WG3-LULUCF Sector: How to Utilize RS and GIS Data for LULUCF Inventory

Chairperson: Rahim Nik (Malaysia) Rapporteur: Rizaldi Boer (Indonesia)

Takahiko Hiraishi (Japan), Savitri Garivait (Thailand), Takako Ono (Japan), Lee Kyeong-hak (Korea), Noriko Kishimoto (Japan), Yasumasa Hirata (Japan), Hyun Kook Cho (Korea), U Than Naing Win (Myanmar), Junko Akagi (Japan)

Objectives

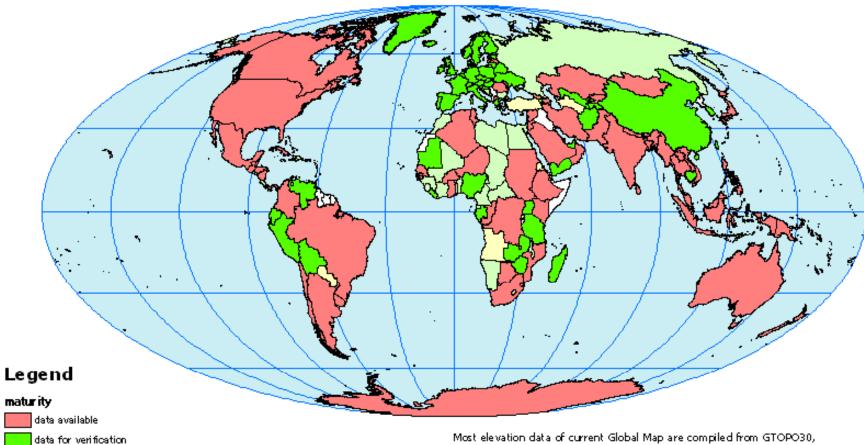
- To share experience and lesson learnt in applying RS and GIS data for LULUCF inventory
- To discuss actual application of RS and GIS data for LULUCF inventory

Points for discussion

- 1. How do we identify or estimate concrete data by applying RS and GIS data?
- 2. How do we verify RS and GIS data?
- 3. What kind of resource necessary for utilizing RS and GIS data?
- 4. What type of institutional arrangement is effective for applying RS and GIS data for LULUCF inventory?

1, 2 and 3. How do we identify or estimate concrete data by applying RS and GIS data and their verification as well resources required for that?

- There are three presentations
 - The use of Global Map for addressing CC (Noriko Kishimoto)
 - Application of RS for forest inventory for identifying DD (Yasumasa Hirata)
 - Thailand's experience in using RS and GIS data for estimating (Savitri Garivait)


- Global Map containing land cover data of the globe released in 2008 is downloadable for free through website
 - -URL: www.iscgm.org
 - -E-mail: sec@iscgm.org

(for any inquiries)

• Scale: 1:1000,000

Progress of Global Mapping Project

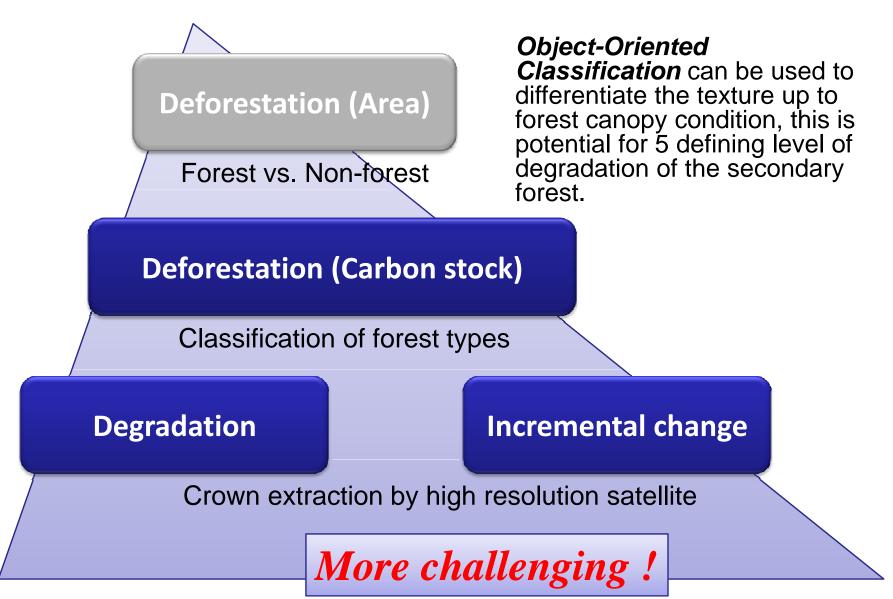
As of 2009-01-16 International Steering Committee for Global Mapping

