

Inter-comparison between GOSAT and OCO2 SWIR-band **Spectral Radiance over Railroad Valley**

Fumie Kataoka ⁽¹⁾, Akihiko Kuze ⁽²⁾, Kei Shiomi ⁽²⁾, Hiroshi Suto ⁽²⁾, David Crisp ⁽³⁾, Carol Bruegge⁽³⁾ and Florian Schwandner⁽³⁾

(1)Remote Sensing Technology Center of Japan, (2) Japan Aerospace Exploration Agency (3) NASA Jet Propulsion Laboratory

Introduction

The Greenhouse gases Observing SATellite (GOSAT) was launched on January 2009 and continues to operate after more than seven years. The Orbiting Carbon Observatory 2 (OCO-2) was launched on July 2014. Both missions were designed to measure atmospheric carbon dioxide concentrations using reflected solar radiance with three SWIR spectral bands (O2A band, Weak-CO2 band and Strong-CO2 band).

This work describes the inter-comparison of GOSAT and OCO2 SWIR spectra over spatially and temporally coincident observation points. The inter-comparison of spectral radiance is an essential first step of cross-validation of the different spectrometers.

Methodology

Match-up criteria

We took the temporally coincident and spatially collocated GOSAT and OCO2 data. Figure 1 shows the global orbit map of GOSAT and OCO2 satellite. Figure 2 shows the focused orbit map near Railroad Valley (RRV).

• GOSAT has 3-days revisit cycle and 44 repeat orbits. The Local equator crossing time in a descending node is 13:00+/- 15 minutes.

Comparison Data

In this work, we used GOSAT L1B V201201 (or V201202) and OCO2 L1B Science.7r data. For GOSAT spectra, we applied V201 radiance conversion table (currently, V201201 data applied V070 radiance conversion table).

Processing flow chart

Figure 5 shows the flow chart of inter-comparison of spectral radiance. As described in Kuze et al, 2014 paper, **GOSAT SWIR sensor indicated** significant degradation compared to the prelaunch values. Especially, largest changes were seen in the 0.76 µm O₂A-band (band1). We applied the GOSAT Radiance degradation Factor (RDF) for GOSAT spectra. Figure6 show the GOSAT RDF for past 8years. In general, the surface reflection is not Lambertian, so we applied the **BRDF**, calculated from MODIS BRDF product (MCD43B1), for each spectra (only clear land).

OCO2 join the international Afternoon Constellation, or A-Train, of Earth-observing satellites. A-train has 16-days revisit cycle and 227 repeat orbits. The Local equator crossing time in a ascending node is about 13:30.

[Data period] 2014/09~2016/04

[Math-up criteria]

- GOSAT –OCO2 time difference : 1 hour
- OCO2 footprint data within about 10.5 km-diameter GOSAT footprint
- Satellite geometry : almost nadir (except for Railroad Valley cases)

Figure3 shows the matchup points in global from Sep2014~Apr2016.

GOSAT Radiance Degradation Factor (RDF)

$RDF(wavenumber) = C \times (d + e \times exp(-f \times t))$

Figure 4. Example of GOSAT-OCO2 match-up points in Railroad Valley.

wavelength [micro meter and2: Weak_CO2_ban

Figure 7. GOSAT Radiance degradation Factor (RDF) for past 8 years

Result

Table1 shows the list of GOSAT-OCO2 inter-comparison cases in this work.

For Global analysis, we selected almost nadir observation and checked the uniformity within GOSAT footprint (clear or cloudy). In this analysis, we applied BRDF for GOSAT and OCO2 spectra (except for ocean and cloudy data). For RRV analysis, we selected similar BRDF characteristic area and not applied BRDF for spectra. Figure8 show the example of spectral comparison in Global and RRV analysis. We summarized the OCO2 and GOSAT spectral ratio (= (OCO2 – GOSAT)/GOSAT *100 [%]) at three wavelength listed in Table2. Figure9 shows spectral ratio at three different types of target (Land, Ocean and Cloudy), which has different dynamic range. We will continue to check the stability of both satellites through this kind of comparison method.

Table1. List of GOSAT-OCO2 inter-comparison cases.

