International Workshop on "Inventory, Modeling and Climate Impacts of Greenhouse Gas emissions (GHG's) and Aerosols in the Asian Region"

Particulate Matter concentration estimation from satellite aerosol and meteorological parameters - a case study from Hanoi, Vietnam

THANH T.N. NGUYEN UNIVERSITY OF ENGINEERING AND TECHNOLOGY VIETNAM NATIONAL UNIVERSITY HANOI

Tsukuba, June 26-28, 2013

- Introduction
- Related work
- Methodologies
- Experiments and Results
- Conclusion

- Introduction
- Related work
- Methodologies
- Experiments and Results
- Conclusion

Introduction

Aerosol Optical Thickness/Aerosol Optical Depth

AERONET sites distributed over world

C-130 aircraft in ACE-Asia Campaign 2001 (UCAR/NSF)

MODIS instrument on Terra satellite

Particulate Matter concentration

- PM1/2.5/10
- Direct measurements
- In-direct estimation
 - × Meteorological data
 - × Aerosol

- Introduction
- Related work
- Methodologies
- Experiments and Results
- Conclusion

Related Work

Location	PM	AOT/AOD	Met.	Method	R^2	Ref.	
Italy/LA/Beijing	PM10	AERONET ^{1.5}		LR	0.62	Chu et al. (2003)	
US	PM2.5	MODIS ⁴ MODIS ³	Х	MLR	0.49 0.96	Wang et al. (2003)	
US	PM2.5	MODIS ⁴		LR		Engel-Cox et al. (2004)	
France	PM2.5	POLDER		LR	0.3	Kacenelenbogen et al. (2006)	
France	PM10	AERONET		LR	0.27/ 0.76	Pelletier et al. (2007)	
Neitherland	PM2.5	AERONET ^{1.5} MODIS	Х	LR	0.57 0.52	Schaap et al. (2009)	
US/HK/SYD/SWIT /Delhi/NY	PM2.5	MODIS ³ MODIS ⁵	Х	LR/MLR/ NN		Gupta et al. (06, 08,09)	
Nanjing, China	PM10	MODIS	X	MLR	0.21 - 0.74	Zha et al. (2010)	
ER, Italy	PM10	PMMAPPER		Kriging		Campalani et al. (2011)	
Peninsular Malaysia	PM10	MODIS	Х	LR/MLR	0.79	Yap et al (2013)	
Austria	PM10	PMMAPPER	X	SVR	0.77-0.91	Hirtl et al. (2013)	

Related Work

City of Hanoi, Vietnam

- Coordinates: 21°2' N, 105°51'E
- o Area: 3,344.7 km²
- Population (2009): 6.5 million

• Air Quality monitoring in Hanoi

(Hien et al, 2002, 2004), (Sarath Guttikunda, 2008), Cohen et al. (2009)

- MONRE: Collected hourly concentration of pollutants in the air in 2003 and estimated of traffic emission with resolution of 1x1 km
- JICA: Monitored 24 hour concentration of pollutant in the air at traffic intersections during August, 2005
- SVCAP: Operated passive sampler network for Jan and Feb, 2007
- **DONREH**: Monitored hourly pollutant concentration at urban centers, industrial areas, and streets during several months of 2006-2007
- **CENMAL**: Conducted monitoring from March to June 2007 at 6 industrial areas and 13 urban areas

Objectives

- Will the usage of satellite aerosol improve PM estimation accuracy?
- Which approach will be appropriate for PM estimation from satellite aerosol and meteorological data <u>in site domain</u>?
- Which approach will be appropriate for PM estimation from satellite aerosol and meteorological data <u>in map domain</u>?
- How to validate PM maps?

- Introduction
- Related work
- Methodologies
- Experiments and Results
- Conclusion

Data Collection

Satellite-based aerosol

- MODIS AOT: MOD04 L2
- PMMAPPER aerosol product (Nguyen et al., 2010; Campalani et al., 2011)
 - × 1x1 km of spatial resolution
 - Validated over Europe areas (2007-2009, 5500 granules, ~170 AERONET sites)

MODIS vs. PM MAPPER

Overlay of MODIS AOT map @ 10x10 km² (left) and PM MAPPER AOT map @ 3x3 km² (right)

[PM MAPPER-AERONET] Scatterplot

[MODIS-AERONET] Scatterplot

Data Collection

Ground-based aerosol

- **o** AERONET
- Nghiado station, Hanoi
- AOT in various wavelengths: 0.340, 0.380, 0.440, 0.500, 0.675, 0.870, 1.020, and 1.640 μm in interval of *15 minutes* in average.