developing data

considering joining the project

not participating in the project

Most elevation data of current Global Map are compiled from GTOPO30, contribution of United States of America.


This map is for the purpose of reference and the boundaries in this map are not authorized by any organizations.

Example of interpretation Interpretation requires further consideration			
GM LC 20 Classes		LULUCF 6 Classes	
Broadleaf Evergreen Forest]	Forest land	
Broadleaf Deciduous Forest		Forest land	
Needleleaf Evergreen Forest		Forest land	
Needleleaf Deciduous Forest	≻	Forest land	
Mixed Forest		Forest land	
Tree Open		Forest land	
Mangrove	J	Forest land	
Shrub		Grassland	
Herbaceous		Grassland	
Herbaceous with Sparse Tree/Shrub		Grassland	
Sparse vegetation	J	Grassland	
Cropland		Cropland	
Paddy field	\geq	Cropland	
Cropland/Other Vegetation Mosaic	J	Cropland	
Wetland	}	Wetlands	
Urban	}_	Settlements	
Bare area, consolidated (gravel, rock)]	Other land	
Bare area, consolidated (sand)		Other land	
Snow/Ice		Other land	
Water	J	Other land	

The challenges of forest monitoring

- Dr. Garivait (Thailand) presented specific application of RS and GIS in estimating pollutants emissions from biomass open burning (*forest fire, rice husk/straw burning and garbage burning*) in Mekong River Basin
- It was indicated that biomass burning will affect rainfall pattern and acidity and Ozone formation. Particle matter from biomass burning may inhibit the formation of cloud
- The use of MODIS data is highly underestimate for hot spot data, particularly area for agriculture burning
- Problem, when fire occur, the satellite already pass over the sites (1x1 km, this is too large). Need to cross check with data from forest fire control statistics and ground survey, but still use many assumption is getting an estimates for biomass and burning efficiency

1, 2 and 3. How do we identify or estimate concrete data by applying RS and GIS data and their verification as well resources required for that?

- A margin error may occur when Global Data is applied to national context, thus a country should take care of this
- Many of GIS experts in developing countries have not been exposed to the application of RS and GIS in climate change
- More ground data is required for verifying the use of RS and GIS data, in particular for estimating EF and RF data (carbon stock of the five pools)

1, 2 and 3. How do we identify or estimate concrete data by applying RS and GIS data and their verification as well resources required for that?

- Need training for RS and GIS experts on utilization of RS and GIS data for climate change, in particular GHG Inventory
- Need to explore the use RS technology for estimating peatland C-stock such as ALOS (can estimate with reasonable accuracy)

4. What type of institutional arrangement is effective for applying RS and GIS data for LULUCF inventory?

- Different country has different institutional arrangement for effective use of RS and GIS data for LULUCF Inventory (e.g. Indonesia has set up alliance of 18 institutional who has RS and GIS base data; Korea set up the inventory team within one institution ~ effective coordination)
- Need to engage GIS experts and RS agencies within the country.
- Many global datasets available and can be accessed freely by developing countries to improve their inventory

4. What type of institutional arrangement is effective for applying RS and GIS data for LULUCF inventory?

- Next year Activities:
 - Need to have further discussion on identification of gaps, barriers and approaches in producing high quality National GHG inventory especially in obtaining data needs (many Asia countries have complete their inventory)
 - How to acquire relevant data nationally and globally for GHG Inventory (training GIS expert on the deriving AD and EF from global data)
 - What will be national system to support the development of high quality inventory in subsequent National Communication
 - Need to merge Agriculture and LULUCF experts and RS and GIS experts in the application of RS and GIS data for AFOLU