,173.4                         | 0.02                                    | 99.74                                                                |
| Carabao             | 62                      | 14.2                                                                              | 880.4                                    | 1                                           | 880.4                           | 0.02                                    | 27.67                                                                |
| Goat                | 46                      | 0.6                                                                               | 27.6                                     | 1                                           | 27.6                            | 0.02                                    | 0.87                                                                 |
| Swine               | 398                     | 5.8                                                                               | 2,308.4                                  | 1                                           | 2,308.4                         | 0.02                                    | 72.55                                                                |
| Poultry             | 1,252                   | 0.1                                                                               | 125.2                                    | 1                                           | 125.2                           | 0.02                                    | 3.94                                                                 |
| Total               |                         |                                                                                   | 6515                                     | 1                                           |                                 | 0.02                                    | 204.77                                                               |




Nitrous oxide emissions from grazing animals (N<sub>EXPR</sub>) using IPCC (1997) default values for N excretion per animal type


| Livestock<br>Type   | Number<br>of<br>animals | N<br>excretion<br>per animal<br>type (kg<br>head <sup>-1</sup> yr <sup>-1</sup> ) | Total<br>annual N<br>excretion<br>(kg N) | Fraction<br>pasture<br>range and<br>paddock | N <sub>EXPR</sub> (kg<br>N yr¹) | EF3 (kg<br>N <sub>2</sub> O-<br>N/kg N) | N <sub>2</sub> O <sub>GRAZING</sub><br>(kg N <sub>2</sub> O yr<br>1) |
|---------------------|-------------------------|-----------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------|-----------------------------------------|----------------------------------------------------------------------|
| Non-dairy<br>cattle | 258                     | 40                                                                                | 10,320                                   | 1                                           | 10,320                          | 0.02                                    | 324.34                                                               |
| Carabao             | 62                      | 40                                                                                | 2,480                                    | 1                                           | 2,480                           | 0.02                                    | 77.94                                                                |
| Goat                | 46                      | 12                                                                                | 552                                      | 1                                           | 552                             | 0.02                                    | 17.35                                                                |
| Swine               | 398                     | 16                                                                                | 6,368                                    | 1                                           | 6,368                           | 0.02                                    | 200.14                                                               |
| Poultry             | 1,252                   | 0.6                                                                               | 751.2                                    | 1                                           | 751.2                           | 0.02                                    | 23.61                                                                |
| Total               |                         |                                                                                   | 20,471.2                                 | 1                                           |                                 | 0.02                                    | 643.38                                                               |



Direct and indirect N<sub>2</sub>O emissions in E. deglupta and G. arborea hedgerow systems



#### Nitrogen inputs and total N<sub>2</sub>O emission in E. deglupta and G. arborea hedgerow systems





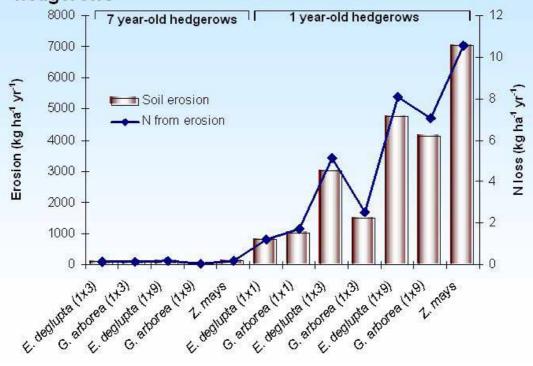
Total methane (CH<sub>4</sub>) emissions from enteric fermentation and manure management per animal type

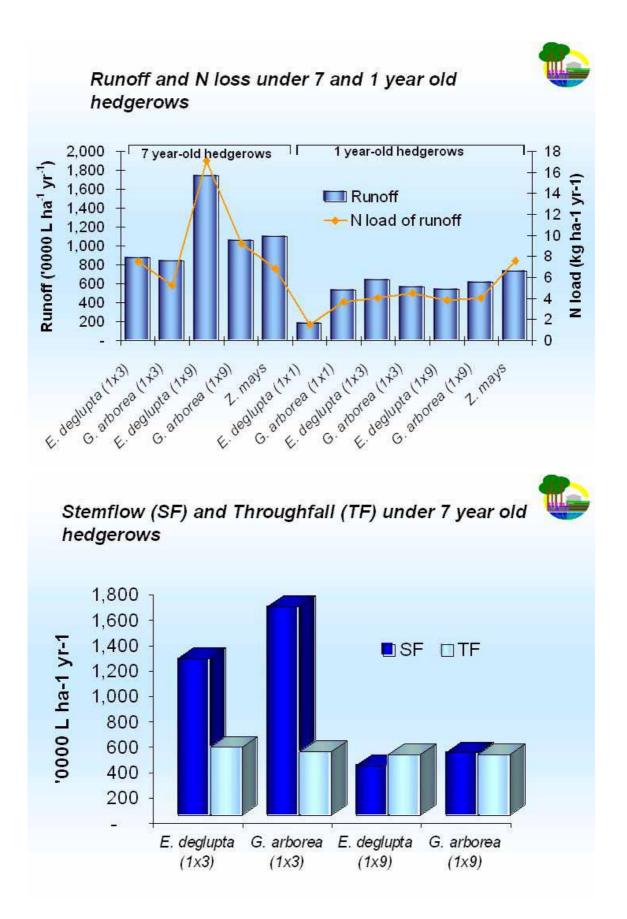
| Animal Type      | Enteric<br>fermentation<br>(kg CH <sub>4</sub> yr <sup>-1</sup> ) | Manure<br>management<br>(kg CH <sub>4</sub> yr <sup>-1</sup> ) | Total<br>methane<br>emissions<br>(kg CH <sub>4</sub> yr <sup>-1</sup> ) |
|------------------|-------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------|
| Non-dairy cattle | 11,352                                                            | 516                                                            | 11,868                                                                  |
| Carabao          | 3,410                                                             | 186                                                            | 3,596                                                                   |
| Goat             | 230                                                               | 10.1                                                           | 240.1                                                                   |
| Swine            | 597                                                               | 2,786                                                          | 3,383                                                                   |
| Poultry          | -                                                                 | 28.8                                                           | 28.8                                                                    |
| Total            |                                                                   |                                                                | 19,115.3                                                                |



### **Issues regarding GHG inventory**

|       |            | 08080000  |               | <b>NACOC</b>    |        | 080000        | 0.000000000                             | 02080                                   |                                        |              |            | 0000000    | 000000    | 0.00000    | 2000000   | -20202   | 000803       |             | 2020202020                              |            | 200000   | 0000            |
|-------|------------|-----------|---------------|-----------------|--------|---------------|-----------------------------------------|-----------------------------------------|----------------------------------------|--------------|------------|------------|-----------|------------|-----------|----------|--------------|-------------|-----------------------------------------|------------|----------|-----------------|
|       |            |           | 000000        | 38X0008         |        |               | 200608080                               | 00000000                                |                                        | 000000       | 0030204    | 8030603    | 8000      | 000000     | 2008000   | 0808     | 00000        | *****       | 080808080                               | 002-08-08  | 080808   | 080/            |
|       |            |           |               |                 |        | 08080         |                                         | 0000800000                              |                                        | 000000       |            |            | 800000    |            | 0000000   | -80803   | ~~~~         | 0000000     | 0000000000                              | 0800C0C    | x000000. | 308             |
|       | 00         | 0000000   |               | 2800000         |        | SP 000        | 2000000000                              | 0000000000                              |                                        |              | 000 000    |            | 080008    | 2008.200   | C3C868    | 10806(   | X0808(       | 00000       | 080808003                               | 008000     | 0808089  | 086             |
| ~~~~  | 00 A.S     | - Sec     | 2.30          |                 |        | C 10000       |                                         |                                         | 1000                                   |              |            | 20 DOM 100 |           |            |           | 10000000 |              | N 2000 P    |                                         | 100 M 2 1  |          | 199 B.C.        |
|       |            | Sec. 2 :  | ***           | 5 *****         | 5.00   | 1000          | an 11 a                                 | 7 45 2005                               | 10 23                                  | . ~          |            | 8848       |           | 100.00     |           | 10000    |              | 8 533 44    | A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |            | 8 J 48 1 | 2 <b>77</b> 23  |
|       | ST 334     | 8081      |               | 27au 100        |        | 1000          |                                         |                                         | ALC: 19970                             | Pos 7 8      |            | A secol    | ******    | 100        |           | 6 49 6   | <b>R</b> 4 4 |             | 0000 Page 2 4                           |            | 2 A 1000 | - <b>27</b> - 2 |
| 000   | 23.4XX     | Sec. Sec. | 1. (1. second | A               | 10000  | LAXXXXX       | and a strength of the second            | 48 S. 1998.                             | 0.000                                  | Second and a | and shares | (          | 20.00 2   | Street and | A DECKER  | Course 5 |              | A. 5000 ACC | Second Second Second                    | Acres 100  |          | 28XX            |
|       |            |           |               | ××              |        |               |                                         |                                         |                                        |              | 000000     | a          | C         |            |           | 20000    |              |             | esi                                     |            | 00000000 | /2003           |
|       |            |           |               | 0000000         |        | × × × × × × × | 000000000000000000000000000000000000000 |                                         | 0.0000                                 | 000000000    |            |            |           |            | COLOOXXX  | 200000   | 0.00000      |             | X7                                      | ~~~~~~     | 00000000 | 10000           |
|       |            |           | 0203086       |                 |        | 202200        |                                         |                                         | SC 36566                               |              |            |            | 0.0000000 |            | 50.50.000 | 2000000  | 0.0000       | 2020000     |                                         |            | 0000000  | 0808            |
|       | 00000      | 0202020   |               | <b>800</b> 0000 | 20002  | 084 803       |                                         | 000000000                               | ×0808                                  | 080808       |            | 00000000   |           |            | 8080808   | -80304   | ~~~~         | 00000000    |                                         | 0000000    | 0000000  |                 |
|       | 00 m       |           |               |                 |        |               |                                         | 20808080                                | x. 3080                                | 308080       |            | 0000000    | 0808084   |            | 0808080   |          | 00808        |             | 0000000000                              | 20002808   |          | 0808            |
|       |            |           |               | 100 HOR -       | 200 P. |               |                                         |                                         | 8 20 20                                |              |            |            |           |            |           | 2220.3   |              |             | *****                                   | 200.00.200 |          |                 |
| 00.3  |            |           |               |                 |        |               | 0.0000000                               |                                         | 0.5.70                                 |              |            | ******     | a         | a          | ~~~~      | 00500    |              |             | ******                                  |            |          | 20020           |
| 0.038 | 20.000     | ra        | XXXXXXXX      | 0/0003          | XXXXX7 | XXXXX         |                                         | 000000000000000000000000000000000000000 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |              | 000000     | 0000000    | 000000    | ~~~~~      | 800000X   | 30,30,3  |              |             | * 72222222                              |            |          | /2022           |
|       | Street St. |           |               | 0.000           |        |               |                                         | 000000000000000000000000000000000000000 | 0.000                                  | ~~~~~        | ~~~~       |            | ~~~~      |            | 000000X   | 00000    | ~~~~~        | ~~~~~       | x                                       | ~~~~~~     |          |                 |
| 000   |            |           | 20222000      | 000000          | xx 260 | 3722722       | 0.700000                                | 000000000000000000000000000000000000000 | 0.02.02                                |              |            | 0000000    |           |            |           | 20220    | 000000       |             |                                         |            | 00000000 |                 |


| Tree<br>species | Tree<br>age | Spacing | Maize<br>residue (g<br>plant <sup>1</sup> ) | Grain<br>yield (g<br>plant <sup>1</sup> ) | Grain +<br>cob (g<br>plant <sup>1</sup> ) | Ratio<br>(residue:<br>grain) | Ratio<br>(residue:<br>grain+cob) |
|-----------------|-------------|---------|---------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------|----------------------------------|
| E. deglupta     | 1           | 1x3     | 220.75                                      | 81.74                                     | 101.72                                    | 2.70                         | 2.17                             |
| E. deglupta     | 1           | 1x9     | 287.12                                      | 111.07                                    | 135.78                                    | 2.59                         | 2,11                             |
| G. arborea      | 1           | 1x3     | 176.07                                      | 60.71                                     | 74.99                                     | 2.90                         | 2.35                             |
| G. arborea      | 1           | 1x9     | 203.13                                      | 74.45                                     | 90.88                                     | 2.73                         | 2.24                             |
| Z. mays         |             |         | 308.26                                      | 115.23                                    | 138.14                                    | 2.68                         | 2.23                             |
| E. deglupta     | 7           | 1x3     | 195.11                                      | 58.83                                     | 72.41                                     | 3.32                         | 2.69                             |
| E. deglupta     | 7           | 1x9     | 307.23                                      | 86.27                                     | 103.88                                    | 3.56                         | 2.96                             |
| G. arborea      | 7           | 1x3     | 122.11                                      | 29.96                                     | 40.30                                     | 4.08                         | 3.03                             |
| G. arborea      | 7           | 1x9     | 272.59                                      | 75.31                                     | 89.95                                     | 3.62                         | 3.03                             |
| Z. mays         |             |         | 439.93                                      | 110.37                                    | 138.42                                    | 3.99                         | 3.18                             |




#### Local and IPCC default values for the N excretion values for the different animal types

| Livestock type   | N excretion per<br>animal type<br>(IPCC, kg head <sup>-1</sup><br>yr <sup>-1</sup> ) | N excretion per<br>animal type<br>(local, kg head <sup>-1</sup><br>yr <sup>-1</sup> ) |
|------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Non-dairy cattle | 40                                                                                   | 12.3                                                                                  |
| Carabao          | 40                                                                                   | 14.2                                                                                  |
| Goat             | 12                                                                                   | 0.6                                                                                   |
| Swine            | 16                                                                                   | 5.8                                                                                   |
| Poultry          | 0.6                                                                                  | 0.1                                                                                   |

## Soil erosion and N loss under 7 and 1 year old hedgerows







### Conclusions



- In tree-based hedgerow systems, crop residue incorporation and fertilizer application are the major sources of nitrogen inputs. Animal manure, litterfall, stemflow and throughfall are other sources of nitrogen inputs into the soil.
- Nitrogen losses from hedgerow systems include soil erosion, surface runoff, crop harvest (grain yield) and volatilization and leaching of N fertilizer.
- Indirect sources of N<sub>2</sub>O emissions in hedgerow systems are atmospheric deposition of NH<sub>3</sub> and NO<sub>x</sub> and N leaching.

### Conclusions

- The major source of N<sub>2</sub>O emissions from the agroforestry systems studied is the direct N<sub>2</sub>O emissions from soil.
- Maize monocropping system had higher N<sub>2</sub>O emissions than hedgerow systems.
- Enteric fermentation is the major source of methane emissions from domestic livestock in Claveria.
- Soil erosion is significantly reduced in a established 7-year old hedgerows.



### Conclusions

- Considerable amounts of N are contained in stemflow, throughfall, runoff and erosion which could be possible source of N emission in hedgerow AF systems.
- Use of local values for N excretion factors will reduce uncertainties in the estimates of N excretion from animal manure.
- A number of factors identified in this study that needs further research to improve estimates of N<sub>2</sub>O emissions were the N excretion factor per animal type, residue to grain (residue to crop) ratio, fraction leaching and fraction volatilization.



This study is part of the Smallholder Agroforestry Options for Degraded Soils (SAFODS) Project funded by the European Union. We would like to thank the farmer respondents who shared their time, experience and knowledge with the research team. SALAMAT.



