Field observations of aerosols and related species in East Asia to constrain model simulations and emission inventory

Yugo Kanaya (yugo@jamstec.go.jp) (RIGC/JAMSTEC)

Contributors: F. Taketani, Y. Komazaki, H. Irie, H. Takashima, X.-L. Pan, P. Pochanart, H. Akimoto, H. Tanimoto, S. Inomata, J. Suthawaree, S. Kato, K. Yamaji, Y. Kondo and colleagues, Z. Wang and colleagues, E. Grechko and colleagues

Supported by ERTDF S-7 project

East Asia as hot emission spots

ZZ

M0D08_D3.051 Aerosol Optical Depth at 550 nm [unitless] (01Apr2012 - 31Mar2013)

Still difficult to observe BC and OC from satellite

demand for field observations

Motivation to study BC + organics in the field

(f) BC in 2008

quantify BC, as SLCP (Short-lived Climate) Pollutant) of mitigation target

Major fraction of organics is still unidentified

Molecularly identified: Only 10% MCA

SugarAlcohols

Decesari et al., 2006

90% Unknown: humic-like substance? bioaerosols?

Observational sites

The Mount Tai Experiment 2006

• To measure O_3 , O_3 precursors, aerosol chemical species

- At the top of Mt. Tai, located in the middle of Central East China (CEC), regarded as one of the most significant source regions in the world
- · In June, when O_3 and other pollutants show maximum concentrations
- to study O_3 and aerosol chemistry and transport that control regional pollution,
- under close collaboration between observations and model simulations

Atmospheric Chemistry ACP special issue: ~20 papers!

The Mount Tai Experiment 2006 (MTX2006): regional ozone photochemistry and aerosol studies in Central East China

Editor(s): F. J. Dentener, S. C. Liu, and L. T. Molina

Overview paper: Kanaya et al., ACP, in press, 2013

Observed species

Observed species	Method	PI
O ₃ , CO	UV absorption, NDIR	P. Pochanart, JAMSTEC
0 ₃	UV absorption	T. Wang, J. Gao, Shandong Univ.
NO/NOx/NOy	LED/Molybdenum converter /Chemiluminescence	H. Tanimoto, NIES
NO/NOx*	Chemiluminescence	T. Wang, J. Gao, Shandong Univ.
NMHCs	Canister/GC-FID/GC-MS	S. Kato, Tokyo Met. Univ.
NMHCs	Canister/GC-MS	Y. Wang, IAP
NMHCs, VOCs	PTR-MS	H. Tanimoto, S. Inomata, NIES
CO ₂	NDIR	Y. Komazaki, JAMSTEC
NO ₂ VCD & AOD from mountain	MAX-DOAS	H. Irie, Y. Kanaya, JAMSTEC
NO ₂ VCD & AOD from foothill	MAX-DOAS	H. Irie, Y. Kanaya, JAMSTEC
Actinic flux & J values	Spectralradiometry	Y. Kanaya, JAMSTEC
T, RH, P, wind	Conventional instruments	Meteorological observatories
Blackcarbon (PM1, PM2.5)	Multi-Angle Absorption Photometry	P. Pochanart, JAMSTEC
EC/OC	Thermal-Optical-Transmittance	Y. Komazaki, JAMSTEC
Aerosol absorption	Particle Soot Absorption Photometry	Y. Komazaki, JAMSTEC
Blackcarbon	Aethalometer	T. Wang, J. Gao, Shandong Univ.
Size segregated aerosol chemicals	Cascade impactor/ post analysis	Y. Wang, IAP
Ion analysis of TSP and PM2.5	Sampling/ post analysis	G. Zhuang, Fudan Univ.
Organic gases/aerosols	High volume air sampler, filterpack collections/ post analysis	K. Kawamura, Hokkaido Univ.
PAHs/size segregated aerosols	Sampling/ post analysis	G.Wang, Nanjing/Hokkaido Univ.

36.26N, 117.11E 1534 m asl.

Clean and hazy cases

Early morning : polluted layer below

Before noon: polluted layer comes up

Select reliable BC instruments

Recommendation: Use COSMOS (heated PSAP) and MAAP, less influenced by scattering particles, and base on ECOC analyzer.

To constrain emission rates better than a factor of 1.5, we need to be able to observe with better accuracy.

CO, BC, OC influenced by open crop residue burning

Chemical fingerprints of biomass burning

Refinement of OCRB emission using satellite hotspot data

Annual emission: fraction of crop residue burnt in the field [Yan et al. 2006] Daily and spatial allocation: based on hotspot distribution (Aqua/Terra MODIS)

28 June 2006

Yamaji et al., ACP, 2010

Ref: A day with low BB activities

7 June 2006

Days with high BB activities

Modeling O₃/aerosol with revised emission inventory

CMAQ/RAMS regional model Resolution: 80x80km² Boundary: Global CTM (CHASER) Gas chem: SAPRC99

Aerosol: AERO3 (SORGAM, ISSOROPIA, RPM)

OCRB emissions contributed 6% of O_3 , 20% of CO, 43% of BC, and 53% of OC concentrations over CEC for the whole month of June

Yamaji et al., ACP, 2010

Rudong field campaign 2010

Observe O₃/aerosols and their precursors
in May-June 2010, in seasons with high O₃/aerosols,
to closely observe biomass burning

100 km north of Shanghai

crop residue

BC/CO emission ratio

 $BC/CO = 7.5 \text{ ng/m}^3/\text{ppbv}$ (Andreae and Merlet, 2001, agricultural waste burning) is often used but the ratio could be larger

PM_{2.5} composition: obs vs. model (µg m⁻³)

Explore origins of missing carbonaceous aerosols using ¹⁴C

(Rudong, May-June, 2010)

Urban/industrial emission dominant, But large amount of modern carbon: 3-7µg m⁻³

PMF attribution to Biomass burning (TC): only 0-2 µg m⁻³

Suggesting more modern carbon from Prim/Sec biogenic OA

Decreasing BC trend at Fukue? (preliminary)

Downturn of BC emission started?Or coupled to meteorology changes?

MAX-DOAS network over Asia and Russia

http://ebcrpa.jamstec.go.jp/maxdoashp/

HCHO from Russian Forest Fire 2010

Summary

- Regional-scale open crop residue burning (OCRB) in CEC is an importance source of air pollution
- BC emission rates from OCRB could be underestimated by a factor of 2.5
- Organics: underestimated by a factor of 5, at 3 field campaigns;
 More natural source suggested by ¹⁴C analysis
- Long-term BC reduction is observed at Fukue, needing confirmation
- MAX-DOAS detected HCHO emission from Russian forest fire in 2010: good agreement with satellite

Comparison of seasonality at Fukue

BC at Fukue, in the downwind, is in agreement with model...

BC emission increase will result in overestimation of BC at Fukue

biomass burning is not a major source Or the loss rate of BC could also be faster

BC in downwind in Japan is well reproduced by the model, suggesting that major BC emission source is different and well constrained, or lifetime of BC is shorter and compensates larger emission rates

Bayesian inversion & WRF_FLEXPART model to optimize CO emission

Need more emission around Beijing, YZRD regions

- CO emission is likely 30% underestimated
- BC emission rates, based on BC/CO ratio, also need to be increased further by 30%