

The 5th Workshop on GHG Inventories in Asia (WGIA5) Kuala Lumpur, Malaysia 6-8, September, 2007

Mitigation Scenario Analysis - Asia-Pacific Integrated Models -

Tatsuya HANAOKA, Mikiko KAINUMA, Toshihiko MASUI, Junichi FUJINO, Shuichi ASHINA, Yuko KANAMORI, Takeshi IKEGAMI

National Institute for Environmental Studies

Yuzuru MATSUOKA

Kyoto University

Frequently Asked General Questions

Is there any simple method to assess future mitigation scenarios?

What kinds of approaches / steps / methods / datasets should be considered and prepared for mitigation analysis?

Outline of presentation

- 1. Overview of AIM model family
- 2. Approaches of mitigation scenario analysis
 ✓ Top-down approach: AIM/CGE model
 ✓ Bottom-up approach: AIM/Enduse model
 AIM/Energy Snapshot tool
- 3. Examples of mitigation scenario analysis
 ✓ Application of AIM/Energy-snapshot tool
 ✓ Approached of scenario analysis
 ✓ Example results

AIM team activities

AIM = Asia-Pacific Integrated Model

AIM Model Development

Strategic Database

AIM family for mitigation analysis

Top-down and bottom-up approach

Bottom-up approach

AIM/Enduse model

- This model can assess individual technologies under the detail technology selection framework
- This model is partial equilibrium model on energy AIM/Energy-Snapshot tool
- This tool can assess energy balance and CO2 emissions among sectors simultaneously.
- This is a snapshot tool at a certain point (but not optimization model).

Top-down approach

AIM/CGE model

- This model draws the balanced macro economy, based on social conditions such as population, technology and preference, countermeasures.
- This model is a general equilibrium model.

There are advantages/disadvantages in each approach, so target of analysis will be different depending on approaches.

Temporal scale of mitigation analysis

- Due to data constraints of future technology information, Enduse model analyzes scenarios with horizons of 2020~2030, and up to 2050 at most.
- CGE model deal with long-term analyses, but it needs to set assumptions on energy efficiency improvements, and macro economic parameters, etc.

Framework in AIM/CGE model

- Type : a recursive dynamics general equilibrium model
- Target Gas :CO2, non-CO2(CH4, N2O etc)
- Commodities and activities :
- primary energy
 - -coal, crude oil, natural gas, nuclear, hydro, other renewable (solar, wind, waste, biomass, ...)
- final energy
 - coal products, oil products, town gas, electricity, heat, hydrogen, biomass (solid, liquid, gas)

non-energy

 agriculture, forestry, fishery, foods, textile, paper, chemical, cement, other ceramic, steel, non-steel metal, machinery, other production, construction, water, whole sale & retail trade, finance & insurance, real estate, transport (passenger, freight), communication, public service, other service.

Process of model development

Framework of AIM/Enduse model

- Type : a Bottom-up optimization model with detail technology selection framework
 - by giving energy service demand exogenously, mitigation options are selected under various carbon emission constraints
- Target Gas :CO2, non-CO2(SO2, NOx, N2O, CH4,etc)
- Target Sectors : multiple sectors
 - power generation sector, industry sector, residential sector, commercial sector, transport sector, agriculture sector, waste sector, other CH4 emissions sector, F-gas emissions sector

Outline of AIM/Enduse model

Logic of technology selection

Tech B < Tech A \Rightarrow <u>Tech B</u> is selected

As private industries take into account high investment risk for energy conserving technologies, **a payback period of 3-years** is assumed.

Framework of AIM/Energy snapshot tool

 Type : an accounting tool to calculate the energy balance table and the CO2 emission table immediately with keeping consistency among sectors.

> by giving service demand, share of energy and energy improvement by classification of service and energy in the base year and the target year

Target Gas :CO2

Target Sectors : multiple sectors

 power generation sector, industry sector, residential sector, commercial sector, transport sector

Outline of Energy Snapshot (ESS) tool

Energy Snapshot : Manual, Excel file http://www-iam.nies.go.jp/aim/datalibrary.htm

Calculation process of ESS

Example of result figures by ESS

Example of factor analysis by ESS

- D: Driving forces (service demand)
- E: Energy Consumption
- C': CO₂ emission without measures in transformation ector
- C: CO₂ emission with measures in transformation sector
- E/D: Energy Intensity
- C'/E: CO₂ intensity in end-use sector (without measures in transformation sector)
- C/C': Change of CO₂ intensity by measures in transformation sector