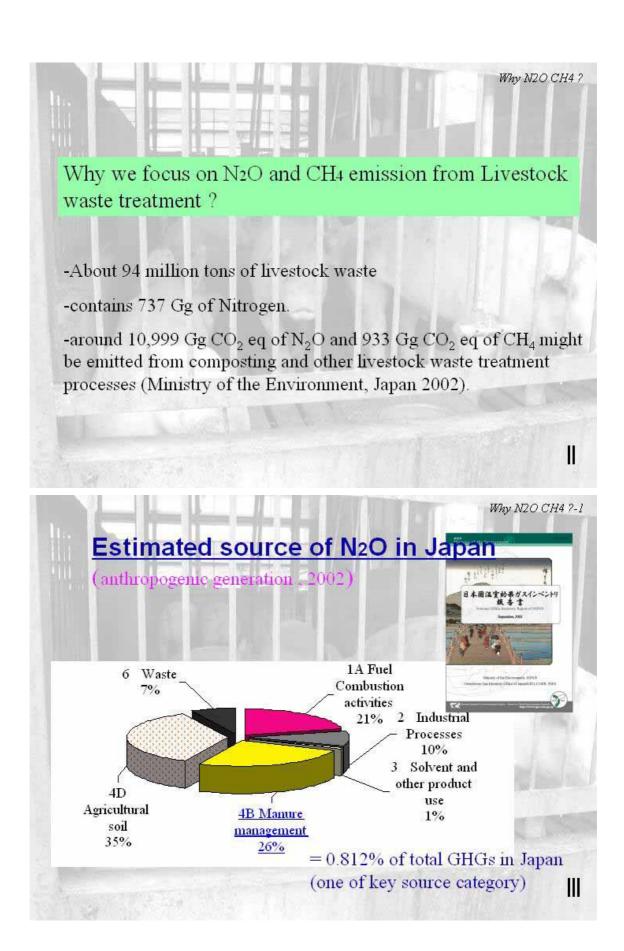
### Better evaluation system for N<sub>2</sub>O and CH<sub>4</sub> emission from composting (and wastewater purification) of Livestock waste

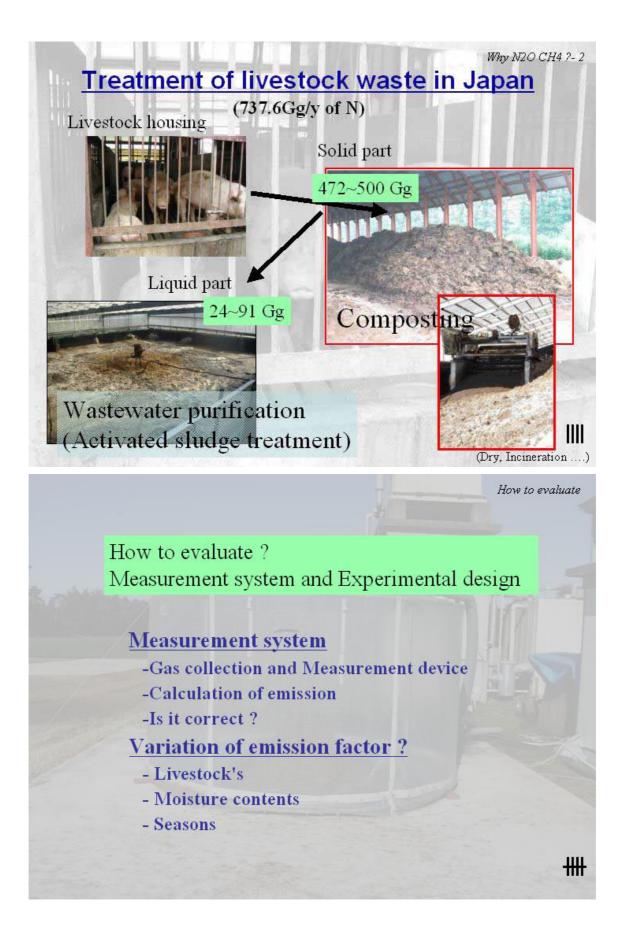
#### Takashi OSADA

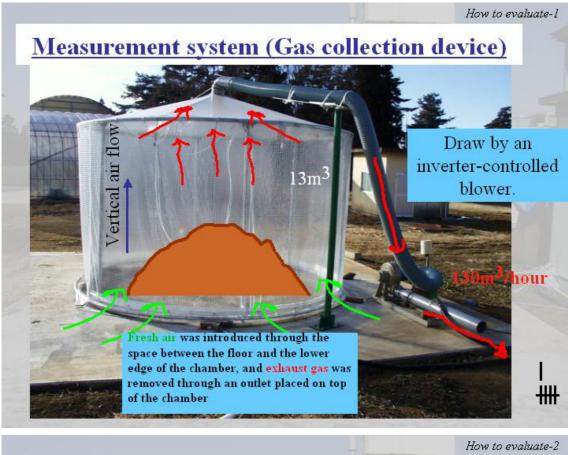
National Agricultural Research Organization, JAPAN,

I would like to say

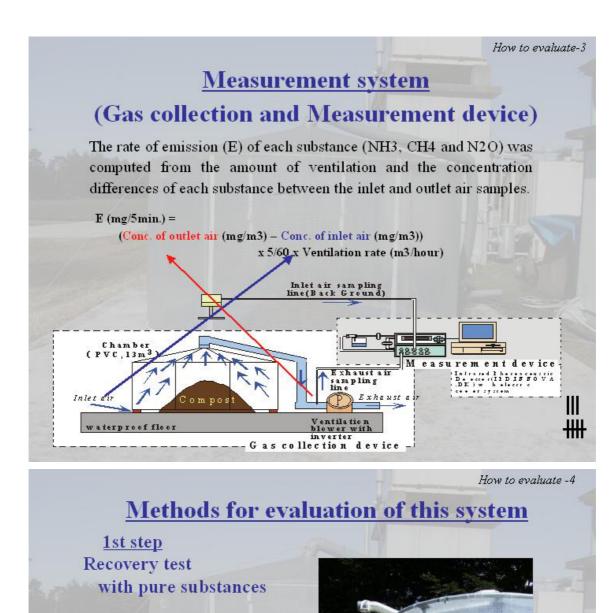
### In this presentation


Why we focus on N2O and CH4 emission from Livestock waste treatment ? Share , Agricultural sector, N cycle

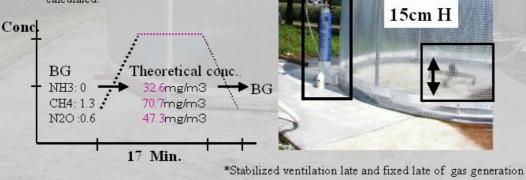

How to evaluate ? Measurement system and Experimental design

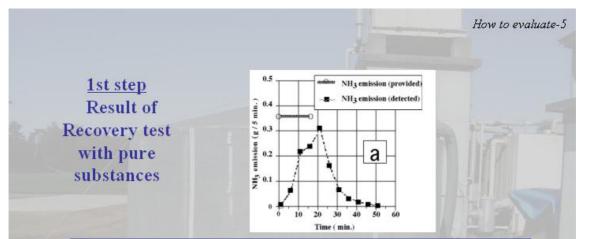

Evaluation and Mitigation of emission


Emission factor, changes in process


Emission factor of N2O and CH4 from Livestock waste composting / in our experiment





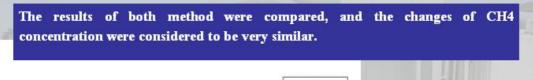


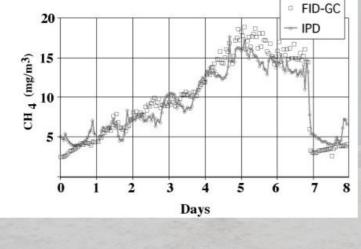



In order to evaluate recovery efficiencies, a fixed quantity of each substance (gas) was generated within the center of the chamber 15 cm high, and the total amount of emissions by this chamber system was calculated.






No great difference was found in movement of three sorts of substances. In the 130 m3/h exchange volume condition for 17-minutes the concentration of each substance became elevated during 40 - 50 minutes.

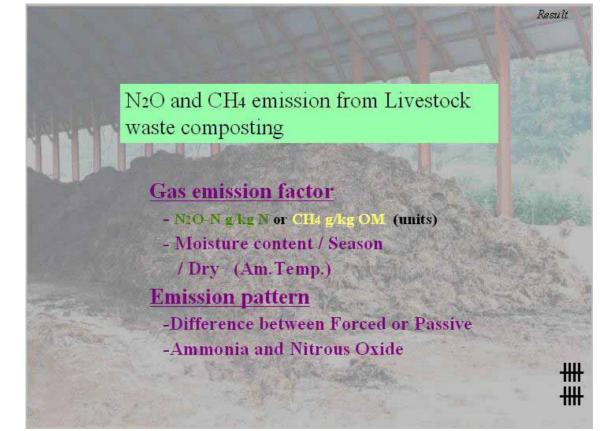

The average recovery of each substance was good based on the results of a field examination. NH3, CH4 and N2O recoveries were 98.5% (S.D. 6.25), 96.6% (S.D. 4.03) and 99.5% (S.D. 2.68), respectively

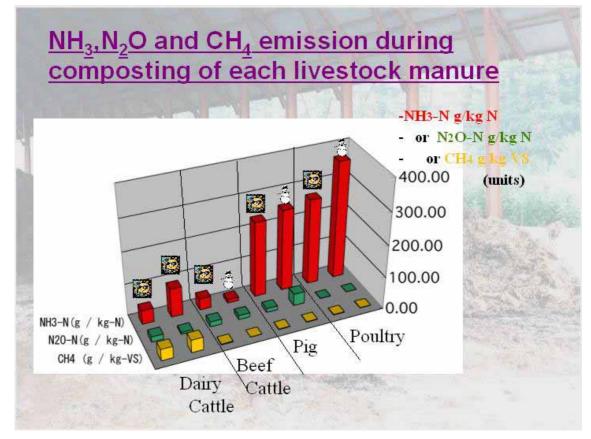
Step 2

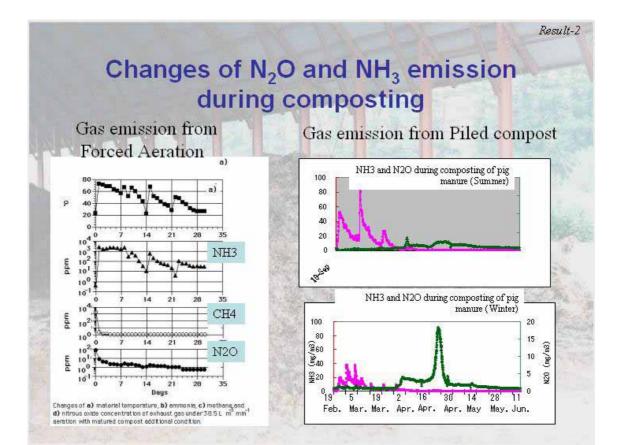
How to evaluate-6

Comparison with values from conventional methods at composting examination (CH4)







The total amount of methane generated over 8 days following the start of the composting was 227g by the IPD method and 239g by the FID-GC method, and the difference was small at around 5%.




How to evaluate-4

|                                                         |                                                                                            | Exp                                                                                           | erimer                                                           | ital d                                                                      | esign                                      |  | Lin- |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------|--|------|
| 7                                                       |                                                                                            | X                                                                                             | Piled &<br>Turned<br>weekly                                      |                                                                             |                                            |  |      |
| a terminal                                              | ure of Fec<br>ust (400k                                                                    |                                                                                               |                                                                  |                                                                             |                                            |  |      |
| a terminal                                              |                                                                                            | g ap.)<br>Products of t<br>Total                                                              | the compostig<br>Moisture                                        | Turning                                                                     | Days of                                    |  |      |
| Sawd                                                    | ust (400k                                                                                  | g ap.)<br>Products of t<br>Total<br>weight                                                    |                                                                  |                                                                             | Days of composting                         |  |      |
| Sawd                                                    | ust (400k                                                                                  | g ap.)<br>Products of t<br>Total                                                              | Moisture<br>content                                              | interval of                                                                 |                                            |  |      |
| Sawd                                                    | ust (400k<br>Livestock                                                                     | g ap.)<br>Products of t<br>Total<br>weight<br>kg                                              | Moisture<br>content<br>%                                         | interval of the pile                                                        | composting                                 |  |      |
| Sawd<br>Runs<br>Dairy 1                                 | ust (400k<br>Livestock<br>Dairy cattle                                                     | g ap.)<br>Products of t<br>Total<br>weight<br>kg<br>602.0                                     | Moisture<br>content<br>%<br>83.5                                 | interval of<br>the pile<br>15 days                                          | composting<br>119                          |  |      |
| Sawd<br>Runs<br>Dairy 1<br>Dairy 2                      | ust (400k<br>Livestock<br>Dairy cattle<br>manure                                           | g ap.)<br>Products of t<br>Total<br>weight<br>kg<br>602.0<br>455.0                            | Moisture<br>content<br>%<br>83.5<br>85.6                         | interval of<br>the pile<br>15 days<br>15 days                               | composting<br>119<br>119                   |  |      |
| Runs<br>Dairy 1<br>Dairy 2<br>Beef 1                    | ust (400k<br>Livestock<br>Dairy cattle<br>manure<br>Beef cattle<br>manure                  | g ap.)<br>Products of t<br>Total<br>weight<br>kg<br>602.0<br>455.0<br>149.4                   | Moisture<br>content<br>%<br>83.5<br>85.6<br>45.7                 | interval of<br>the pile<br>15 days<br>15 days<br>7 days                     | composting<br>119<br>119<br>63             |  |      |
| Runs<br>Dairy 1<br>Dairy 2<br>Beef 1<br>Beef 2          | ust (400k<br>Livestock<br>Dairy cattle<br>manure<br>Beef cattle                            | g ap.)<br>Products of 1<br>Total<br>weight<br>kg<br>602.0<br>455.0<br>149.4<br>198.0          | Moisture<br>content<br>%<br>83.5<br>85.6<br>45.7<br>56.1         | interval of<br>the pile<br>15 days<br>15 days<br>7 days<br>7 days           | composting<br>119<br>119<br>63<br>49       |  |      |
| Runs<br>Dairy 1<br>Dairy 2<br>Beef 1<br>Beef 2<br>Pig 1 | ust (400k<br>Livestock<br>Dairy cattle<br>manure<br>Beef cattle<br>manure<br>Fattening pig | g ap.)<br>Products of t<br>Total<br>weight<br>kg<br>602.0<br>455.0<br>149.4<br>198.0<br>110.0 | Moisture<br>content<br>%<br>83.5<br>85.6<br>45.7<br>56.1<br>35.4 | interval of<br>the pile<br>15 days<br>15 days<br>7 days<br>7 days<br>7 days | composting<br>119<br>119<br>63<br>49<br>56 |  |      |



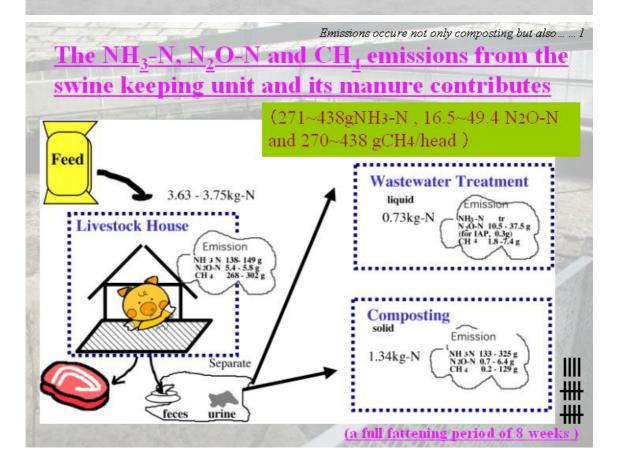




### Conclusion (1/2)

We developed a system for the quantitative measurement of emissions from composting using a large dynamic chamber in an experiment.

According to the results of this experiment, the compostingmanure emission factors of  $CH_4$  and  $N_2O$  varied significantly between livestock types, moisture contents of the pile materials and ambient temperature. Those factors should also depend on manure treatment type.


This can be important information not only for inventory data but for the development of greenhouse gas regulations and technologies.

### Conclusion (2/2)

In Asian countries, the compost process is widely used for the treatment of livestock waste. Although the exact amount of greenhouse gases generated from actual composting is not known.

Not only the compost, but the emission factor of each treatment system should be evaluated under each countries procedure and general conditions, because those factors might be widely varied.

It is important that each country has the measurement technique of GHG emission, not only for inventory data but for the development of greenhouse gas regulations and technologies.





might not be so big as you suppose, I hope.

3<sup>rd</sup> Workshop on GHG Inventories in Asia Region 23 -24 February, 2006, Manila, The Philippines.

Development Inventory of the Countryspecific Activity Data and Estimation Methods for Forests Ecosystems and Land-use Change in Malaysia

> Kho L. K. Forest Research Institute of Malaysia (FRIM) 52109 Kepong, Selangor.

