Patterns of CO₂ Sensitivity to CO from Space and their Implications for Carbon Monitoring

Sam Silva¹, Ave Arellano¹, and Helen Worden²

NATURE CLIMATE CHANGE | VOL 2 | AUGUST 2012 |

Measuring the carbon emissions of megacities

Riley M. Duren and Charles E. Miller

"Carbon monoxide can help disentangle the relative contributions of fossil-fuel and biogenic sources of carbon dioxide, by serving as a tracer of combustion activity."

GEOPHYSICAL RESEARCH LETTERS, VOL. 39 Space-based observations of megacity carbon dioxide

Eric A. Kort,^{1,2} Christian Frankenberg,² Charles E. Miller,² and Tom Oda^{3,4}

Why Add CO?

- Co-emitted with CO₂ in combustion
- Relatively well observed
- Short lifetime
- Surface sensitivity

Fuel + Oxygen → Heat + Water + Carbon + Carbon Monoxide + Carbon Dioxide

Enhanced Surface Sensitivity -MOPITT

CO₂ and CO Retrievals

CO₂ Data

- GOSAT XCO₂ data products
- ACOS L2 algorithm v2.9
- QC screening as recommended

GEOPHYSICAL RESEARCH LETTERS, VOL. 39

Space-based observations of megacity carbon dioxide

Eric A. Kort,^{1,2} Christian Frankenberg,² Charles E. Miller,² and Tom Oda^{3,4}

Atmos. Chem. Phys., 13 Towards constraints on fossil fuel emissions from total column carbon dioxide

G. Keppel-Aleks^{1,2}, P. O. Wennberg¹, C. W. O'Dell³, and D. Wunch¹

CO Data

- MOPITT v5 L2
- TIR and TIR/NIR
- QC screening as recommended

Validation of MOPITT Version 5 Thermal-Infrared, Near-Infrared, and Multispectral Carbon Monoxide Profile Retrievals for 2000-2011

M. N. Deeter,¹ S. Martínez-Alonso,¹ D. P. Edwards,¹ L. K. Emmons,¹ J. C.

Gille,¹ H. M. Worden,¹ J. V. Pittman,² B. C. Daube² and S. C. Wofsy²

JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES, VOL. 118 Impact of model errors in convective transport on CO source estimates inferred from MOPITT CO retrievals

Zhe Jiang,¹ Dylan B. A. Jones,^{1,2} Helen M. Worden,³ Merritt N. Deeter,³ Daven K. Henze,⁴ John Worden,⁵ Kevin W. Bowman,^{2,5} C. A. M. Brenninkmeijer,⁶ and T. J. Schuck⁶

Urban Designations

Google Earth

- Representativeness error
- Anchored to population density
- > 2.5' x 2.5' gridded data
- Pixels chosen through thresholding scheme

Comparison between TCCON and this analysis

Stations	TCCON $\Delta CO_2/\Delta CO$	ACOS v2.9/MOPITT v5 ΔCO2/ΔCO		
		TIR/NIR	TIR-only	TIR/NIR and TIR-only
Lamont, OK, USA	81.79	89.93	99.57	93.76
(36.61°N, -97.49°E)		(~10%)	(~22%)	(~15%)
Park Falls, WI, USA	113.58	80.97	124.42	97.38
(45.95°N, -90.24°E)		(~29%)	(~10%)	(~14%)

- Only investigated positive seasonal correlations
- 1° radius used

15

10

5

0

-5

-10

-15 -40

-20

TCCON ACO₂ (ppm)

Limited by GOSAT retrievals

20

TCCON ∆CO (ppb)

0

 $\Delta CO_2/\Delta CO = 82 \text{ mol/mol}$

40

60

Lamont, OK

Sensitivity over Megacities

Reference	Location	$\Delta CO_2/\Delta CO$
Suntharalingam et al.	Japan	60-80
(2004)	Northeast China	10-20
Zhang et al. (2009)	China	23
Turphull at al. (2011)	China	21-22 ± 1
	Korea	77 ± 12
Wunch et al. (2009)	So.Cal. Basin	91 ± 17
Brioude et al. (2013)	So.Cal. Basin	75
Worden et al. (2012)	Eastern China	40-50 ± 55

- Population > 5 million people
- Trend in developed status
- Consistent with available literature
- May provide information regarding combustion characteristics of the urban location

Reference	Location	$\Delta CO_2/\Delta CO$
Suntharalingam et al.	Japan	60-80
(2004)	Northeast China	10-20
Zhang et al. (2009)	China	23
Turphull at al. (2011)	China	21-22 ± 1
	Korea	77 ± 12
Wunch et al. (2009)	So.Cal. Basin	91 ± 17
Brioude et al. (2013)	So.Cal. Basin	75
Worden et al. (2012)	Eastern China	40-50 ± 55

- Estimates sensitive to the definition of the urban region
- London is an exception due to large number of data and small variations across analysis
- Moscow exemplifies these issues due to limited data
- Tianjin and Beijing represent issues in defining spatial boundaries

Sensitivity over Countries

USA

China

apan

100

Russia

EDGAR 4.2 eCO2 /eCO (mol/mol)

200

Egypt

Mexico

Australia

Turkey

Pakistan

Brazil

India

0

Thailand

0

- Trend in developed status Australia and Brazil
- Uncertainty in Russia stems from limited data
- The U.K. estimate potentially stems from **EDGAR CO underestimation**
- Megacities are sometimes representative of the total anthropogenic signal

Summary and Future Directions

- This study demonstrates the use of space based observations to augment anthropogenic CO₂ signal.
- Our estimates of CO₂/CO values are consistent within 20% of available literature, TCCON, and EDGAR.
- This lends support to how current and future observing systems may be designed, used, and augmented to enhance our ability to monitor and verify carbon emissions.
- > This study motivates a multi-species tracer-transport inversions.
- Future work will include other combustion-related constituents such as NO₂

