

# **TCCON H<sub>2</sub>O retrievals for satellite validation**

#### N.M.Deutscher<sup>1,2</sup>, D.Weaver<sup>3</sup>, M.Schneider<sup>4</sup>, K.Strong<sup>3</sup>, J.Notholt<sup>2</sup>, D.W.T.Griffith<sup>1</sup>, D.Wunch<sup>3</sup>, G.C.Toon<sup>5</sup>, P.O.Wennberg<sup>6</sup>, E.Dupuy<sup>7</sup>, O.Uchino<sup>7</sup>, I.Morino<sup>7</sup>

<sup>1</sup>Centre for Atmospheric Chemistry, School of Chemistry, University of Wollongong, NSW, Australia; <sup>2</sup>Institute of Environmental Physics, University of Bremen, Bremen, Intersity, University of Bremen, Brem Germany; <sup>3</sup>Department of Physics, University of Toronto, Toronto, Canada; <sup>4</sup>Karlsruhe Institute of Technology, Karlsruhe, Germany; <sup>5</sup>Jet Propulsion Laboratory, NASA, Pasadena, CA, USA; <sup>6</sup>California Institute of Technology, Pasadena, CA, USA; <sup>7</sup>National Institute for Environmental Studies, Tsukuba, Japan Email: ndeutsch@uow.edu.au

#### Introduction

- Atmospheric water vapour  $(H_2O)$  is critical to the climate and hydrological systems
- Largest contributor to the atmospheric greenhouse effect.
- Positive feedback effect with climate warming
- Changing spatial, temporal distributions, precipitation patterns with climate change.
- Consistent monitoring of H<sub>2</sub>O crucial to understanding
- Satellite measurements (especially co-located with observations of other greenhouse gases) can contribute to studies of impacts
- GOSAT and other satellites can measure  $H_2O$  (and its isotopologue, HDO)

### **Ground-based FTIR H<sub>2</sub>O measurements**

- Total Carbon Column Observing Network (TCCON) and Network for Detection of Atmospheric Composition Change (NDACC) – ground-based sola Fourier Transform InfraRed (FTIR) measurements.
- NIR; column scaling; a priori TCCON: dependent; 15 H<sub>2</sub>O (top right), 6 HDO (middle right) windows; temporally dense, moderate spectral resolution; >20 sites
- MUlti-platform remote Sensing of NDACC: Isotopologues for investigating the Cycle of Atmospheric water (MUSICA); MIR; profile retrieval;



- These require validation to ensure no spatial/temporal biases
- Ground-based measurements can provide such validation

high spectral resolution; 5  $H_2O$ , 5 HDO, 2  $H_2^{18}O$ (bottom right); 11 sites (7 common to TCCON)

wavenumber [cm]

## **Calibration of TCCON**

- In order to use TCCON or MUSICA for satellite validation, they must also be calibrated
- MUSICA uses validation against co-located plane flights (Dyroff et al, 2015) for HDO and  $H_2O$
- TCCON uses a limited selection of co-located aircraft or sonde measurements for H<sub>2</sub>O only; there is no HDO calibration
  - Only uses measurements simultaneous to calibration for other gases ( $CO_2$ ,  $CH_4$ ) etc.) (23 profiles, 4 sites)
    - 1.0183  $\pm$  0.0100 (right; Wunch et al, 2015)
- Many sites have more frequent co-located sonde launches; these can be used for a more extensive calibration of  $H_2O$ 
  - No similar comparative measurements for HDO
  - Comparison to MUSICA best option



#### **Updated Calibration**

- 1000s of coincidences
- Multiple sites (>= 8; Izana not shown in plot)
  - Some sites multiple soundings/day
- Wider range of conditions
  - Diverges from linear at low xH<sub>2</sub>O (Arctic)
- 1.0113  $\pm$  0.0018
- To be updated for GGG2016, including extra microwindows (e.g. Rokotyan et al, 2014)
- HDO to be validated via comparison to MUSICA
  - Limited in tropics investigating empirical correction