> > M8 180 9001 : 2000 M2 2 PA 20

### **Forest Resources Malaysia**

- Classification of forest types in different regions
- Verification of reported figures/ statistics
- Definition & interpretation
- Reporting source
- Policy & Jurisdiction
- Satellite imageries vs. aerial photograph techniques
- Uncertainties & unsuitability of assumptions

Má 180 9001 : 2000 Mí 2 PA E

### Malaysia: Forested Area By Region, 2000 (Million Hectares)

| Region              | 2000  | 2005 |
|---------------------|-------|------|
| Peninsular Malaysia | 5.94  |      |
| Sabah               | 4.42  |      |
| Sarawak             | 9.84  |      |
| Total               | 20.20 |      |

Source: FDPM, FD-Sabah & Sarawak



3

M& 180 9001 : 2000

| Region              | Protective | Productive | Total |
|---------------------|------------|------------|-------|
| Peninsular Malaysia | 1.90       | 2.90       | 4.80  |
| Sabah               | 1.03       | 4.97       | 6.00  |
| Sarawak             | 0.91       | 2.69       | 3.60  |
| Total               | 2.91       | 10.56      | 14.40 |
|                     |            |            |       |

Source: FDPM, FD-Sabah & Sarawak

4

M8 180 9001 : 2000 M 2 PA 2 C

#### Malaysia: Distribution and Extent of Major Forest Type, 2000 (Million Hectares)

| Region                 | Inland | Swamp | Mangrove | Others | Total Forested<br>Land |
|------------------------|--------|-------|----------|--------|------------------------|
| Peninsular<br>Malaysia | 5.500  | 0.200 | 0.100    | 0.100  | 5.900                  |
| Sabah                  | 3.810  | 0.120 | 0.340    | 0.340  | 4.420                  |
| Sarawak                | 8.640  | 1.040 | 0.130    | 0.130  | 9.840                  |
| Total                  | 17.950 | 1.360 | 0.670    | 0.284  | 20.160                 |

Source: FDPM, FD-Sabah & Sarawak

### The Extent of Forest Resources

M& 180 9001 : 2000

MI OA ZO

Rich biodiversity of flora & fauna

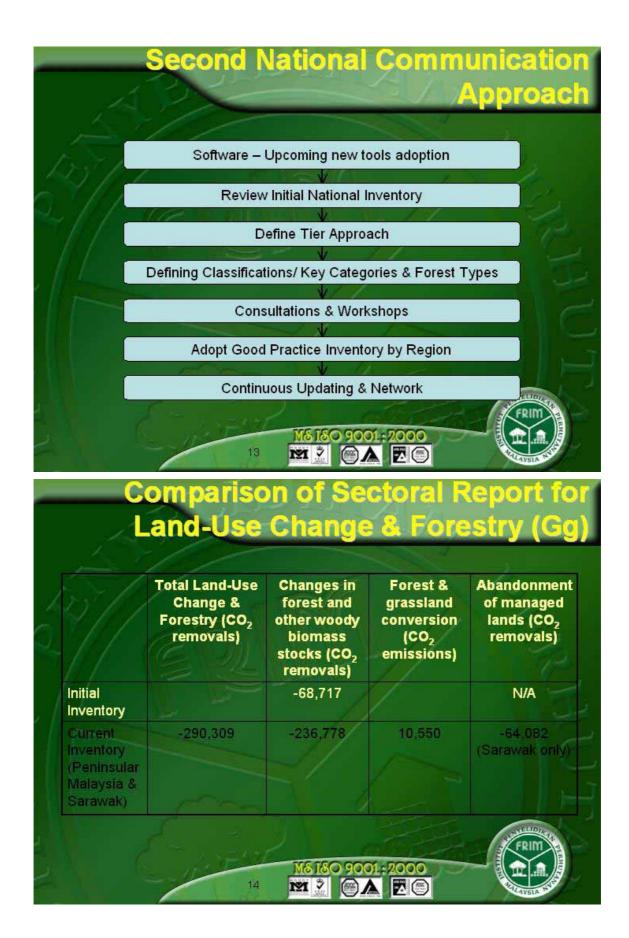
5

- Sustainable Forest Management (SFM)
  - Achieve balance between development and conservation
- National & State forest policies

6

- National Forestry Policy (NFP) 1978
- Sarawak Forest Ordinance (1958)
- Sabah Forest Policy (1948)

Mő 180 9001 : 2000 M 2 PA 200

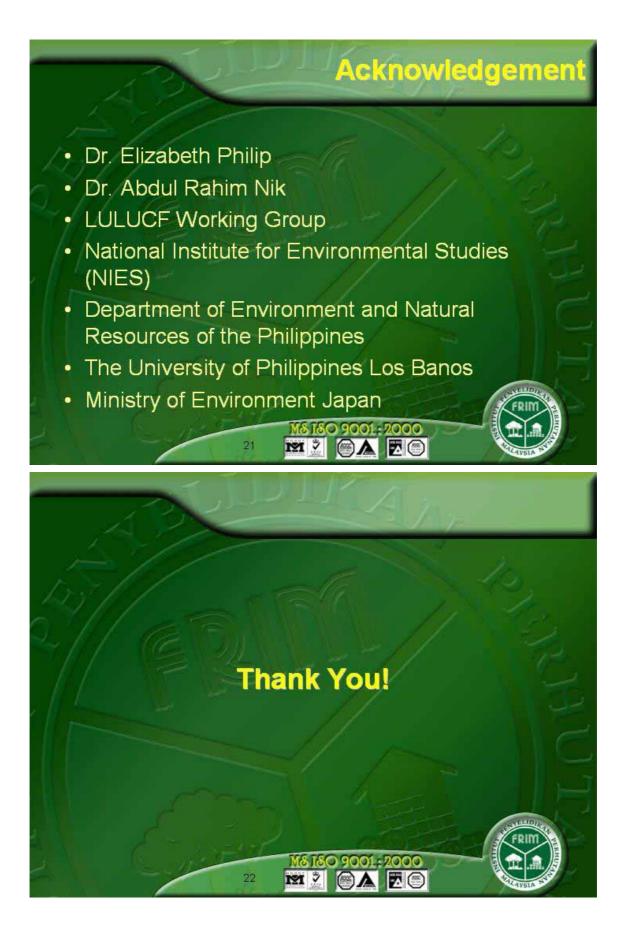





|                       | Initial Inventory                                                                                                                                                                            | Current Inventory                                                                                                                                                                                                         |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Area                  | Acreage of forest and agriculture plantation                                                                                                                                                 | Acreage of PRF category and<br>sub-categories, stateland, wildlife<br>reserves, plantations, and non-<br>forest trees.                                                                                                    |
| Annual growth<br>rate | Acacia mangium = 15.0 tdm/ha<br>Others = 11.0 tdm/ha (average of<br>Eucalyptus, Tectona, Pinus spp.)<br>Source: IPCC Guidelines for<br>National Greenhouse Gas<br>Inventories, Vol. 2, 1995. | <ul> <li>Acacia Mangium</li> <li>Tectona grandis</li> <li>Pine</li> <li>Azadirachta excelsa</li> <li>Rubber</li> <li>Oil palm</li> <li>Others = 12.5<sup>2</sup> tdm/ha<br/>(mixed fast-growing<br/>hardwoods)</li> </ul> |
| Commercial<br>harvest | Plantation logs = 10,232,348 m3<br>Rubberwood = 1,156,667 m3                                                                                                                                 | Total HHW/ MHW/ LHW =<br>5,049,284 m3<br>Rubberwood – Not availablem                                                                                                                                                      |

|                                              | Initial Inventory                                                                            | Current Inventory                                                                                  |
|----------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Fuelwood                                     | Not accounted.                                                                               | Figures from FD- Sabah & Sarawak only.                                                             |
| Non-forest trees                             | Not accounted                                                                                | Statistics and key assumptions of FDPM, FD – Sabah & Sarawak.                                      |
| Area converted<br>annually                   | 1 kha                                                                                        | FDPM, FD – Sabah & Sarawak<br>statistics on area harvested<br>(mean average less than 10<br>years) |
| Fraction biomass<br>on-site and off-<br>site | Burned on-site = 0.07 (tropical<br>forest)<br>Carbon fraction burned on/off -<br>site = 0.45 | Integrated working group<br>assumptions.                                                           |
|                                              | Burned off-site = 0.68                                                                       |                                                                                                    |






# <section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>









The 3rd Workshop on GHG Inventories in Asia Region February 23-24, 2006

#### Manila, Philippines

#### Development of the LULUCF's GHG Inventories of Cambodia

Prepared by Heng Chan Thoeun, CCCO Ministry of Environment, Cambodia

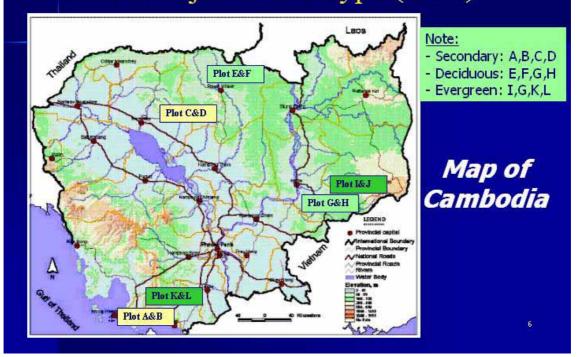
# **Outline of Presentation**

1. Introduction

- 2. Direct Measurement of Biomass of the Major Forest Type
- Conversion of measured biomass values into values in carbon pools under the <u>GPG-LULUCF</u>
- 4. Development of activity data for 2000 including assumptions made to estimate land areas which went through land use conversion

#### 1. Introduction

- Cambodia ratified the UNFCCC on 18 December 1995;
- Acceded to the Kyoto Protocol on 4 July 2002;
- Ministry of Environment (MoE) is the National Focal Point for the UNFCCC and the Kyoto Protocol;
- Cambodian National GHG Inventory was prepared for the first time in 1994 as the base year by the Climate Change Enabling Activity Project (CCEAP) phase1 and phase2: Improvement of Activity Data and Emission Factors for Forestry Sector. The methodologies based on the Revised 1996 IPCC Guidelines;
- Cambodia is a project partners, which conduct a field surveys for the improvement of GHG inventories of the LULUCF sector, funded by Asia Pacific Network (APN) and executed by the National Institute for Environmental Studies (NIES) of Japan;


#### 1. Introduction (cont.)

- For 2004-2006, the CAPaBLE project in Cambodia focused on activities:
  - + Determination of the overall work plans
  - Planning and preparation for the training in Dec. 2004
  - Organizing a three-days field training (Koh Kong province)
  - Planning and preparation for the measurement in CAPaBLE plots
  - Implementation of the first time measurement (Mar. 2005)
  - APN CAPaBLE-NIES: Meeting with MoE-Cambodia (October 4-7, 2005): Prepare the Excel table format for the application of collected and analyzed data to an inventory by using the IPCC's GPG-LULUCF; Compare the estimation methodologies used between the previous and new inventories; Evaluate the overall methodology used; Discuss the items to be included in the final activity report
  - The second time measurement (Jan-Feb. 2006)
  - Data analysis, evaluation of the measurement, and report.

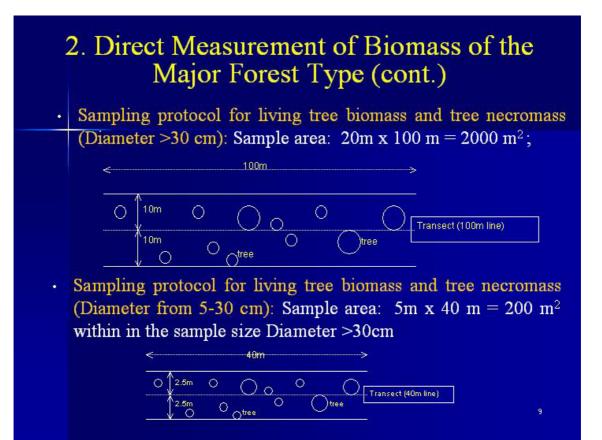
#### 2. Direct Measurement of Biomass of the Major Forest Type

- The field survey focused on the main forest types which play an important role as the key source/sink categories:
  - Evergreen forest;
  - Deciduous forest; and
  - Secondary forest;
- Two different locations of field measurements were conducted for each forest type;
- The objectives of field surveys are to: (i) identify type, species and number of trees in three selected forest types; (ii) estimate the aboveground biomass of tress in these selected forest types; and (iii) estimate the annual biomass increment of the selected forest types.

# 2. Direct Measurement of Biomass of the Major Forest Type (cont.)

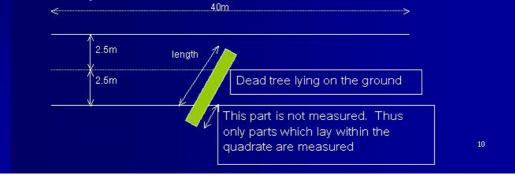


| Locations and schedule of survey |                         |                                           |                       |                       |            |  |  |  |  |
|----------------------------------|-------------------------|-------------------------------------------|-----------------------|-----------------------|------------|--|--|--|--|
| Plot                             | Forest type             | Location                                  | Measurement<br>Time 1 | Measurement<br>Time 2 |            |  |  |  |  |
| A                                | Secondary<br>forest     | Secondary Sihanoukville                   |                       | 28 Feb-3 March 05     | January 06 |  |  |  |  |
| В                                |                         | forest (Ream NP)                          |                       |                       |            |  |  |  |  |
| С                                |                         | Siem Reap (Kulen                          | 6 -9 March 05         | February 06           |            |  |  |  |  |
| D                                |                         | Prumtep NP)                               |                       |                       |            |  |  |  |  |
| E                                | Deciduous               | Preah Vihear                              | 19-23 March 05        | February 06           |            |  |  |  |  |
| F                                |                         | (Wildlife sanctuary)                      |                       | 1357                  |            |  |  |  |  |
| G                                |                         | Kratie -Snoul                             | 27-31 March 05        | January 06            |            |  |  |  |  |
| H                                |                         | (Wildlife sanctuary)                      |                       |                       |            |  |  |  |  |
| I                                | Evergreen Kratie -Snoul |                                           | 2-5 April 05          | January 06            |            |  |  |  |  |
| J                                |                         | (Wildlife sanctuary)<br>Kampot (Bokor 6-9 |                       | 2017                  |            |  |  |  |  |
| K                                |                         |                                           |                       | January 06            |            |  |  |  |  |
| L                                |                         | NP)                                       |                       | 7                     |            |  |  |  |  |


#### 2. Direct Measurement of Biomass of the Major Forest Type (cont.)

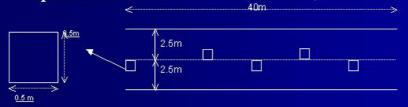
#### 2. Direct Measurement of Biomass of the Major Forest Type (cont.)

- The methodology for field survey followed by Hairiah K. et al. (2001): Methods for sampling carbon stocks above and below ground and the final report of the Cambodia Climate Change Enabling Activity Project's Phase 2 (2003).
- The measurement consists of two parts:


(i) non-destructive sampling for the trees, including diameter and height of living tress and necromass;

(ii) destructive sampling for the understorey, necromass, and living tree biomass.




#### 2. Direct Measurement of Biomass of the Major Forest Type (cont.)

- For each tree specie is recorded and the diameter at 1.3m above the soil surface is measured using a diameter tape (diameter at breast height: DBH) for the First and Second time;
- Height of trees, selected within a plot, is also measured and recorded for the First and Second time;
- Sampling protocol for tree necromass: Sample area: 5m x 40 m = 200 m<sup>2</sup>;





Sampling protocol for destructive sampling in 1.25 m<sup>2</sup>:
 Sample area: 5m x 40 m = 200 m<sup>2</sup>;



- Living tree biomass: set up randomly a sampling frame of 0.5m x 0.5m in each quadrate with trees less than 5 cm DBH, i.e. seedling or saplings, are harvested within the 1m x 1m quadrate;
- Coarse litter: crop residues, all unburned leaves and branches;
- *Fine litter:* dark litter, including all woody roots which partly decomposed;
- Sun dry: living tree biomass, coarse litter and fine litter are dried using sun-light.