	GOSAT L1B filename	Date	Time	Lat	Lon	BRDF	Remarks
1	GOSATTFTS2014121311290190250_1BOB1D201201.01_ex20	2014/12/13	31:15.0	30.4526	24.0401	applied	desert
2	GOSATTFTS2014121405310080260_1BOB1D201201.01_ex13	2014/12/14	32:20.8	26.4504	113.0320	applied	land
3	GOSATTFTS2015021607380120240_1BOB1D201201.01_ex5	2015/2/16	39:09.2	40.5476	84.1712	applied	desert
4	GOSATTFTS2015051320110350241_1BOB1D201201.01_ex5	2015/5/13	11:40.1	40.5537	-104.0036	-	cloudy
5	GOSATTFTS2015051709210150270_1BOB1D201201.01_ex2	2015/5/17	21:48.8	23.5392	55.0572	applied	desert
6	GOSATTFTS2015051809540160270_1BOB1D201201.01_ex22	2015/5/18	56:04.7	17.9378	45.5865	applied	desert
7	GOSATTFTS2015060911570200221_1BOB1D201201.01_ex17	2015/6/9	58:40.4	48.0036	21.3308	applied	land
8	GOSATTFTS2015061709570160291_1BOB1D201201.01_ex4	2015/6/17	58:00.0	10.3558	43.9350	applied	desert
9	GOSATTFTS2015061709570160291_1BOB1D201201.01_ex5	2015/6/17	58:04.6	10.3574	43.9332	applied	desert
10	GOSATTFTS2015070518070310280_1BOB1D201201.01_ex7	2015/7/5	07:31.5	15.4193	-77.6927	-	ocean
11	GOSATTFTS2015070518070310280_1BOB1D201201.01_ex8	2015/7/5	07:36.1	15.4203	-77.6946	-	ocean
12	GOSATTFTS2015081807380120240_1BOB1D201201.01_ex14	2015/8/18	39:43.3	38.0532	83.4286	applied	desert
13	GOSATTFTS2015082521150370230_1BOB1D201201.01_ex6	2015/8/25	15:42.4	46.0863	-118.4781	applied	land
14	GOSATTFTS2015090507370120230_1BOB1D201201.01_ex17	2015/9/5	38:24.2	43.0417	85.0026	-	cloudy
15	GOSATTFTS2015091503300040320_1BOB1D201201.01_ex13	2015/9/15	31:03.8	-9.8552	137.8542	-	ocean
16	GOSATTFTS2015120511330190270_1BOB1D201201.01_ex13	2015/12/5	34:12.9	20.4684	21.6251	applied	desert
17	GOSATTFTS2016011110260170260_1BOB1D201201.01_ex6	2016/1/11	26:52.5	28.2870	39.8643	applied	desert
18	GOSATTFTS2016011209220150271_1BOB1D201201.01_ex3	2016/1/12	22:48.4	23.2587	55.0043	applied	desert
19	GOSATTFTS2016012209550160270_1BOB1D201201.01_ex11	2016/1/22	56:13.5	21.0157	46.2984	applied	desert
20	GOSATTFTS2016020520430360230_1BOB1D201201.01_ex16	2016/2/5	44:44.2	43.3156	-111.2661	-	cloudy
21	GOSATTFTS2016022518340320240_1BOB1D201201.01_ex5	2016/2/25	34:44.7	40.5542	-79.4413	-	cloudy
24	GOSATTFTS2015032521170370242_1BSPOD201201.01	2015/3/25	21:17	38.4840	-115.6852	-	RRV
25	GOSATTFTS2015062921160370242_1BSPOD201201.01	2015/6/29	21:17	38.4840	-115.6852	-	RRV
26	GOSATTFTS2015070120440360242_1BSPOD201201.01	2015/7/1	20:44	38.4840	-115.6852	-	RRV

Table2. Evaluated spectral wavelengh for each band.

Ratio = (OCO2 -	GOSAT)/	GOSAT *	100 [%]
O2A band [um]	0.7676	0.7696	0.7707
Weak CO2 band [um]	1.5929	1.6056	1.61616
Strong CO2 band [um]	2.0618	2.0723	2.0795

Figure 9. Summary of GOSAT-OCO2 spectral comparison.

IWGGMS-12, Kyoto University, Japan, 7-9 June, 2016

Figure8. Example of GOSAT-OCO2 spectral comparison (Upper: Global cases, Lower: RRV cases).