#### **GOSAT** validation

- TCCON primary validation for GOSAT
- Variety of coincidence criteria explored.
- Increasing temporal coincidence barely provides any greater number of matches, but doesn't compromise fit.
- Increased spatial range increases number of coincidences but compromises fit statistics

| Temporal   | Spatial              | Slope  | Ν     | r <sup>2</sup> |
|------------|----------------------|--------|-------|----------------|
| 1 hour     | 5x5 <sup>0</sup>     | 0.8554 | 23110 | 0.6918         |
|            | 2x2 <sup>0</sup>     | 0.9413 | 5489  | 0.8869         |
|            | 1x1 <sup>0</sup>     | 1.0079 | 2978  | 0.9159         |
|            | 0.5x0.5 <sup>0</sup> | 0.9824 | 1373* | 0.9755         |
| 30 minutes | 5x5 <sup>0</sup>     | 0.7463 | 21150 | 0.6886         |
|            | 2x2 <sup>0</sup>     | 0.8695 | 5256  | 0.8870         |
|            | 1x1 <sup>0</sup>     | 0.9304 | 2886  | 0.9188         |
|            | 0.5x0.5 <sup>0</sup> | 1.0149 | 1335* | 0.9757         |
| 10 minutes | 1x1 <sup>0</sup>     | 0.9937 | 2698  | 0.9249         |
|            | 0.5x0.5 <sup>0</sup> | 0.9724 | 1380  | 0.9765         |



## **Altitude effect**



- High variability of H<sub>2</sub>O profile results in xH<sub>2</sub>O variations despite normalisation to surface pressure.
- Most clearly seen at sites near to variable topography (e.g. Wollongong, Dryden, Izana, Garmisch)
- Possible site specific coincidence criteria, or additional d(alt) criterion



Alternatively: correct (e.g. Ohyama et al, 2016)



**Acknowledgements** 

Australian Research Council funding (DE140100178).

GOSAT support via RA project.

TCCON Pis (all sites), and sonde data providers (including Omaira Garcia, Rigel Kivi, Marion Maturilli, Richard Querel, Hisako Shiona).





#### References

Dyroff, C., Sanati, S., Christner, E., Zahn, A., Balzer, M., Bouquet, H., McManus, J. B., González-Ramos, Y., and Schneider, M.: Airborne in situ vertical profiling of HDO / H216O in the subtropical troposphere during the MUSICA remote sensing validation campaign, Atmos. Meas. Tech., 8, 2037-2049, doi:10.5194/amt-8-2037-2015, 2015

Dupuy, E.; Morino, I.; Deutscher, N.M.; Yoshida, Y.; Uchino, O.; Connor, B.J.; De Mazière, M.; Griffith, D.W.T.; Hase, F.; Heikkinen, P.; Hillyard, P.W.; Iraci, L.T.; Kawakami, S.; Kivi, R.; Matsunaga, T.; Notholt, J.; Petri, C.; Podolske, J.R.; Pollard, D.F.; Rettinger, M.; Roehl, C.M.; Sherlock, V.; Sussmann, R.; Toon, G.C.; Velazco, V.A.; Warneke, T.; Wennberg, P.O.; Wunch, D.; Yokota, T. Comparison of XH2O Retrieved from GOSAT Short-Wavelength Infrared Spectra with Observations from the TCCON Network. Remote Sens. 2016, 8, 414

N. V. Rokotyan, V. I. Zakharov, K. G. Gribanov, M. Schneider, F.-M. Bréon, J. Jouzel, R. Imasu, M. Werner, M. Butzin, C. Petri, T. Warneke, J. Notholt. A posteriori calculation of 5180 and 5D in atmospheric water vapour from ground-based near-infrared FTIR retrievals of H\_2160 H 2180, and HD160. Atmos. Meas. Tech. 7, 2567–2580 (2014)

D. Wunch, G.C. Toon, V. Sherlock, N.M. Deutscher, X. Liu, D.G. Feist, P.O. Wennberg. The Total Carbon Column Observing Network's GGG2014 Data Version. (2015).