# 3. Conversion of measured biomass values into values in carbon pools under the GPG-LULUCF

| CAPaBLE                            |        |                                                                                    |                    | IPCC Pool            |  |
|------------------------------------|--------|------------------------------------------------------------------------------------|--------------------|----------------------|--|
| Carbon pools                       | Symbol | Definition                                                                         | Sampling<br>method | Carbon pools         |  |
| Live trees                         | BT     | BT with a stem diameter of 30 cm in standard sample plot (20*100 m)                |                    | Above ground         |  |
|                                    | LT     | with a stem diameter of 5<<30 cm<br>in large area (5*40 m)                         | Non-destructive    | biomass              |  |
| Understorey                        | L+S    | includes trees less <5cm in diameter                                               | Destructive        | Above ground biomass |  |
| Litter                             | CLit   | Coarse/standing litter: tree necromass<br><5cm in diameter and/or <50 cm<br>length |                    | Litter               |  |
|                                    | FLit   | Fine litter: dark litter, including all<br>woody roots which partly<br>decomposed  | Destructive        | Litter               |  |
|                                    |        | Surface roots                                                                      |                    |                      |  |
| Dead felled trees                  | DFT    | Dead trees on the ground with a<br>diameter >5cm and >50cm length                  | Non-destructive    | Dead wood            |  |
| Stump (trunk)<br>remains in forest | DST    | Dead standing trees with a diameter<br>>5cm and >50cm length                       | Non-destructive    | Dead wood            |  |

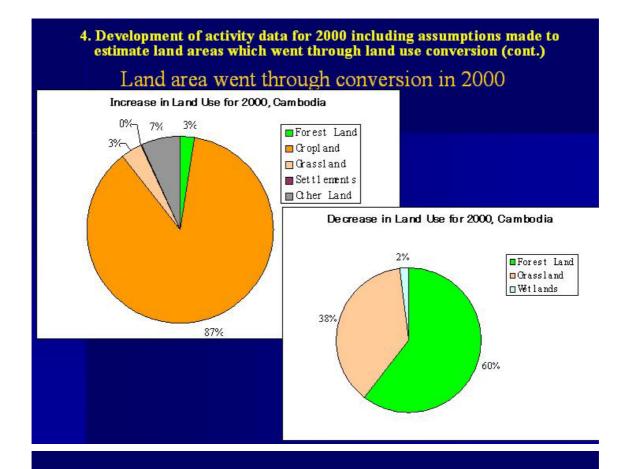
Translation of carbon pools from CAPaBLE to GPG-LULUCF

# 3. Conversion of measured biomass values into values in carbon pools under the GPG-LULUCF (cont.)

Summary of key points of CAPaBLE survey in IPCC definition

| IPCC pools                                                       | CAPaBLE<br>Carbon pools                         | Forest types: Secondary,<br>Deciduous, and Evergreen Forests<br>(t dm/ha) |     |            |         |  |
|------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------|-----|------------|---------|--|
|                                                                  |                                                 | T=1                                                                       | T=2 | Difference | Average |  |
| Living Biomass:<br>- Aboveground and<br>- Belowground<br>biomass | - Live trees<br>- Understorey                   |                                                                           |     |            |         |  |
| Dead Organic<br>Matter:<br>- Dead wood,<br>- Litter              | - Dead wood<br>- Coarse litter<br>- Fine litter |                                                                           |     |            |         |  |
| Soils: Soil organic matter                                       | N/A                                             |                                                                           |     |            | 13      |  |

#### 4. Development of activity data for 2000 including assumptions made to estimate land areas which went through land use conversion


- Base on IPCC GPG-LULUCF, to estimate the land areas which go through the conversion of land uses in 2000, a number of assumptions were proposed to be taken;
- The difference areas of specific land use categories between the initial and final point in time experienced land conversion;
- For example, in Cambodia, it was estimated that the land area of Forest Land was decreased by around 55,000 hectares in 2000. In this case, we assumed the area of Forest Land went through land use conversion and the rest of Forest Land area remained as Forest Land;

|   | Development of activity data for 2000 including<br>assumptions made to estimate land areas which<br>went through land use conversion (cont.)                                                           |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | The difference areas of land use categories between the beginning and end of year 2000, the increased and decreased areas of land use categories through conversion in 2000 were obtained;             |
|   | The increased land area of a land use category means<br>that the area was increased because some lands were<br>converted from different land use categories into the<br>land use category;             |
| • | The total of increased area is equivalent to that of the decreased area. Then estimated the areas of land use conversion of each land use category by making assumption considered the most realistic; |

4. Development of activity data for 2000 including assumptions made to estimate land areas which went through land use conversion (cont.)

| Assum<br>ption | Land conversion concerned<br>(Area in Ha) |                         | Description of assumption                                                                                                                                                                                                                                          |
|----------------|-------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.            | Before                                    | After                   |                                                                                                                                                                                                                                                                    |
| 1              | Grassland<br>(2,529.5)                    | Forestland<br>(2,529.5) | It is difficult to predict forest planting was<br>conducted after destroying existing forests.<br>Considering ecological reasons, it is also difficult<br>to plant trees in wetlands. Hence, it is assumed that<br>all plantations were established in grasslands. |
| 2              | Forestland<br>(3,336.3)                   | Grassland<br>(3,336.3)  | It is the most realistic to assume grassland was<br>established by converting forestland.                                                                                                                                                                          |
| 3              | Grassland<br>(247.5)                      | Settlements<br>(247.5)  | It is the most realistic to assume settlements was<br>established by converting grassland.                                                                                                                                                                         |
| 4              | Forestland<br>(54,565.3)                  | Cropland<br>(83,785.3)  | The remaining area of forestland that went through conversion was reported here.                                                                                                                                                                                   |
| 5              | Grassland<br>(29,220)                     |                         | It is assumed that the rest of area of cropland<br>converted from different land uses was area<br>converted from grassland.                                                                                                                                        |
| 6              | Grassland<br>(4,196.5)                    | Other land<br>(6505.5)  | The remaining area of grassland that went through conversion was reported here.                                                                                                                                                                                    |
| 7              | Wetlands<br>(2309.0)                      |                         | It is assumed that the rest of area of other land<br>converted from different land uses was area <sup>16</sup><br>converted from wetlands.                                                                                                                         |

#### Assumptions made to estimate the areas of land use conversion



### Thank You for Your Attention!

Please see our website: www.camclimate.org.kh

18

# Experience learned by using the IPCC's Good Practice Guidance on Land Use, Land-Use Change and Forestry in developing Japan's GHG inventories

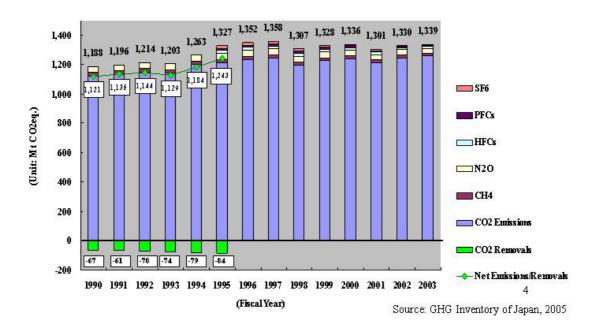
SATO Atsushi Greenhouse Gas Inventory Office of JAPAN (Mitsubishi UFJ Research & Consulting)

## Outline

- 1. Overview of Japan's GHG Inventory
- 2. Overview of LULUCF Sector
- 3. Comparison between LULUCF Inventory and LUCF Inventory
- 4. LULUCF Inventory Preparation

2

1


#### 1. Overview of Japan's GHG Inventory

3

#### GHG emissions and removals in Japan

• GHG emissions from source : 1,327 Mt CO<sub>2</sub>eq. in 1995





# Japan's GHG inventory

- Developed and submitted to UNFCCC every year since 1996
- Using CRF (Common Reporting Format) and Excel based calculation files
- Have been preparing NIR since 2003
- Will use CRF reporter for submitting to UNFCCC from 2006

Japan has been developing national inventory system to satisfy the UNFCCC and Kyoto Protocol requirements 5

Japan's inventory preparation system

- The Ministry of Environment (MOE) is the national entity responsible for national inventory.
- GIO and some private-sector consulting firms work together with MOE for inventory preparation.
- Other Ministries are involved in the inventory preparation system by providing data, confirming data from technical view point and so on.
- External experts review calculation methods, EF, activity data, and an entire inventory and provide advice.

# 2. Overview of LULUCF Sector

# GHG emissions and removals of LULUCF sector in Japan

|                                              |               |         | 0      | GgCO <sub>2</sub> eq |
|----------------------------------------------|---------------|---------|--------|----------------------|
| Land Use Categories                          |               | CO2     | CH₄    | N₂O                  |
| 5A. Forest Land                              | -93,149       |         |        |                      |
| 1. Forest Land remaining Forest Land         |               | -91,637 | 22.45  | 2.28                 |
| 2. Land converted to Forest Land             |               | -1,537  | IE     | IE                   |
| 5B. Cropland                                 | 2,298         |         |        |                      |
| 1. Cropland remaining Cropland               | 5             | 0       | 0.00   | 0.00                 |
| <ol><li>Land converted to Cropland</li></ol> |               | 2,085   | 6.17   | 207.26               |
| 5C. Grassland                                | 1,636         | 8       |        |                      |
| 1. Grassland remaining Grassland             |               | 0       | NE     | NE                   |
| 2. Land converted to Grassland               |               | 1,635   | 0.93   | 0.09                 |
| 5D. Wetlands                                 | 231           |         |        |                      |
| 1. Wetlands remaining Wetlands               |               | NO,NE   | NE     | NE                   |
| 2. Land converted to Wetlands                |               | 225     | 5.52   | 0.56                 |
| 5E Settlements                               | 4,548         |         |        |                      |
| 1. Settlements remaining Settlements         | and an access | -332    | NE     | NE                   |
| 2. Land converted to Settlements             |               | 4,759   | 109.29 | 11.09                |
| 5F. Other Land                               | 1,127         |         |        |                      |
| 1. Other Land remaining Other Land           |               |         | NE     | NE                   |
| 2. Land converted to Other Land              |               | 1,114   | 11.82  | 1.20                 |
| Total Land-Use Categories                    | -83,309       | -83,688 | 156    | 222                  |

Table1: Emissions & Removals of LULUCF sector in 1995

(+) emission, (-) removal

Source: LULUCF CRF of Japan, 2005

7

## Feature of land use in Japan

- Area of forest cover is large
  - two-third of national land
  - this ratio has not been changed for the last 100 years.
- Most of agricultural land use is arable and tillage.
  - grassland is not significant in Japan
- The ratio of settlements have been increasing.
  - urban greening also have been performed

| Land Use Category        |           | 1990  | 1995  | 2003  |
|--------------------------|-----------|-------|-------|-------|
| Forest                   | [10^4ha]  | 2,524 | 2,514 | 2,509 |
| Agricultural land use    | [10^4ha]  | 534   | 513   | 482   |
| Wilderness               | [10^4ha]  | 27    | 26    | 26    |
| Water surface and river  | [10^4ha]  | 132   | 132   | 134   |
| Road and Residential lan | d[10^4ha] | 275   | 291   | 313   |
| Other land use           | [10^4ha]  | 285   | 303   | 316   |
| Total                    | [10^4ha]  | 3,777 | 3,779 | 3,780 |

Table: Area of Land Use in Japan

Source: Land White Book, MLIT Japan, 2005

# Japan's LULUCF (LUCF) Inventory

- Developed LUCF Inventory based on 1996GL and used it until 2004 submission.
- Revised based on LULUCF-GPG in 2005 (LULUCF Inventory).
- Development and revision of LULUCF Inventory is ongoing.
- Inventory for Kyoto Protocol article 3.3 and 3.4 is under development as well.

#### LULUCF inventory preparation system

- MOE is the responsible agency and coordinator.
- Forest Agency (FA), Ministry of Agriculture Forestry and Fisheries (MAFF) and Ministry of Land Infrastructure and Transport (MLIT) also play important role for LULUCF inventory preparation from technical viewpoints.
- Expert review is conducted as appropriate for improving LULUCF inventory quality.

11

# 3. Comparison between LULUCF Inventory and LUCF Inventory of Japan

## Main Changes on LULUCF-GPG from IPCC1996GL-LUCF

- Reclassification of calculation categories
  - Land based categorization
  - All national land and the entire land use change between categories are covered
  - Land use information in the past (ex.20years) is required
- Clarification of five carbon pools for calculation
  - Above-ground Biomass, Below-ground Biomass, Dead wood, Litter, Soil Organic Matter
  - Reporting will be conducted under three categories (Living Biomass, Dead Organic Matter, Soil)
- Annex (necessary information) and Appendix (extra information)

13

# LUCF Inventory of Japan until 2004

| LUC | CF Category                                      | Status | LULUCF Inventory            |
|-----|--------------------------------------------------|--------|-----------------------------|
| 5A  | 2. Temperate Forests                             | 0      | →5A1                        |
|     | 5.Other (Park and Green space conservation zone) | 0      | →5E1                        |
| 5B  | 2.Temperate Forests conversion                   | 0      | →5B2, 5C2, 5D2,<br>5E2, 5F2 |
|     | 4.Grassland conversion                           | NE     | Newly estimated             |
| 5C  | 2.Abandonment of managed temperate forests       | NE     | <u> </u>                    |
|     | 4.Abandonment of managed grassland               | NE     | 2<br>2<br>2                 |
| 5D  | CO <sub>2</sub> emissions and removals from Soil | NE     | Newly estimated             |

The Categories Japan reported under LUCF-CRF based on 1996GL

X Other Categories are reported as NO

14

Source: GHG Inventory of Japan, 2005

# **LULUCF** Inventory of Japan in 2005

| From       | To       | Forest                   | Cropla | nd | Grassland                            | Wet | lands | Se  | ttlements                          | Other<br>land |
|------------|----------|--------------------------|--------|----|--------------------------------------|-----|-------|-----|------------------------------------|---------------|
| Forest     |          | 0                        | 0      |    | 0                                    | (   | C     |     | 0                                  | 0             |
| Cropland   | ł        | 0                        | 0      |    | 0                                    | (   | Э     |     | 0                                  | 0             |
| Grasslan   | ıd       | 0                        | 0      |    | 0                                    | (   | C     |     | 0                                  | 0             |
| Wetland    | Wetlands |                          | 0      |    | 0                                    | (   | 0     |     | 0                                  | IE            |
| Settleme   | nts      | 0                        | 0      |    | 0                                    | (   | C     |     | 0                                  | IE            |
| Other la   | nd       | 0                        | 0      |    | 0                                    | E   |       |     | IE                                 | 0             |
| 5(I) 5(II) |          |                          | 5(III) |    | о.<br>                               | 5(I | V)    | 5(7 | V)                                 |               |
| E E        |          | 0 (Organic<br>E (Mineral |        |    | ) (Organic Soil)<br>O (Mineral Soil) |     | NE    |     | ○(controlled fin<br>NE (wild fire) |               |
|            | 10000    |                          |        |    |                                      | /   |       |     |                                    | 15            |

Status of reporting in Japan's LULUCF-CRF based on LULUCF-GPG

15

Source: Revised GHG Inventory of Japan, 2005

#### Status of 2005 Japan's LULUCF inventory compared to the previous LUCF inventory

| Carbon pool             | Status of LULUCF inventory compared to LUCF inventory                                                                                                                                                                                                         |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Living<br>Biomass       | <ul> <li>Some methodologies are used for forest removals and emissions.</li> <li>Carbon loss from forest disturbance and forest fire are newly estimated.</li> <li>Emissions from land use change concerning non forest lands are newly estimated.</li> </ul> |
| Dead Organic<br>Matter  | • Dead Organic Matters are reported as NE.                                                                                                                                                                                                                    |
| Soil                    | <ul> <li>Emissions and removals from carbon stock changes caused by<br/>land use changes are newly estimated under "conversion"<br/>categories.</li> <li>Using Tier.1 (no change) for "remaining" categories.</li> </ul>                                      |
| Non CO <sub>2</sub> Gas | •Non CO2 gas emissions from "disturbance associated with land-<br>use conversion to cropland " and "biomass burning" are newly<br>estimated.                                                                                                                  |

# General information on transformation from LUCF to LULUCF inventory

#### • Estimation

- New estimations will be required generally.
- Data
  - More data are necessary to complete LULUCF Inventory.
- Complexity

   Category classification becomes complex.
- Consistency
  - Much more attention is necessary for land classification consistency and time series consistency

## 4. LULUCF Inventory preparation

# Profile of Japan's LULUCF Inventory

- Statistics-based land classification system
  - Area of lands and land use changes is derived from several statistics.
- Excel-based calculation system
  - Special skills are not really required for inventory compiler.
- Many parameters are country specific
  - Improvement for parameter usage and data collection is ongoing.

