

International Workshop on "Inventory, Modeling and Climate Impacts of <u>Greenhouse Gas emissions (GHG's) and Aerosols in the Asian Region",</u> June 27, 2013 @ Epochal Tsukuba, Tsukuba, Japan

GOSAT

- CO₂ and CH₄ measurements from space -

(GOSAT: Greenhouse gases Observing SATellite)

Tatsuya Yokota

Center for Global Environmental Research (CGER) National Institute for Environmental Studies (NIES), Japan

Contents

 Significance and objectives of GHGs (CO₂ & CH_{4}) measurements from space GOSA mission overview CO₂ & CH₄ monitoring status by GOSAT CO₂ flux estimation by using GOSAT data GOSAT TANSO-CAI data contribution

GOSAT (IBUKI) launched by H-IIA F-15 vehicle on January 23, (Photo by Mr. Daitoh (NIES))

- GOSAT was launched on 23 January, and has been in operation for more than four years.
- GOSAT data are available from June 2009 successively.
- GOSAT is the world's first satellite designed specifically for monitoring greenhouse gases.

Researchers worldwide are using GOSAT data.

 GOSAT observations successfully filled out the gaps in the ground-based monitoring network, except for around the equator and the highlatitude regions.

- To obtain the <u>global distributions</u> of greenhouse gas (GHG) concentrations (CO₂ and CH₄) and their <u>temporal variations</u>
 - > To **visualize** changing GHG global distributions
 - To fill out the gaps in the network of ground monitoring stations
- 2. To **improve accuracy** of the carbon flux (net sources and sinks) estimation on a subcontinental scale
- To develop technologies for future GHG observing satellites ⇒ GOSAT-2

Contributions of primary greenhouse gases to the increase in atmospheric temperatures based on the best estimates of radiative forcing from 1750 to 2005. (Source: IPCC AR4) 4

Size	Main body	3.7 m x 1.8 m x 2.0 m (Wing Span 13.7m)		
Mass	Total	1750kg		
Power	Total	3.8 KW (EOL)		
Life Time	5 years			
Orbit	sun synchronous orbit			
	Local time Altitude Inclination			13:00+/-0:15
				666km
				98deg
Repeat				3 days
Launch	Vehicle		-	H-IIA
	Schedule		Jan. 23 2009	

TANSO-FTS (Fo<u>urier Trans</u>form Spectrometer)

- SWIR reflected on the
- earth's surface
- -FIR radiated from the
- ground and the
- atmosphere

TANSO onboard GOSAT

TANSO=<u>Thermal And N</u>ear infrared <u>S</u>ensor for carbon <u>O</u>bservation

TANSO-CAI (Cloud and Aerosol Imager)

Ultraviolet (UV) (0.38 micron), visible (0.67 micron), NIR (0.87 micron), and SWIR (1.6 micron)

(Courtesy of JAXA)

Infrared Radiation measurements by GOSAT (TANSO-FTS)

Near Infrared Thermal Infrared (SWR) (TIR) Atmosphere

TANSO-FTS Level 1B spectra

Pointing and Footprints

(by Y. Yoshida (NIES)) 10

Monthly global map of XCO₂ and XCH₄ (VO2.**) from TANSO-FTS SWIR data

June 2009 – April 2013

JUN. 2009 GOSAT DATA

SWIR L2 V02

JUN. 2009

_ATITUDE [deg.]

XCH₄ [ppm]

12

90

395

120

60

180

90

XCO₂ **Monthly** Average

Data Validation of GOSAT XCO₂ and XCH₄

Data validation activities have conducted by worldwide research groups

- Column concentrations of CO₂ and CH₄ have been retrieved by several groups (institutes and universities) in the world.
- These data are validated with TCCON FTS data and/or airplane data.
- Present GOSAT XCO₂ data quality is within -0.3% bias and 0.5% variation.

Data validation scheme

- Fossil fuel & cement:
- 8.3±0.4 (5%) (GtC/yr)
- Land use change (incl. biomass burning):
- 1.0±0.5 (50%) (9.3 GtC) GFED
- Atmospheric growth:
 - 4.3 ± 0.1 (23%)
- Land sink:
 - 2.6±0.8 (31%)
- Ocean sink:
 - **(20%)** ₁₄ 2.5 ± 0.5

(C. Le Quéré et al. (2013): The global carbon budget 1959–2011, doi:10.5194/essd-5-165-2013)

Contribution of satellite data to carbon flux estimation

A Priori Flux Data Used in the Inversion

- Anthropogenic Emission Data ODIAC

- · Monthly data
- Resolution: 1 km × 1 km
 (→ Remapped to 1° × 1°)
 Ver. 3.0 includes emissions
 from ships and airliners
 Data prepared for 2009

Oda et al., 2010 Atmos. Chem. Phys.

Terrestrial Biosphere-Atmosphere Flux Data

- Generated with vegetation process model VISIT
 Biomass burning data (GFED ver.3.0) included
- \cdot Daily data
- \cdot Resolution: 0.5° × 0.5°
- $(\rightarrow \text{Remapped to 1}^{\circ} \times 1^{\circ})$

Ito, 2010 Saito et al., 2010 J. Climate» van der Werf et al. 2010 ACP

Ocean-Atmosphere Flux Data

- \cdot Generated with ocean pCO₂ data assimilation system
- Monthly data
- \cdot Resolution 1° × 1°

Valsala et al., 2008 J. Climate Valsala et al., 2010 Tellus

Regional CO₂ Flux Estimates and Improvement of the Uncertainties

Regional CO₂ Flux Estimates and Improvement of the Uncertainties

Regional CO₂ Flux Estimates and Improvement of the Uncertainties

Model Simulated global CO₂ concentrations in three dimensions calculated from monthly regional CO₂ flux estimates (GOSAT Level 4A data product) by using an atmospheric tracer transport model.

TANSO-CAI data

Eruption of Eyjafjallajokull Volcano

Asian Sands From China

on the Indonesian island of Sumatra (June 2013)

Future perspectives (Visions)

Perspective on future GOSAT missions (modified slide by MOE @Rio+20 (2012))

Possible contribution of GOSAT series

◆ Elucidating global carbon cycle through precise observation of CO₂ and CH₄

⇒ Improvement in climate change prediction

◆ Early detection of major changes in climate system

⇒ Identifying changes in global environment

- Monitoring of GHG reduction (mitigation efforts) (Incl. REDD+ activities)
 - ⇒ Contribution to climate policy making

- GHG concentrations estimated from satellite data are not so much highly accurate (1 ppm < x < 4 ppm (1%) for XCO₂) by now, but have increased the regional coverage of measurements and have contributed to reduce uncertainties in the carbon flux estimates.
- Aerosol and dust information obtained from the GOSAT TANSO CAI data would be also useful for environmental monitoring.

GOSAT Project Webpage: http://www.gosat.nies.go.jp/index_e.html

Data distribution **→** http://data.gosat.nies.go.jp/

END