Agriculture WG in WGIA 8

Chair: Kazuyuki YAGI Rapporteur: Amnat CHIDTHAISONG

Theme: Estimation Methods and Development of Parameters

Discussion Points

- Improvement of estimation method of Enteric fermentation and Manure management

- Improvement of estimation method of Agricultural Soils,

- Development of parameters by joint research
- Mutual Learning
- Exchange agriculture information (including mitigation potential)

Time Schedule (WGIA8 Day 2, 9:30~12:30)

10min. Introductory Presentation

- 15min. Takashi Osada (Japan) GHG measurement for manure management of Livestock
- 15min. Sultan Singh (India) Enteric CH₄ emissions of Indian livestock from prevalent feeding systems in different agroecological regions
- 15min. Kazuyuki Yagi (Japan) Recent Research Progress for Improving Japanese GHG Inventories of Agricultural Soils
- 15min. Chhemendra Sharma (India)
 - GHG emissions from Agriculture Soils in India
- 15min. Amnat Chidthaisong (Thailand)
 - Emissions of N₂O from Agricultural Soils in Thailand
- 15min. Khin Lay Swe (Myanmar)

National Inventory of GHG Emissions in Myanmar 65min. *Group discussion*

Gas monitor for GHG measure

- Highlights on the importance of manure management (T. Osada)
 - A system for the quantitative measurement of emissions from major manure treatment systems using a large dynamic chamber-important tool for National Inventory, and for developing new GHG regulation technology.
 - The emission factor of each treatment system should be evaluated under each countries procedure

<u>Exhaust</u> (Relatively dirty air from manure)

Developments of CS-EF for Enteric fermentation;

Crossbred, indigenous cattle, goat, sheep-ages and activity (growing, lactating and maintenance), across ecological regions of India (S. Sigh)

The effects of feed component and quality on enteric CH₄---local mitigation technology and measures

Methane emission factors for different ruminant species (S. Singh)

Livestock category	CH ₄ g /day /head
Cattle crossbred	
(male)	
< one year	21.0317
1 – 1.5 year	29.6708
Breeding	96.9185
Work	112.2449
Breeding + work	99.0314
Other	72.9948
Cattle crossbred	
(Female)	
< one year	21.5439
1 – 2.5 year	40.3079
Milking	100.8445
Dry	81.2349
Heifer	47.9742
Other	54.9628

Cattle Indigenous	
(male)	
< one year	21.4239
1 – 1.5 year	31.2951
Breeding	99.8437
Work	101.2912
Breeding + work	101.1519
Other	71.0611
Cattle Indigenous	
(Female)	
< one year	20.7075
1 – 3 year	42.9336
Milking	101.1519
Dry	80.0693
Heifer	64.3712
Other	71.5443

Moving from Tier 2 to Tier 3, example from Japan (K.Yagi)
the effects of field aeration that helps reduce GHG emission (xxx%), but grain yield is reduced about 3-4%

 DNDC model with GIS-based information to estimate CH₄ emissions from paddy fields—better represents and incorporate local factors (drainage, climate, and soil factors)

N₂O emission from agricultural soils;

- Two countries
- India (C. Sharma) presented the results of using CS for rice-wheat system

Thailand used CS for F_{CR} , highlight the importance and need of improvement of N_2O emission from livestock-related activities.

• Myanmar

- Overview on the progress of Initial National communication
- Ag is major source
- Net sink of about -70 Mt CO₂e
- Most based on T1 approach, few CS data

Discussion

CS parameter development, improvement vs.
 WGIA9

- After SNC submission at the end of the year 2010-a synthesis of
 - country-specific factor, activity data
- Basis for mutual learning and future cooperation
 - Enteric fermentation, manure management, Ag soils

NextWGIAs

Sessions for learning on developing CS parameters;

- Japan, India-N₂O from soil, manure management, N₂O from Ag soils
- India-enteric fermentation (CH₄),
- Japan, Thailand and Philippines-rice cultivation

Inventory planning Documentation on CS parameters Linking CS parameter and mitigation measures Soil carbon