19

# Difficulties we faced in 2005

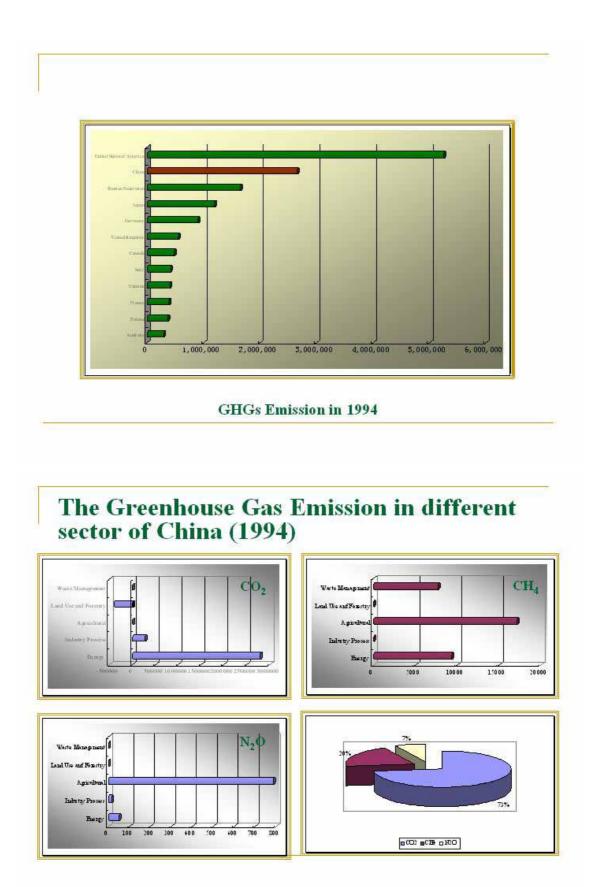
- Consistent Land use category setting and appropriate estimation methods of land use change
- "Remaining" and "Conversion" classification.
  - How do we know the information on land use and land use change in the last 20 years?
- →The method and improvement planning is under discussion.
- · Lack of country specific parameters
- $\rightarrow$ Relevant research has been performed
- Appropriate estimation and interpolation methods.
- →Inspection and improvement has been conducted

20

#### Potential advantages and disadvantages of two land classification methodologies

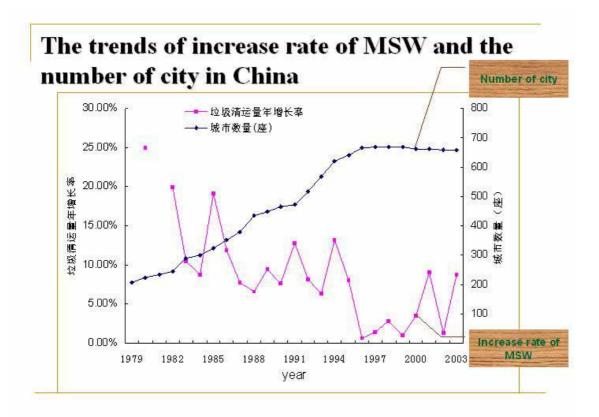
|              | Statistical Base (Approach1,2)                                                                                                                                                                                                                                                            | GIS Base (Approach3)                                                                                                                |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Advantage    | <ul> <li>Existing forest inventory, land<br/>statistics or agricultural census can<br/>be used.</li> <li>Consistent to agriculture sector.</li> <li>Periodic updating is relatively<br/>easy.</li> <li>Categorization is easy if single<br/>statistic is used for preparation.</li> </ul> | <ul> <li>Existing GIS data can be<br/>used if available</li> <li>Consistent land<br/>categorization can be<br/>performed</li> </ul> |
| disadvantage | <ul> <li>Consistent land categorization<br/>may be hard work if several data<br/>are used together.</li> </ul>                                                                                                                                                                            | <ul> <li>Georeference is essential</li> <li>Periodic updating might<br/>involve high cost and<br/>work. 21</li> </ul>               |

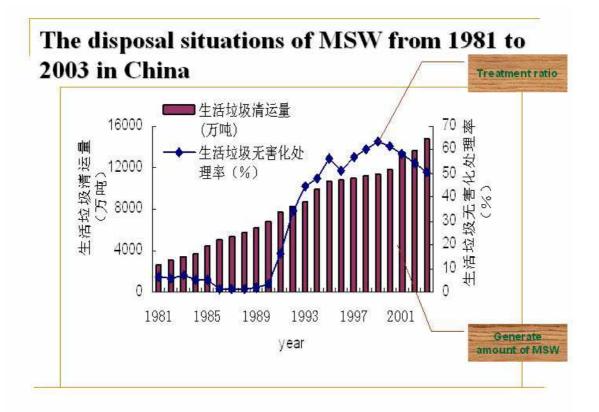
# What should be considered for LULUCF Inventory Preparation


- Analysis of data acquisition and applicability are necessary.
- The objective and precision level should be clarified.
- Cooperative framework between inventory compiler and the data providers, experts and so on may be important.

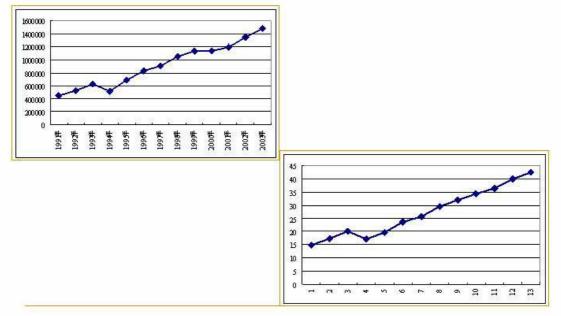
# The Estimate Model of MSW Generation in China


Gao Qingxian Chinese Research Academy of Environmental Science (CRAES) Center for Climate Impact Research, SEPA

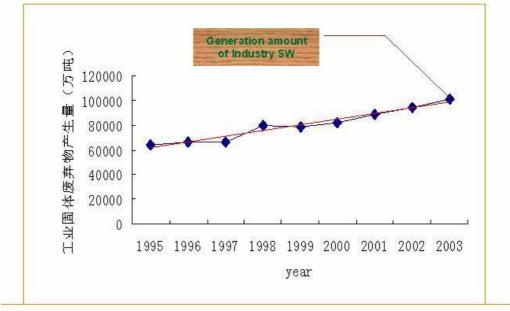

# Contents


- Solid waste generation in China
  - Municipal solid waste generation of China
  - Industrial solid waste in China
- The driving force analysis of MSW in China
  - Urban non-agricultural population
  - Gross Domestic Product (GDP)
  - The area of city
  - Urban population
  - The number of city
  - GDP per capita
- The forecast model of MSW and scenario analysis
- Conclusions

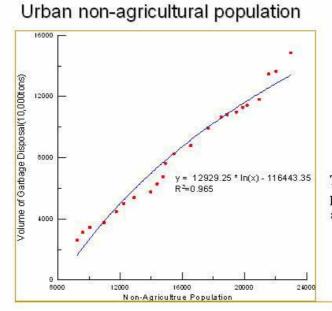






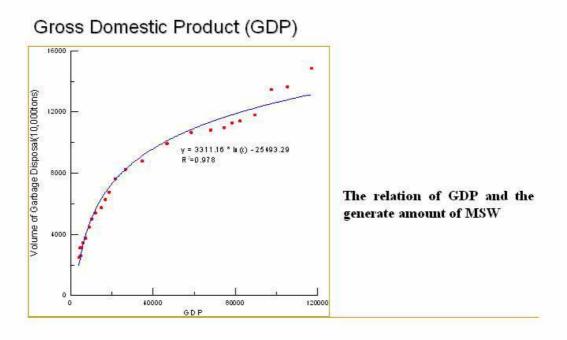





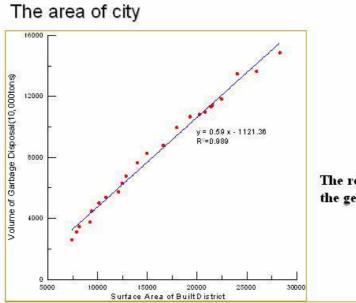


#### The disposal situations and treat ratio of Waste Water from 1991 to 2003 in China



# The trend of generate amount of industry solid waste in China

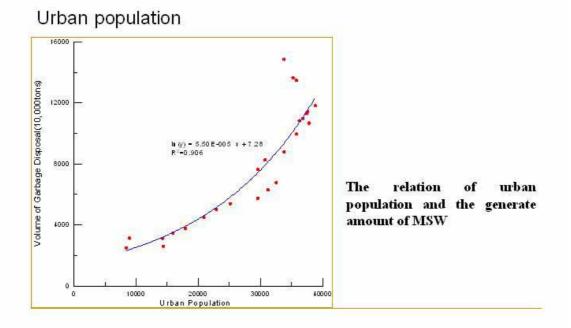



# The driving force analysis of MSW(1)



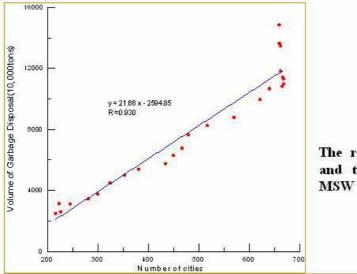

The relation of non-agriculture population and the generate amount of MSW

#### The driving force analysis of MSW(2)



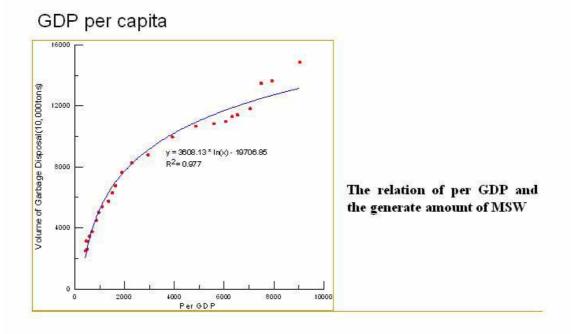

# The driving force analysis of MSW(3)




The relation of area of city and the generate amount of MSW

#### The driving force analysis of MSW(4)




# The driving force analysis of MSW(5)

The number of city



The relation of city numbers and the generate amount of MSW

#### The driving force analysis of MSW(6)



#### The forecast model of MSW

#### 1. Forecast model based on GDP

$$W_g = f_{(GDP)} = 3311.16 \ln(GDP) - 25493.29$$

The correlative coefficient  $R^2 = 0.978$ 

2. Forecast model based on GDP per capita

 $W_g = f_{(GDP/perCapita)} = 3608.13 \ln(GDP/perCapita) - 1970685$ 

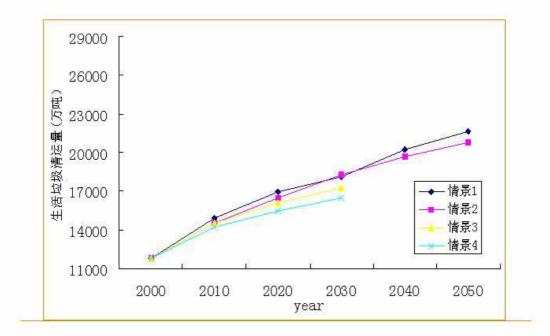
The correlative coefficient  $R^2 = 0.977$ 

3. Forecast model based on Non-Agriculture Population

 $W_g = f_{(Non-AP)} = 12929.25 \ln(Non - AP) - 116443.35$ 

The correlative coefficient R<sup>2</sup> = 0.965

#### scenario design and results analysis (1)


Scenario I : Based on the GDP



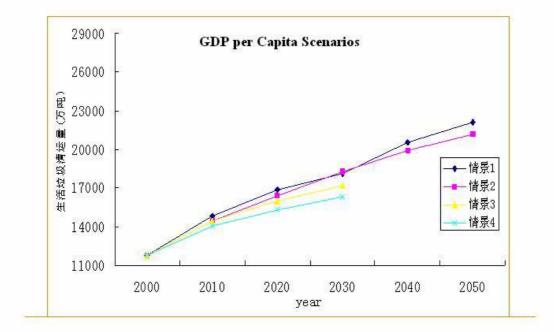
| Year      | 2010   | 2020   | 2030   | 2040    | 2050    |
|-----------|--------|--------|--------|---------|---------|
| <b>S1</b> | 197694 | 367007 | 522370 | 1005209 | 1530721 |
| S2        | 178936 | 321962 | 544767 | 846006  | 1181895 |
| S3        | 175997 | 286681 | 404392 |         |         |
| S4        | 160224 | 237171 | 318738 |         |         |

S1: http://macrochina.com.cn/report/free/detail/xs/008/00001493.shtml S2: http://www.drenet.com.cn/new\_product/dreexpert/showdoc.asp?doc\_id=144563 S3 & S4: 王高尚、薛梅《中国重要矿产资源的需求预测》。

#### scenario design and results analysis (2)



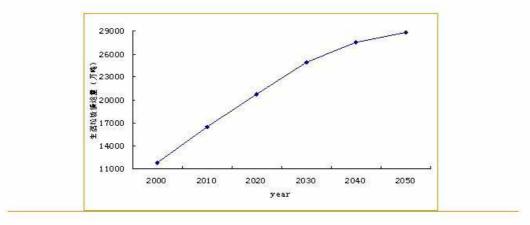
#### scenario design and results analysis (3)


| China's population | predicted by FAO | Unit : 10 <sup>8</sup> persons |
|--------------------|------------------|--------------------------------|
|--------------------|------------------|--------------------------------|

| Year       | 2010     | 2020     | 2030     | 2040     | 2050     |
|------------|----------|----------|----------|----------|----------|
| Population | 13.72903 | 14.38192 | 14.59865 | 14.48698 | 14.05191 |

| The four future | per GDP scenes i | China   | Unit : wnon |
|-----------------|------------------|---------|-------------|
| The four future | per GDT scenes n | I Unina | Unit. yuan  |

| Year       | 2010     | 2020     | 2030     | 2040     | 2050      |
|------------|----------|----------|----------|----------|-----------|
| <b>S1</b>  | 14399.70 | 25518.64 | 35782.09 | 69387.06 | 108933.31 |
| S2         | 13033.40 | 22386.58 | 37316.26 | 58397.68 | 84109.21  |
| <b>S</b> 3 | 12819.33 | 19933.43 | 27700.64 |          | 2         |
| S4         | 11670.45 | 16490.91 | 21833.39 |          |           |


#### scenario design and results analysis (4)



#### scenario design and results analysis (5)

#### Non-Agriculture Population Scenarios

| Year             | 2000    | 2010    | 2020    | 2030    | 2040    | 2050    |
|------------------|---------|---------|---------|---------|---------|---------|
| Non-A Population | 20952.5 | 29101.4 | 40419.6 | 56139.6 | 68433.9 | 75593.6 |



#### Scenario analysis and conclusions

The results from these model are similar although the driving forces are different. Especially the results from GDP model and GDP per capita model. The results shows that the MSW generate amount will increase with time.

This result does not consider the CDM program and the methane collection and recycling technology. Compare with Non-agriculture population model, the results of GDP model and GDP per capita model are little lower than Non-agriculture model, the main reason is that the GDP and GDP per capita models include whole country, it is the country average, while the no-agriculture population model is much close to real situation of China.

The GDP model result indicates that the MSW of China in 2030 will range from 1647 to 1828 million tones with different scenarios, the GDP per capita model gives a range from 1634 to 1828 million tones, while the Non-agriculture population model gives more reasonable result, it is 2495 to 2879 million tone.