Ground PM concentration and meteorological data

- o PM1, PM2.5, PM10 (24 hour average)
- Wind speed (Wsp), Temperature (Temp), Relative Humidity (Rel_H), pressure (Bar) and Radiation (Rad) (hourly average)
- Provided by Center for Environmental Monitoring (CEM), Vietnam Environment Administration

Data Integration

- Constraints (Ichoku, 2002)
 Collocate in space (R)
 Synchronize in time (T)
 Optimal thresholds (R, T) are selected by experiments
- Integrated datasets
 - PMMAPPER AOT and AERONET AOT
 - Validate PMMAPPER AOT product
 - PMMAPER AOT and PM1/2.5/10, meteorological parameters
 - Modeling and testing process of PM estimation

Spatial-temporal window fro extracting satellite/ground-based measurements

Modeling Techniques

Problem statement

Given a training dataset including *l* samples:

 $\{(x_1, y_1), \dots, (x_l, y_l)\}$ $\hat{\mid} X Y where X \hat{\mid} R^n, Y \hat{\mid} R$

The modeling process will find an appropriate function f that minimize error e. The general form of a model would be:

Y = f(X) + e

 Linear Regression (LR)/Multiple Linear Regression (MLR)

$$Y = b_0 + b_1 X_1 + \dots + b_n X_n + e$$

The problem is to estimate b_i as that which minimizes the sum of the square error, $e^T e^{T}$

Modeling Techniques

Support Vector Regression (SVR)

- Proposed by Vapnik, 1995
- Based on structural risk minimization principle from computational learning theory ~ finding maximize regression margin hyperplanes in feature space
- Compared with ANN (Artificial Neural Network), SVR has main advantages as follows:
 - The SVR solution may be a global optimum than a local optimum as ANN's
 - The SVR may minimize the risk of over-fitting.

- Introduction
- Related work
- Methodologies
- Experiments and Results
- Conclusion

Satellite aerosol validation

Data:

- From Dec. 2010 to Nov. 2011
- PMMAPPER AOT maps cover Hanoi, Vietnam
- AERONET AOT collected at Nghiado station in Hanoi

Integration

- Temporal windows T=30, 60, 120 minutes or 24 hours
- Spatial windows R=10, 15, 20, 25, 30, 35, 30, 50 km
- Results
 - The best match would be happened with T=24 hours and R=25 km
 - R = 0.648 and RMSE=0.421 (RMSE% = 37.4)

PM Estimation

Threshold selection

- Identify spatial and temporal thresholds for integration data in order to obtain samples for the PM1/2.5/10 modeling step.
- Investigate important factors to PM1, PM2.5, PM10 estimation
- PM estimation using MLP and SVR
 - Estimators of different types of particle mass concentration (PM1, PM2.5 and PM10)
 - Role of satellite AOT
 - Performance of two regression methodologies

Threshold selection

- Data were collected from August 2010 to July 2012:
 - Daily AOT maps at 1 km²,
 - Daily particulate matter concentration (PM1, PM2.5, PM10)
 - Hourly meteorological parameters (wind speed, temperature, relative humidity, pressure and sun radiation)

Temporal and spatial windows

- The nearest time T1, average of two nearest times T2 and average of four nearest times T3
- R=5, 10, 15, 20, 25, 30, 35, 40, 45 and 50km

Threshold selection & factor assessment

Correlation Coefficients in distance between satellite AOT and other factors

- Temporal and spatial thresholds for integration of satellite and ground measurements are
 - The nearest time T1
 - R=30km

Correlation coefficients between PM1/2.5/10 and other factors in the selected dataset.

- PM and AOT correlation increase in the order of their aerodynamic diameters (i.e. 1, 2.5 and then 10 µm)
- Whereas, PM and Wsp, Temp, Bar, Rad correlation decrease in the order of PM mass sizes

PM Estimation Using MLP and SVR

Datasets

PM1/2.5/10 estimators
Year 1

With AOT
Without AOT

Year 2

With AOT
With AOT

Modeling

- One year data for modeling and another year for validating
- Using MLP and SVR

Statistics on total datasets

PM Estimation Using MLP and SVR

		I.a.	
PM10	MLR w/o AOT	MLR w AOT	SVR w AOT
COR	0.038	0.174	0.239
RMSE	109.225	96.656	74.935
PM2.5			
COR	0.429	0.598	0.593
RMSE	40.836	31.071	31.674
PM1			
COR	0.608	0.659	0.694

22.939

22.349

RMSE

24.591

PM1 and PM2.5 can be estimated well by both methods while PM10 estimation is worst much.
The use of satellite AOT in PM1/2.5/10 prediction is

PM1/2.5/10 prediction is able to improve regression correlation and accuracy significantly

• SVR is better than MRL for PM10 and PM1 estimation. Meanwhile, MRL and SVR perform in nearly same way for PM2.5 estimation

- Introduction
- Related work
- Methodologies
- Experiments and Results

Conclusion

Conclusion

- Case study in Hanoi, Vietnam for PM1/2.5/10 estimation from satellite AOT and meteorological parameters using MLR and SVR techniques
- The thresholds for combination of satellite and groundbased measurements should be selected by experiments.
- Estimation quality decreases by PM10, PM2.5 and PM1 as results of loose relationship of PM10 on meteorology parameters in comparison with PM2.5 and PM1
- The use of satellite AOT in modeling is able to improve all PM estimators' accuracy significantly.
- SVR outperforms MLP. It should be a good method for PM estimation