Scenario of 2050 in China

	CM(A)	CM(B)
GDP	National planning before 2050, 7.5% from 2000 to 2010, 5.1% from 2010 to 2050.	National planning before 2050, 7.5% from 2000 to 2010, 5.1% from 2010 to 2050.
Population	National control plan, reach peak between 2040 to 2050 by around 1.6billion	National control plan, reach peak between 2040 to 2050 by around 1.6billion
Per capita GDP	11 thousand US\$ by 2050(1990 price),	11 thousand US\$ by 2050(1990 price),
Energy use technology progress	Fully diffusion of advanced energy use technology by 2050, technology efficiency is 30% higher than that in 2000, fuel cell vehical will be widely used by 2030	Fully diffusion of advanced energy use technology by 2050, technology efficiency is 40% higher than that in 2000, fuel cell vehical will be widely used by 2030

Note) China's GDP average annual growth rate shown as 7.5% from 2000 to 2010 is the national planning data.

Source: Prof.Hu, Dr.Jiang (tentative results)

Scenario of 2050 in China

	CM(A)	CM(B)
Annual average marginal cost improvement of energy exploitation technology	Coal: 0.4% Oil: 0.8% Natural gas: 0.3%	Coal: 0.5% Oil: 0.8% Natural gas: 0.8%
Non-Conventional energy use	Non-Conventional gas is needed after 2040, small demand for non-conventional oil	Non-Conventional gas is needed after 2040, small demand for non-conventional oil
Modern renewable energy such as solar	Cost will be 0.36yuan/kWh by 2050	0.18yuan/kWh by 2050
Modern biomass utilization technology	More than 70mtce biomass is available at cost lower than US\$44/tce	More than 70mtce biomass is available at cost lower than US\$50/tce

Source: Prof.Hu, Dr.Jiang (tentative results)

Energy Snapshot in China in 2050

Primary Energy Consumption

Note) the primary energy consumption does not include the fuel uses for generating electricity

Source: Prof.Hu, Dr.Jiang (tentative results)

Energy Consumption by Sector

Factor analysis of CO2 Emission by Industrial sector

Low Carbon Scenario (LCS) Study in Japan - Application of AIM/Energy-snapshot tool -

Motivation of the study:

This study assesses the possibility of achieving the Low-Carbon Society in Japan by targeting at 70% CO2 emission reduction by 2050 compared to the 1990 level, while satisfying the expected demand for energy services in 2050.

- How to achieve 70% CO2 emission reduction by 2050?
- What kinds of scenarios would be under such a target?
- How much energy reduction would be necessary from both demand side and supply side?

Relations among ESS and element models

Scenario approach toward Low-Carbon Society

Two different visions for societies in 2050 in Japan

Vision A "Doraemon"	Vision B "Satsuki and Mei"	
Vivid, Technology-driven	Slow, Natural-oriented	
Urban/Personal	Decentralized/Community	
Technology breakthrough Centralized production /recycle	Self-sufficient Produce locally, consume locally	
Comfortable and Convenient	Social and Cultural Values	
	Akemi Imagawa	

©藤子プロ·小学館 <u>Doraemon</u> is a Japanese comic series created by Fujiko F. Fujio. The series is about a robotic cat named Doraemon, who travels back in time from the 22nd century. He has a pocket, which connects to the fourth dimension and acts like a wormhole.

©STUDIO GHIBLI

<u>Satsuki and Mei's</u> House reproduced in the 2005 World Expo. Satsuki and Mei are daughters in the film "My Neighbor Totoro". They lived an old house in rural Japan, near which many curious and magical creatures inhabited.

LCS Japan scenarios for economy and industry

E	conomy	Vision A	Vision B
	Growth rate	• Per capita GDP growth rate:2%	• Per capita GDP growth rate:1%
	Technological Development	• High	• Not as high as scenario A
Ir	ndustry	Vision A	Vision B
	Market	Deregulation	• Adequate regulated rules apply
	Primary Industry	 Declining GDP share Dependent on import products 	 Recovery of GDP share Revival of public interest in agriculture and forestry
	Secondary Industry	 Increasing add value Shifting production sites to overseas 	 Declining GDP share high-mix low-volume production with local brand
	Tertiary industry	 Increase in GDP share Improvement of productivity 	 Gradual increase in GDP share Penetration of social activity

Depiction of future image: Residential sector in 2050

Technology Development and Diffusion in Japan

Demand side CO2 reduction by advanced technologies in 2050

PV: one million kW in scenario A; two million kW in scenario B

Technology Development and Diffusion in Japan

Technologies in power sector in 2050

: New technology

70% reduction: combination of demand side energy reduction + low carbon energy

70% CO2 emission reduction by 2050

70% CO2 emission reduction by 2050

Thank You!

2050 LCS study http://2050.nies.go.jp/index.html

The Energy Snapshot tool http://www-iam.nies.go.jp/aim/datalibrary.htm