# Thanks for your attention!

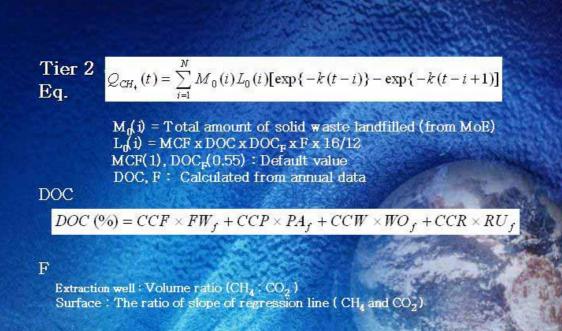
#### Estimation and Uncertainty Analysis of CH<sub>4</sub> emissions from Landfills

Environmental Management Corporation Presented by Dr.Kyoung-Sik Choi

### Contents

- 1. Estimation of CH4 emissions by using Tier2 methodology
- 2. Uncertainty Analysis with the Monte Carlo Simulation
- 3. Standard Operating Procedure for the estimation of GHG emissions in Landfill

## 1. Estimation of CH4 emissions by using Tier2 methodology

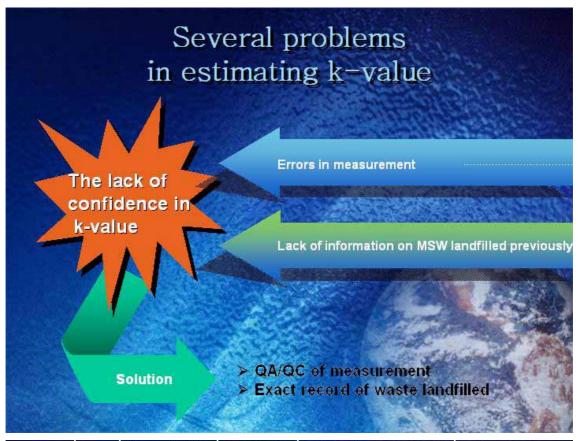

- 2. Uncertainty Analysis with the Monte Carlo Simulation
- 3. Standard Operating Procedure for the estimation of GHG emissions in Landfill

#### Tier 2 Method & Uncertainty analysis

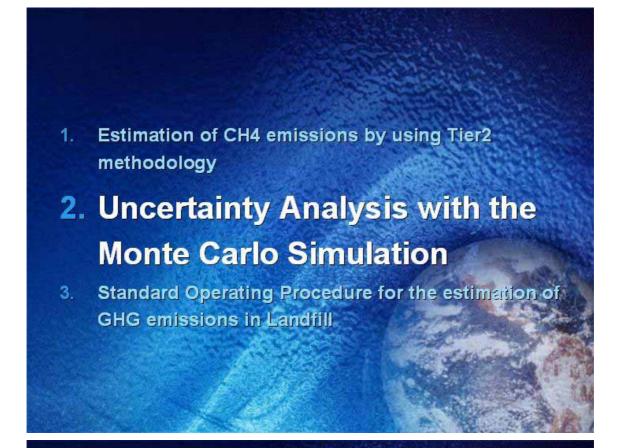
| Parameter<br>determination                                                                                                                                                                                                                                                   | Emission factor                                                                                | Monte Carlo analysis                                                                                         |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>Annual Report         <ul> <li>(Status of             generation and             disposal waste)             → DOC. Mo</li> </ul> </li> <li>Actual         measurement         <ul> <li>[EMC,2004]             → F. CH<sub>4</sub> emissions</li> </ul> </li> </ul> | <ul> <li>◆ Trial &amp; Error<br/>method (by using<br/>Fortran program)</li> <li>→ k</li> </ul> | CH <sub>4</sub> emissions<br>Estimation and<br>uncertainty<br>analysis with the<br>Monte Carlo<br>simulation |  |

| □ s | (<br>tatus of Y la |                    | Stu               | dy            | : Y ];        | andfill       |              |
|-----|--------------------|--------------------|-------------------|---------------|---------------|---------------|--------------|
|     | Province           | Total Area<br>(m2) | Total vol<br>(m3) | Second Street | Waste<br>(m3) | Starting Year | Closing Year |
|     | Kyonggi            | 83,043             | 1,435,            | 000           | 538,00        | 00 '96        | <b>'0</b> 8  |
|     | H4 emissior        | 15                 |                   |               |               | sunt: t       | on/yr)       |
|     | Extra              |                    | tion well         |               | Surface       | Total         |              |
|     | Y landfill 836 22  |                    | 223               | 82~8507       | 2,385~9,343   |               |              |
|     |                    |                    |                   |               |               |               |              |

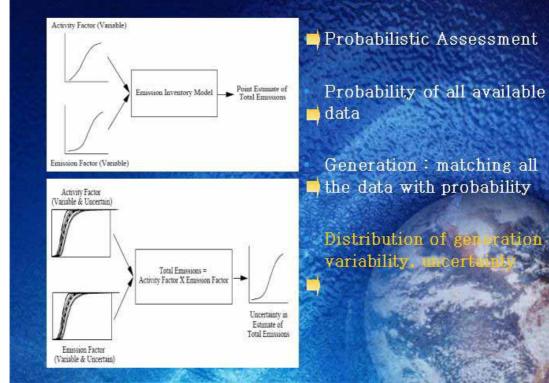
#### **Parameter Determination**




#### Key parameters for k-value estimation


| Year | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 |
|------|------|------|------|------|------|------|------|
| DOC  | 0.12 | 0.17 | 0.12 | 0.14 | 0.13 | 0.14 | 0.14 |

| 2       |                                      | emission                                                                                                                  | (Unit:ton/yr)                                                                                                                              |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |
|---------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F-value | Point                                | Surface                                                                                                                   | well                                                                                                                                       | Total                                                                                                                                                                                               | Remarks                                                                                                                                                                                                                                                                                          |
| 0.59    |                                      | 12 States of                                                                                                              |                                                                                                                                            |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |
| 0.60    | 1                                    | 2231.86                                                                                                                   |                                                                                                                                            | 3067.46                                                                                                                                                                                             | Restald                                                                                                                                                                                                                                                                                          |
| 0.57    | 2                                    | 3489.17                                                                                                                   | 13 al                                                                                                                                      | 4324.77                                                                                                                                                                                             | 21005                                                                                                                                                                                                                                                                                            |
| 0.47    |                                      |                                                                                                                           | 835.6                                                                                                                                      | A CONTRACTOR                                                                                                                                                                                        | and                                                                                                                                                                                                                                                                                              |
| 1.00    | 3                                    | 8507.44                                                                                                                   |                                                                                                                                            | 9343.04                                                                                                                                                                                             | anulea nb                                                                                                                                                                                                                                                                                        |
| 0.76    | 4                                    | 1549.42                                                                                                                   |                                                                                                                                            | 7385.07                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |
|         | 0.59<br>0.60<br>0.57<br>0.47<br>1.00 | F-value         Point           0.59         1           0.60         2           0.57         2           0.47         3 | F-value       Point       Surface         0.59       1       2231.86         0.60       2       3489.17         0.47       3       8507.44 | Point         Surface         well           0.59         1         2231.86         1           0.57         2         3489.17         335.6           0.47         3         8507.44         835.6 | F-value         Point         Surface         well         Total           0.59         1         2231.86         3067.46           0.60         1         2231.86         3067.46           0.57         2         3489.17         335.6           0.47         3         8507.44         355.6 |


| F          | Actual CH4<br>emissions (A) | k       | Simulation results of<br>CH4 emissions (B) | (A) - (B) |
|------------|-----------------------------|---------|--------------------------------------------|-----------|
|            | 3067.46                     | 0.51837 | 2085.59                                    | 981.871   |
| 0.47       | 4324.77                     | 0.51837 | 2085.59                                    | 2239.181  |
| 0.47       | 9343.04                     | 0.51837 | 2085.59                                    | 7257.451  |
|            | 2385.02                     | 0.51837 | 2085.59                                    | 299.431   |
| -          | 3067.46                     | 0.51837 | 2562.62                                    | 504.835   |
| 0.57       | 4324.77                     | 0.51837 | 2562.62                                    | 1762.145  |
| 0.57       | 9343.04                     | 0.51837 | 2562.62                                    | 6780.415  |
|            | 2385.02                     | 0.26844 | 2385.03                                    | 0.008     |
| - C 1.38   | 3067.46                     | 0.51855 | 2624.85                                    | 443.106   |
| 0.59       | 4324.77                     | 0.51855 | 2624.35                                    | 1700.416  |
|            | 2385.02                     | 0.24548 | 2385.02                                    | 0.004     |
|            | 3067.46                     | 0.51845 | 2089.81                                    | 377.654   |
| 0.60       | 4324.77                     | 0.51845 | 2689.81                                    | 1634.964  |
| 0.60       | 9343.04                     | 0.51845 | 2689.81                                    | 6653.234  |
|            | 2385.02                     | 0.22647 | 2385.01                                    | 0.007     |
| - and call | 3067.46                     | 0.31933 | 3067.46                                    | 0.002     |
| 0.76       | 4324.77                     | 0.51839 | 3180.14                                    | 1144.626  |
|            | 2385.02                     | 0.15121 | 2385.02                                    | 0.004     |



|            | F      | Actual CH4<br>emissions (A) | k     | Simulation results of<br>CH4 emissions (B) | (A) – (B) |
|------------|--------|-----------------------------|-------|--------------------------------------------|-----------|
|            |        | 3067.46                     | 0.190 | 3067.49                                    | 0.033     |
| Nega arang | 0.47   | 4324.77                     | 0.370 | 4324.75                                    | 0.015     |
| 🔶 Re-      |        | 9343.04                     | 1.000 | 6669.14                                    | 2673.897  |
| deriv      |        | 2385.02                     | 0.127 | 2385.00                                    | 0.018     |
| ation      |        | 3067.46                     | 0.139 | 3067.44                                    | 0.015     |
|            | 0.57   | 4324.77                     | 0.250 | 4324.81                                    | 0.043     |
| of k       | 0.57   | 9343.04                     | 1.000 | 8088.11                                    | 1254.930  |
|            |        | 2385.02                     | 0.097 | 2385.07                                    | 0.049     |
|            |        | 3067.46                     | 0.132 | 3067.47                                    | 0.008     |
|            |        | 4324.77                     | 0.234 | 4324.76                                    | 0.013     |
|            | 0.59   | 9343.04                     | 1.000 | 8371.90                                    | 971.136   |
|            |        | 2385.02                     | 0.092 | 2385.01                                    | 0.010     |
|            |        | 3067.46                     | 0.129 | 3067.47                                    | 0.009     |
|            |        | 4324.77                     | 0.227 | 4324.74                                    | 0.030     |
|            | 0.6    | 9343.04                     | 1.000 | 8513.80                                    | 829.239   |
|            |        | 2385.02                     | 0.090 | 2385.00                                    | 0.022     |
|            | 64.82  | 3067.46                     | 0.092 | 3067.52                                    | 0.058     |
|            | 0.70   | 4324.77                     | 0.152 | 4324.75                                    | 0.017     |
|            | 0.76   | 2385.02                     | 0.067 | 2384.88                                    | 0.142     |
|            | 80-3-3 | 9343.04                     | 0.709 | 9343.05                                    | 0.015     |



#### Tier 2 - Probabilistic Approach - Monte Carlo



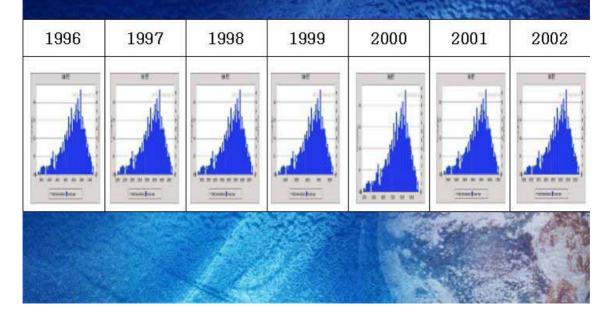
#### Tier 2 - Uncertainty Estimate

(Probability Distribution) Assumption of probability distribution on parameters affecting CH4 emissions (Normal, Lognormal, Weibull, Gamma)

(Monte Carlo Simulation) Repetition of random sampling with the assumed probability distribution

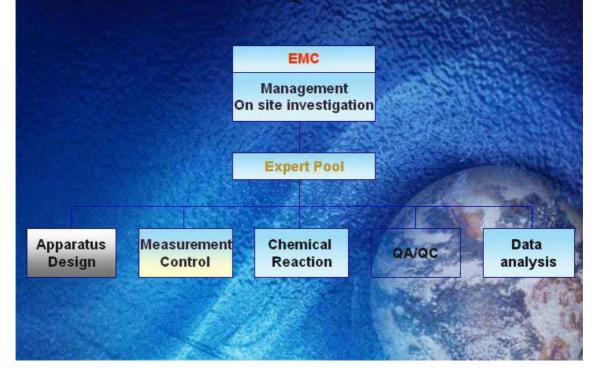
(Uncertainty analysis of CH4 emissions) Distribution Analysis of Uncertainty derived from Monte Carlo Simulation

Uncertainty Review


#### Probability distribution of key parameters : Y landfill

| Parameter        | Probability<br>Distribution                                                   |          |   |     | 병전  | ۰<br>۲ |        |          |
|------------------|-------------------------------------------------------------------------------|----------|---|-----|-----|--------|--------|----------|
| Assumption:<br>F | Minimum Extreme<br>distribution<br>Likeliest : 0.67<br>Scale : 0.08           | Present  |   | 0.M | 0.8 | -      | 479    |          |
| Assumption:<br>k | Student's distribution<br>Midpoint : 0.52<br>Scale : 0.00<br>Deg. Freedom : 1 | Annation |   |     | 82  |        | ter Ca | nati (Na |
|                  | Le tal                                                                        |          | - | 042 | 610 | 640    | 96     | big.     |

| Estimation results of | CH <sub>4</sub> emissions |
|-----------------------|---------------------------|
|-----------------------|---------------------------|


| Statistics | 1996   | 1997   | 1998   | 1999   | 2000   | 2001   | 2002   |
|------------|--------|--------|--------|--------|--------|--------|--------|
| Trials     | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
| Mean       | 1,759  | 3,816  | 5,190  | 6,378  | 7,440  | 8,508  | 9,607  |
| Median     | 1,818  | 3,942  | 5,362  | 6,589  | 7,686  | 8,791  | 9,925  |
| S.D        | 302    | 654    | 889    | 1,093  | 1.275  | 1,458  | 1,646  |
| Min.       | 316    | 686    | 933    | 1,146  | 1,337  | 1,529  | 1,727  |
| Max.       | 2,301  | 4,989  | 6,786  | 8,339  | 9,728  | 11,126 | 12,562 |

#### Estimation results of CH4 emissions : Y landfill



<list-item><list-item><list-item><list-item>

### Scheme for the provision of SOP





### Conclusion

Monte Carlo analysis makes possible to estimate GHG emissions considering uncertainty despite the limitation of data

Tier2 method requires historic waste quantities and composition, disposal practices until the time measured

> QA/QC and SOP can improve reliability emission estimation

Thank you

 UNFCCC GHG Inventory workshop in Seoul to be on the September
 email promote(genc.or, kr for more information)

#### i) Presentations

 $Session {\rm I\!I\!I}$ 

## **Energy WG Report**

Session 3, 3<sup>rd</sup> WGIA Feb 24, 2006 Manila

#### Overview

- Good Practices
- Challenges & possible solutions including within WGIA network
- Other things discussed
- Summary/Conclusion

## **Good Practices**

- India
  - Establishment of a National Inventory Management Systems
  - Data Collection from important 3 sectors;
     Power Plant, Transport, Iron & Steel
  - Adoption of Tier2 methodology
  - Plant Specific Emission Factors

## **Good Practices**

- Malaysia
  - Establishment of a NC2 Group
  - Data collecting Methodology;
     e.g. approach to stakeholders in many ways
  - Institutionalize the GHG program
  - Passion to improve inventory

## **Good Practices**

#### Japan

- Collaboration between Energy Agency and Ministry of the Environment (Inventory Agency)
- Balance Approach (Mass Balance, Energy Balance, Carbon Balance)
- Institutionalizing the country's Inventory Programm

### Challenges & possible solutions

#### Activity Data

Sharing Experiences on Collecting Data Focused on Specific Area below

- 1. Transportation (traveling distance),
- 2. Power Plant
- 3. Heavy Industry

We will prepare document or table by 4th WGIA

#### Emission Factor

Making Table: Values with Basic Assumptions for Country-Specific EF

if possible, until Completion of Activity Report of our WGIA

## Challenges & possible solutions

#### · QA/QC

- 1. Making Different Data Base to Compare
- 2. Describe Routine Process and Assignment to implementing agency

#### Uncertainty Assessment

Follow up and update data/information Original purpose of U.A. for improving inventory (e.g. Improve the national statistics)

### Summary/Conclusion

 Sharing Experiences on Collecting Activity Data Focused on Specific Area

We, Energy group, will prepare document or table by 4th WGIA

## Agriculture WG Report

Session 2, 3<sup>rd</sup> WGIA Feb 24, 2006 Manila, Philippines

## Agriculture WG members

- 1. Dr. Batimaa Punsalmaa (Chair; Mongolia)
- 2. Mr. Syamphone Sengchandala (Reporter; Laos)
- 3. Mr. Chan Thou Chea (Cambodia)
- 4. Dr. Shuzo Nishioka (Japan)
- 5. Dr. Takashi Osada (Japan)
- 6. Dr. Damasa Magcale Macandog (Philippines)
- 7. Dr. Amnat Chidthaisong (Thailand)

#### Overview

- Good Practices
- Challenges & possible solutions including within WGIA network
- Other things discussed
- Summary/Conclusion

#### **Good Practices**

- Detailed data collection from the experiments (Agroforestry, rice paddy and animal manure treatment).
- · Very comprehensive measurements.
- Well designed experiment and simple, portable equipments for measurements of CH<sub>4</sub>, N<sub>2</sub>O, NH<sub>3</sub> emissions.
- Applying water management and fertilization strategy could reduce CH<sub>4</sub> and N<sub>2</sub>O emissions from agricultural system in Asian countries.
- Composting of livestock manure reduces  $\mathrm{N_2O}$  and  $\mathrm{CH_4}$  emission

## Challenges & possible solutions

- Challenges
  - Development of regional-specific Emission Factors for Asian region.
  - Establishing network of monitoring station for GHG emissions
  - To get funding for research and capacity building in the region.
- Solutions
  - Develop and implement regional research project
  - Collaboration among experts
  - Sharing the database and expertise

## Other things

- Improve emission factor and data collection for CH<sub>4</sub> from enteric fermentation from livestock (only if it is a key source)
- Burning of crop residues (CH<sub>4</sub> & N<sub>2</sub>O) avoid burning and convert it into compost

## Summary/Conclusion

- Agriculture sector is one of the main contributors to GHG sources (CH<sub>4</sub>&N<sub>2</sub>O) in Asia.
- To improve GHG inventory in this sector, we need to collect data, expand experiments, establish monitoring network, and develop region-specific emission factors.
- Collaborations among regional experts

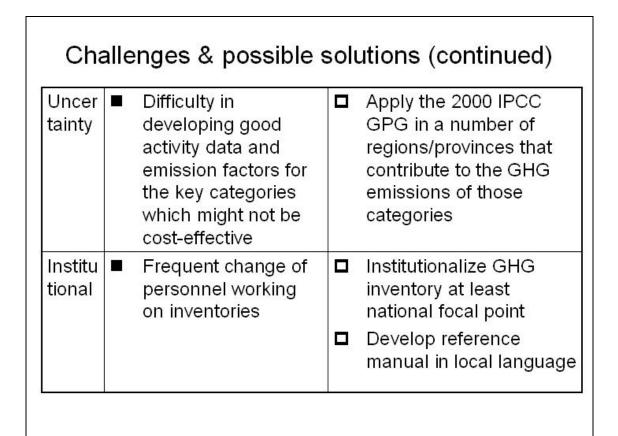
## LULUCF WG Report

Session 3, 3<sup>rd</sup> WGIA Feb 24, 2006 Manila

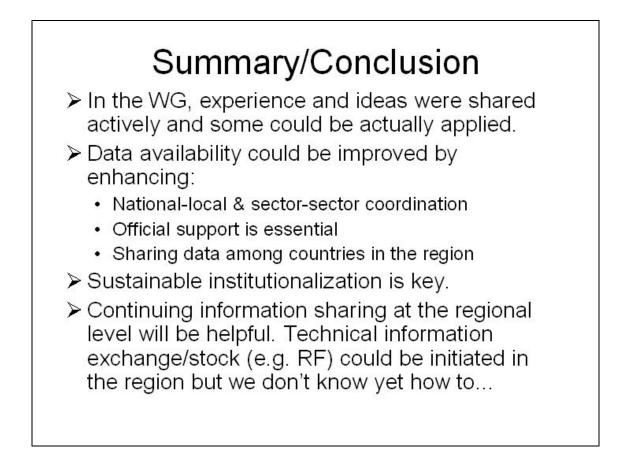


- Good Practices (GPs)
- Challenges & possible solutions
- Other things discussed
- Summary/Conclusion

## Good Practices


- 1. Malaysia: various aspects of improvements made and to be made between INC and SNC
- 2. Cambodia: direct measurement of RF for major forest categories
- 3. Japan: experience from preparing inventories with GPG-LULUCF compared to previous inventories

| 58.              |          | Good Practices (GPs)                                                                                                          |
|------------------|----------|-------------------------------------------------------------------------------------------------------------------------------|
| AD               | 1        | Use statistical base approach to define land-use category under GPG-LULUCF, rather than e.g. GIS                              |
|                  | ~        | Estimate shifting cultivation area from the shifting cultivators' data and a length of shifting cultivation cycles            |
|                  | ~        | Create new standard format which can integrate the GHG activity data development with regular forest inventory                |
| E/RF             | 1        | Develop factors for major forest categories                                                                                   |
| QA/QC            | ~        | Implement data verification through personal<br>consultation and round-table discussion with<br>relevant persons and agencies |
|                  | ~        | Conduct trend analysis to detect inappropriate use of emission factors or activity data                                       |
| Note: AD = Activ | ity Data | ; E/RF= Emission/Reduction Factor.                                                                                            |

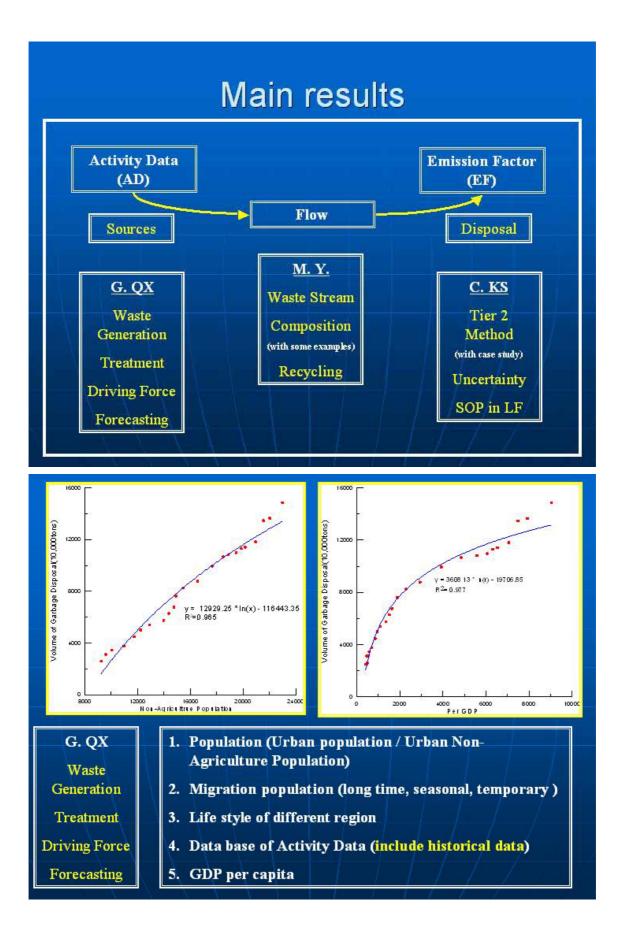

| Institutional <ul> <li>Establish appropriate institutional arrangements through distribution of responsibility among relevant sectors, establishment of cooperation with statistical officers or relevant sectors, establishment of working group consisting members of various sectors, etc.</li> </ul> | G               | Good Practices (continued)                                                                                                                                                                                                       |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                                          | Institutional 🗸 | arrangements through distribution of<br>responsibility among relevant sectors,<br>establishment of cooperation with statistical<br>officers or relevant sectors, establishment of<br>working group consisting members of various |  |  |  |  |  |

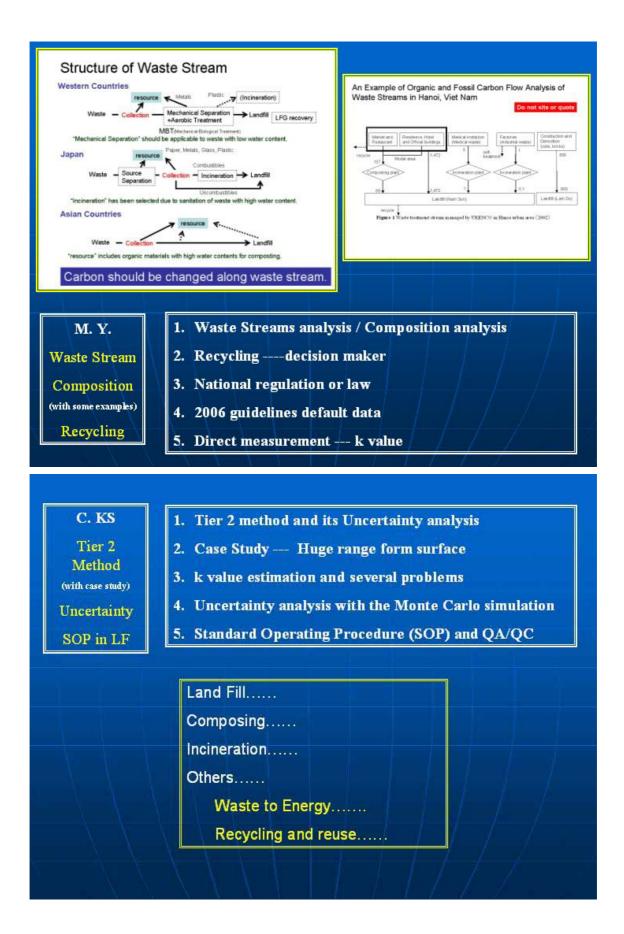
#### Challenges & possible solutions

| AD   | Different level of<br>details of forest<br>categories and forest<br>strata between<br>states/provinces                        | Encourage local<br>research<br>agencies/universities to<br>engage in this research<br>area and seek<br>endorsement from<br>local/relevant authority<br>for the work |
|------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E/RF | <ul> <li>Difficulty in defining<br/>appropriate number<br/>of destructive<br/>sampling which is<br/>cost-effective</li> </ul> | Get additional data from<br>other sources (national<br>inventories of other<br>countries in the region,<br>related studies, students'<br>theses)                    |



# Other things discussed • Duplication of efforts of country to country collaboration identified





## Report of Waste Working Group

3<sup>rd</sup> WGIA 23 February, 2006 Manila, Philippines

#### Group members

- > Dr. Sirintornthep Towprayoon
- » Dr. Gao Qingxian
- » Mr. Yasuhiro Baba
- » Dr. Masato yamada
- > Dr. Kyoung sik Chio
- » Ms. Eunhwa Chio
- > Ms. Raquel Ferraz Villanueva
- > Ma. Gerarda Asuncion D. Merilo
- > Ms. Bujidmaa Borkhuu






#### Suggestion and conclusions

Set up a net work for ......
AD, EF, site measurements, treatment technology etc.
Waste streams analysis......
For each country / region
Measurement in site......
For each country or region
Standard Operation Procedure......
Set up a work group with same guidance

□ Clarify the co-benefit (as the strategy).....

Cooperate with others (environmental scientist etc.)



ii) Other documents

## Proposal for the Concept of the WGIA Activity Report

Prepared by the WGIA Secretariat

umemiya.chisa@nies.go.jp

#### Presented at The 3<sup>rd</sup> Workshop on GHG Inventories in Asia Region Manila, Feb. 23-24, 2006

## Outline

The Origin of the proposal
What for? Who will be the readers?

Contributors

## Origin of the Proposal...

□ The 2<sup>nd</sup> WGIA recommended to:

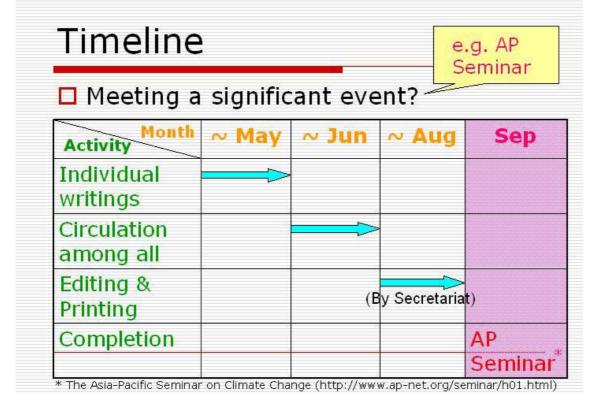
✓ compile relevant information on EFs...

✓ compile reports, publish findings...

(The 2<sup>nd</sup> WGIA Proceedings, pg. 12-13)

The 3<sup>rd</sup> WGIA generated concrete information, sector by sector

Let's start discussing the creation of the WGIA Activity Report!


## What for? Who will read it?

- Present a list of action items essential for the improvements of GHG inventories in Asia
   Compile information that
- has been exchanged and outside Asia discussed in the WGIAs Possible Sponsors

## Record the history of the WGIAs



Meeting a significant event, such as "The 16<sup>th</sup> Asia-Pacific Seminar on Climate Change", which will be held on Sep. 2006?



## Contributors (Authors)

Participants of the 3<sup>rd</sup> WGIA
 Secretariat for edition

#### Any comments, suggestions?

| Purposes     | <ul> <li>Present a list of action items</li> <li>Compile information exchanged</li> <li>Record the history of the WGIAs</li> </ul> |
|--------------|------------------------------------------------------------------------------------------------------------------------------------|
| Readers      | <ul> <li>Inventory developers in and outside Asia</li> <li>Possible sponsors</li> </ul>                                            |
| Timeline     | <ul> <li>Meeting a significant event,<br/>such as the 16<sup>th</sup> AP Seminar in<br/>Sep. 2006</li> </ul>                       |
| Contributors | <ul> <li>The participants of the 3<sup>rd</sup> WGIA</li> <li>Secretariat for edition</li> </ul>                                   |

## Proposal for the Outline of the WGIA Activity Report

#### Prepared by the WGIA Secretariat

#### Presented at The 3<sup>rd</sup> Workshop on GHG Inventories in Asia Region Manila, Feb. 23-24, 2006

#### Structure of the Chapters

| 1. Executive Summary                          |                                                                                 |
|-----------------------------------------------|---------------------------------------------------------------------------------|
| 2. Background                                 | •What are GHG inventories?                                                      |
| 3. Introduction to WGIA                       | <ul> <li>Objectives, approach, etc.</li> </ul>                                  |
| 4. How are GHG inventories developed in Asia? | <ul> <li>Institutional arrangements,<br/>methodology of each country</li> </ul> |
| 5. Energy Sector                              | Outcomes from each WG:                                                          |
| 6. Agriculture Sector                         | <ul> <li>Good practices</li> <li>Challenges &amp; possible</li> </ul>           |
| 7. LULUCF Sector                              | solutions                                                                       |
| 8. Waste Sector                               | <ul> <li>Other things discussed</li> </ul>                                      |
| 9. Regional characteristics                   | <ul> <li>Findings across the region</li> </ul>                                  |
| 10.Conclusion                                 |                                                                                 |
| Appendix                                      | <ul> <li>Participants list, agendas</li> </ul>                                  |

| Structure of the Chapters (continued)         |                                                         |  |
|-----------------------------------------------|---------------------------------------------------------|--|
| 1. Executive Summary                          | Done by Secretariat                                     |  |
| 2. Background                                 | Done by Secretariat                                     |  |
| 3. Introduction to WGIA                       | Done by Secretariat                                     |  |
| 4. How are GHG inventories developed in Asia? | Outcomes from 1 <sup>st</sup> and 2 <sup>nd</sup> WGIAs |  |
| 5. Energy Sector                              | Outcomes from 3rd                                       |  |
| 6. Agriculture Sector                         | WGIA                                                    |  |
| 7. LULUCF Sector                              |                                                         |  |
| 8. Waste Sector                               |                                                         |  |
| 9. Regional characteristics                   | Individual presentation                                 |  |
| 10.Conclusion                                 | Done by Secretariat                                     |  |
| Appendix                                      | Done by Secretariat                                     |  |

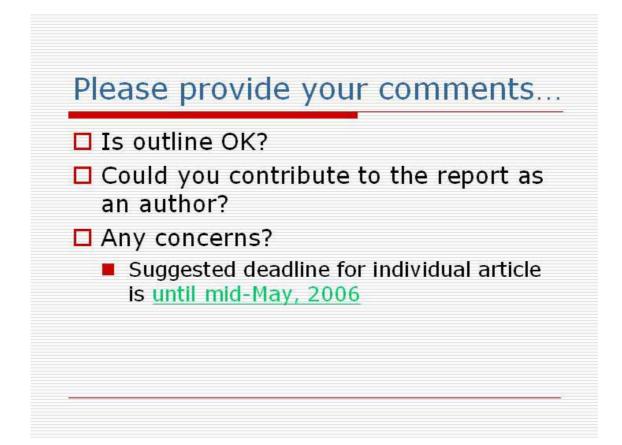
| Breakdown of Chap. | 5~8 ( | Sector) |
|--------------------|-------|---------|
|--------------------|-------|---------|

|      | Items                                 | Details                                                      | Page            | Authors (proposal) |
|------|---------------------------------------|--------------------------------------------------------------|-----------------|--------------------|
| i.   | Introduction<br>of the WG             | <ul> <li>WG members</li> <li>Outline of programme</li> </ul> | 0.5             | Secretariat        |
| ii.  | Good<br>Practices<br>(GP)             |                                                              |                 |                    |
|      | Summary of<br>GPs                     | <ul> <li>Summary of<br/>discussion made</li> </ul>           | 0.5-1           | Chair of the WG    |
|      | GP X, Y, Z                            | <ul> <li>Abstract, article</li> </ul>                        | 4-8 for<br>each | Each speaker       |
| ili. | Challenges &<br>Possible<br>Solutions | <ul> <li>Summary of<br/>discussion made</li> </ul>           | 1-2             | Chair of the WG    |
| iv.  | Other things<br>discussed             | <ul> <li>Summary of<br/>discussion made</li> </ul>           | 1               | Chair of the WG    |

#### Structure of the Chapters (continued)

| 9                                                |                                                            |
|--------------------------------------------------|------------------------------------------------------------|
| 1. Executive Summary                             | Done by Secretariat                                        |
| 2. Background                                    | Done by Secretariat                                        |
| 3. Introduction to WGIA                          | Done by Secretariat                                        |
| 4. How are GHG inventories<br>developed in Asia? | Outcomes from 1 <sup>st</sup> and<br>2 <sup>nd</sup> WGIAs |
| 5. Energy Sector                                 | Outcomes from 3rd                                          |
| 6. Agriculture Sector                            | WGIA                                                       |
| 7. LULUCF Sector                                 |                                                            |
| 8. Waste Sector                                  |                                                            |
| 9. Regional characteristics                      | Individual presentation                                    |
| 10.Conclusion                                    | Done by Secretariat                                        |
| Appendix                                         | Done by Secretariat                                        |

#### Breakdown of Chap. 4 (each country)


|      | Items              | Details                                                                                                                                                                                                | Page | Authors (proposal)               |   |
|------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------|---|
| i.   | Cambodia           | <ul> <li>History of GHG<br/>inventories</li> <li>Institutional<br/>arrangement &amp;<br/>methodology</li> <li>Overview of<br/>the latest<br/>inventory</li> <li>Problems and<br/>constrains</li> </ul> | 3-4  | Participant(s) from a<br>country |   |
| ii.  | China              | Same as above                                                                                                                                                                                          |      | 10<br>1                          |   |
| 111. | India              | Same as above                                                                                                                                                                                          |      |                                  |   |
|      | Preferab<br>by ALL | ly,                                                                                                                                                                                                    |      |                                  | ] |

#### Structure of the Chapters (continued)

| 1. Executive Summary                             | Done by Secretariat                                     |
|--------------------------------------------------|---------------------------------------------------------|
| 2. Background                                    | Done by Secretariat                                     |
| 3. Introduction to WGIA                          | Done by Secretariat                                     |
| 4. How are GHG inventories<br>developed in Asia? | Outcomes from 1 <sup>st</sup> and 2 <sup>nd</sup> WGIAs |
| 5. Energy Sector                                 | Outcomes from 3rd                                       |
| 6. Agriculture Sector                            | WGIA                                                    |
| 7. LULUCF Sector                                 |                                                         |
| 8. Waste Sector                                  |                                                         |
| 9. Regional characteristics 🤇                    | Individual presentation                                 |
| 10.Conclusion                                    | Done by Secretariat                                     |
| Appendix                                         | Done by Secretariat                                     |

#### Breakdown of Chap. 9 (Regional)

| Ite | ems                                                                       |                                         | Authors (proposal)            |
|-----|---------------------------------------------------------------------------|-----------------------------------------|-------------------------------|
| 1.  | Sectoral<br>features of GHG<br>inventories from<br>non-Annex I<br>Parties | Presented<br>in 3 <sup>rd</sup><br>WGIA | <i>Mr. Revet from UNFCCC?</i> |
| 11. | Regionally-<br>significant<br>source/sink<br>categories in<br>Asia        | Presented<br>in 2 <sup>nd</sup><br>WGIA | Ms. Umemiya                   |



iii) Appendix

#### Summary Table of Energy WG Discussion Results

|            | Good Practices                                                                                       |                                                                                                                                                                                                                                                                                    |  |  |
|------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Ind        | India: (1) Establishment of a national inventory management system; (2) data collection from 3       |                                                                                                                                                                                                                                                                                    |  |  |
| imp        | important sectors (power plants, transport, iron and steel); (3) adoption of the Tier 2 methodology; |                                                                                                                                                                                                                                                                                    |  |  |
| (4)        | (4) plant specific emission factors.                                                                 |                                                                                                                                                                                                                                                                                    |  |  |
| Ma         | Malaysia: (1) Establishment of an expert group for the second national communication; (2) data       |                                                                                                                                                                                                                                                                                    |  |  |
| coll       | ection methodology (e.g., approach stakeholder                                                       | rs in many ways); (3) institutionalization of the                                                                                                                                                                                                                                  |  |  |
| GH         | G program; (4) passion to improve inventories.                                                       |                                                                                                                                                                                                                                                                                    |  |  |
| <u>Jap</u> | an: (1) Collaboration between the Energy Age                                                         | ncy and the Ministry of the Environment as an                                                                                                                                                                                                                                      |  |  |
| inve       | entory agency; (2) balance approach (mass b                                                          | balance, energy balance, carbon balance); (3)                                                                                                                                                                                                                                      |  |  |
| inst       | itutionalization of the national inventory program                                                   | n.                                                                                                                                                                                                                                                                                 |  |  |
| #          | Challenges                                                                                           | Possible Solutions                                                                                                                                                                                                                                                                 |  |  |
| 1          | Collection of Activity Data Development of Improved Emission Factors                                 | Shareexperiencesoncollectingdataspecificallyfocusingonthefollowingareas:(1)transportation (travel distance);(2)powerplants;(3)heavy industry.Prepareadocumentoratablebythe4 <sup>th</sup> WGIA.Maketablesforthevaluesofcountry-specificemissionfactorswithbasicassumptionsadopted. |  |  |
| 3          | Implementation of Quality Assurance/Quality                                                          | If possible, prepare a table before the<br>completion of the WGIA Activity Report.• Make different database for comparison                                                                                                                                                         |  |  |
|            | Control (QA/QC)                                                                                      | Describe routine processes and task     allocation to implementing agencies                                                                                                                                                                                                        |  |  |
| 4          | Implementation of Uncertainty Assessment                                                             | <ul> <li>Follow-up and update data and information<br/>(this is the original purpose of Uncertainty<br/>Assessment)</li> </ul>                                                                                                                                                     |  |  |

| Summary Table of Agriculture WG Discussion R | Results |
|----------------------------------------------|---------|
|----------------------------------------------|---------|

|   | Good Practices                                                                                                   |                                           |  |  |
|---|------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|
| • | Detailed data collection from experiments (agroforestry, rice paddy and animal manure treatment)                 |                                           |  |  |
| • | Comprehensive measurement                                                                                        |                                           |  |  |
| • | Well-designed experiments and simple, portable equipment for measurements of CH <sub>4</sub> , N <sub>2</sub> O, |                                           |  |  |
|   | NH <sub>3</sub> emissions                                                                                        |                                           |  |  |
| • | Water management and fertilization strategy could reduce CH <sub>4</sub> and N <sub>2</sub> O emissions from     |                                           |  |  |
|   | agricultural systems in Asian countries.                                                                         |                                           |  |  |
| • | <ul> <li>Composting of livestock manure reduces N<sub>2</sub>O and CH<sub>4</sub> emissions.</li> </ul>          |                                           |  |  |
| # | Challenges                                                                                                       | Possible Solutions                        |  |  |
| 1 | Developing region-specific emission factors                                                                      | • Develop and implement regional research |  |  |
|   | for Asian region                                                                                                 | project                                   |  |  |
| 2 | Establishing a network of monitoring station                                                                     | Collaborate among experts                 |  |  |
|   | for GHG emissions                                                                                                | Share databases and expertise             |  |  |
| 3 | Funding for research and capacity building in                                                                    |                                           |  |  |
|   | the region                                                                                                       |                                           |  |  |
|   | Other things discussed                                                                                           |                                           |  |  |
| • | • Improve emission factors and data collection for CH <sub>4</sub> from enteric fermentation from livestock      |                                           |  |  |
|   | (only if it is a key source)                                                                                     |                                           |  |  |
| • | • Burning of crop residues (CH <sub>4</sub> & N <sub>2</sub> O): avoid burning and convert it into compost       |                                           |  |  |

#### Summary Table of LULUCF WG Discussion Results

|                                                                                                      | Good Practices                                                                                             |                                                 |  |  |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--|--|
| Act                                                                                                  | Activity Data: (1) Use statistical approach to define land-use categories under GPG-LULUCF,                |                                                 |  |  |
| rath                                                                                                 | rather than, for example, GIS-based approach; (2) estimate shifting cultivation area from the shifting     |                                                 |  |  |
| cult                                                                                                 | cultivators' data and length of shifting cultivation cycles; (3) create new standard format which can      |                                                 |  |  |
| inte                                                                                                 | grate GHG activity data development with regula                                                            | ar forest inventory work.                       |  |  |
| Em                                                                                                   | <b>Emission/Removal Factors (E/RF)</b> : (1) Develop factors for <u>major</u> forest categories.           |                                                 |  |  |
| Qu                                                                                                   | <b><u>Ouality Assurance/Ouality Control (OA/OC)</u></b> : (1) Implement data verification through personal |                                                 |  |  |
| con                                                                                                  | sultation and round-table discussion with rele                                                             | want persons and agencies; (2) conduct trend    |  |  |
| ana                                                                                                  | analysis to detect inappropriate use of emission factors or activity data.                                 |                                                 |  |  |
| Ins                                                                                                  | Institutional Arrangements: (1) Establish appropriate institutional arrangements through                   |                                                 |  |  |
| distribution of responsibility among relevant sectors, establishment of cooperation with statistical |                                                                                                            |                                                 |  |  |
| officers or relevant sectors, establishment of working group consisting members of various sectors,  |                                                                                                            |                                                 |  |  |
| etc.                                                                                                 |                                                                                                            |                                                 |  |  |
| #                                                                                                    | Challenges                                                                                                 | Possible Solutions                              |  |  |
| 1                                                                                                    | Activity Data: Different level of details of                                                               | Encourage local research agencies/universities  |  |  |
|                                                                                                      | forest categories and strata between                                                                       | to engage in this research area and seek        |  |  |
|                                                                                                      | states/provinces                                                                                           | endorsement from local/relevant authority for   |  |  |
|                                                                                                      |                                                                                                            | the work.                                       |  |  |
| 2                                                                                                    | <b><u>E/RF</u></b> : Difficulty in defining appropriate                                                    | Get additional data from other sources          |  |  |
|                                                                                                      | number of destructive sampling which is                                                                    | (national inventories of other countries in the |  |  |
|                                                                                                      | cost-effective                                                                                             | region, related studies, students' theses).     |  |  |
| 3                                                                                                    | <u>Uncertainty</u> : Difficulty in developing good                                                         | Apply the 2000 IPCC Good Practice Guidance      |  |  |
|                                                                                                      | activity data and emission factors for the key                                                             | (GPG) in a number of regions/provinces that     |  |  |
|                                                                                                      | categories which might not be cost-effective                                                               | contribute to the GHG emissions of those        |  |  |
|                                                                                                      |                                                                                                            | categories.                                     |  |  |
| 4                                                                                                    | Institutional Arrangements: Frequent                                                                       | • Institutionalize GHG inventory work, at       |  |  |
|                                                                                                      | change of personnel working on inventories                                                                 | least at the level of national focal point.     |  |  |
|                                                                                                      |                                                                                                            | • Develop reference manuals in local            |  |  |
|                                                                                                      |                                                                                                            | language.                                       |  |  |
|                                                                                                      | Other things discussed                                                                                     |                                                 |  |  |
| •                                                                                                    | · Duplication of efforts of country-to-country collaboration that might have decreased the                 |                                                 |  |  |
|                                                                                                      | efficiency of such collaboration was identified.                                                           |                                                 |  |  |

#### Summary Table of WASTE WG Discussion Results

#### Good Practices

<u>Activity Data</u>: (1) Use statistical data to analyze waste generation amounts and establish (as appropriate) statistical models for calculating municipal solid waste generation amounts based on different driving forces, for example, urban population, GDP and GDP per capita. (2) Conduct analysis of waste streams and waste composition, based on sampling analysis. (3) Conduct disaggregated estimation in a way that is adapted to the situation in each country. (4) Introduce the TIR 2 method of solid waste treatment and analyze uncertainty based on case studies. (5) Introduce standard operating procedures (SOP).

**Emission Factors (EF)**: (1) Develop emission factors of municipal solid waste, for example, waste generation amounts, DOC, k value and waste treatment management level. (2) Analyze the waste stream and its composition.

<u>**Ouality Assurance/Ouality Control (OA/OC)</u></u>: (1) Implement data verification through personal consultation and round-table discussions with relevant persons and agencies. (2) Conduct trend analysis to detect inappropriate use of emission factors or activity data. (3) Reduce uncertainty by conducting direct measurements for key parameters.</u>** 

**Institutional Arrangements**: (1) Set up an institutional network to improve activity data (AD), emission factors (EF), site measurements and treatment technology, etc. (2) Establish appropriate institutional arrangements through allocation of responsibility among relevant sectors, establishment of cooperation with statistical officers or relevant sectors, establishment of working groups consisting of members of various sectors, etc.

| # | Challenges                                                                                                                                                              | Possible Solutions                                                                                                                                                            |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | <u>Activity Data</u> : Lack of accurate waste<br>generation amounts and DOC; lack of detail<br>and accurate information about waste<br>treatment and management levels. | • Encourage local research<br>agencies/universities to do site<br>measurements in waste areas and to collect<br>detailed information of waste treatment<br>management levels. |
|   |                                                                                                                                                                         | <ul> <li>Seek support from local/relevant<br/>authorities for inventory work.</li> <li>Set up a database of activity data<br/>(including historical data).</li> </ul>         |
| 2 | <b><u>EF</u></b> : Difficulty in getting appropriate k values and DOC parameters in different countries or regions.                                                     | <ul> <li>Get additional data from other sources<br/>(national inventories of other countries in<br/>the region, related studies, and students'<br/>theses).</li> </ul>        |

|                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                              | • Share information with other countries in the same region.                                                                                                                                                                                                                                     |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 3                                                                                                                                                                                                                                                                                                              | <u>Uncertainty</u> : Waste composition depends on<br>the lifestyle in different regions, and the<br>management level depends on the economic<br>situation and public environmental<br>awareness. The migrating human population<br>in urban areas is difficult to determine. | <ul> <li>Apply the 2000 IPCC Good Practice<br/>Guidance (GPG) in a number of<br/>regions/provinces that contribute to GHG<br/>emissions.</li> <li>Conduct site measurement and sample<br/>analysis.</li> <li>Conduct uncertainty analysis with the<br/>Monte Carlo simulation method.</li> </ul> |  |  |
| 4                                                                                                                                                                                                                                                                                                              | <b>Institutional Arrangements</b> :<br>Lack of consistency of working groups in<br>waste sector domestically and internationally.                                                                                                                                            | <ul> <li>Institutionalize GHG inventory work, at least at the level of national focal points.</li> <li>Develop reference manuals in local languages.</li> <li>Establishing an international network for cooperating in the waste sector.</li> </ul>                                              |  |  |
|                                                                                                                                                                                                                                                                                                                | Other things discussed                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                  |  |  |
| <ul> <li>When developing inventories, it is beneficial strategy to point out to stakeholders the co-benefits of inventory work for climate mitigation.</li> <li>It is beneficial to cooperate with others scientists and departments, such as environmental scientists and industrial sectors, etc.</li> </ul> |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                  |  |  |

#### **Greenhouse Gas Inventory Office of Japan**

Center for Global Environmental Research, National Institute for Environmental Studies (NIES) 16-2, Onogawa, Tsukuba, Ibaraki, Japan 305-8506 Phone: 81-29-850-2169, Fax:81-29-858-2645 E-mail:cgergio@nies.go.jp <u>http://www-gio.nies.go.jp</u>

Printed on recycled paper