A Study of Extraction and Analysis of Emission and Absorption Events of Greenhouse Gases with GOSAT

Koki K<u>ASAI</u>¹, Kei SHIOMI^{2,1}, Atsushi KONNO¹, Takeo TADONO^{2,1}, Masahiro HORI^{2,1}

¹Hokkaido University, Japan ²Japan Aerospace Exploration Agency (JAXA)

1. Introduction

- On January 23, 2009, Greenhouse Gases Observing Satellite (GOSAT) was launched, and XCO₂ and XCH₄ are observed globally with high spatial resolution.
- Lindqvist et al. (2015) found that GOSAT/ACOS captured the seasonal cycle amplitude with about 1.0 ppm accuracy compared to TCCON.
- In this study, to detect emission and absorption events by using GOSAT observation data, the function which expresses typical inter-annual and seasonal variation is fitted to time series data.

2. Data processing

- Two satellite observation datasets (ACOS and NIES) and two atmospheric model datasets (CT2015 and CT-CH4) are used (Table 1).

Table 1: Datasets used in this study

Dataset	ACOS	NIES	CT2015	CT-CH ₄
Long name	ACOS GOSAT/TANSO- FTS Level 2 Full Product B3.5	NIES TANSO-FTS L2 column amount (SWIR) V02.xx	CarbonTracker CT2015	CarbonTracker- CH ₄
Institute	NASA/JPL	NIES	NOAA/ESRL	NOAA/ESRL
Period	2009.04.22 - 2014.06.07	2009.04.23 – 2015.08.02	2000.01.01 – 2015.01.01	2000.01.01 - 2011.01.01
Spatial resolution	10.5 km (Instantaneous Field of View)		3 degree (lon.) 2 degree (lat.)	6 degree (lon.) 4 degree (lat.)
Temporal resolution	3 days (recurrence period)		3 hours	
References	Wunch et al., 2011 O'Dell et al., 2012 Crisp et al., 2012	Yoshida et al., 2013	Peters et al., 2007	Peters et al., 2007

2.1 XCO₂ and XCH₄ calculation

- For CT2015 and CT-CH4, daytime mean is calculated from 3-hourly data to compare properly with satellite observation data (Table 2).
- XCO_2 and XCH_4 are computed from weighted average of 3-D mole fractions in CT2015 and CT-CH_a (Fig. 1).

4	→ 25th or 35th boundary layer		Table 2: Cal
24th or 34th	(top of atmosphere)		Area
boundary	($i \perp 1$) the boundary	1	180W – 13
	$ayer (p_{Bi+1}, z_{i+1})$	2	135W – 90
	i th layor	3	90W – 45V
(i+1) th	(p_{Li}, T_i)	4	45W – 0
boundary	$[CO_2]_i, [CH_4]_i)$	5	0-45E
	i th boundary layer	6	45E – 90E
	(p_{Bi}, z_i)	7	90E – 135E
		8	135E – 180
2nd boundary	1st boundary layer (land surface)		

	Table 2: Calculating daytime mean from 3-hourly data					
		Area	Averaged time for daytime mean (UTC)			
	1	180W – 135W	19:30, 22:30, 01:30(+1 day)			
	2	135W – 90W	16:30, 19:30, 22:30			
	3	90W – 45W	13:30, 16:30, 19:30			
	4	45W – 0	10:30, 13:30, 16:30			
	5	0 – 45E	07:30, 10:30, 13:30			
	6	45E – 90E	04:30, 07:30, 10:30			
-	7	90E – 135E	01:30, 04:30, 07:30			
	8	135E – 180E	22:30(-1 day), 01:30, 04:30			

2.2 Function fitting

Fitted function in this study is as follows:

$$y(t) = a_0 + a_1 t + b_1 \sin\left(\frac{2\pi}{365}t\right) + c_1 \cos\left(\frac{2\pi}{365}t\right),$$

where t : elapsed days
 $y(t)$: estimated XCO₂ or XCH₄
 a_0, a_1, b_1, c_1 : fitted parameters to be determined

Seasonal amplitude A [mol mol⁻¹] and annual growth rate *GR* [mol mol⁻¹ yr⁻¹]are expressed by fitted parameters as follows: $A = \sqrt{b_1^2 + c_1^2}, \ GR = a_1 \times 365.$

2.3 ACOS XCH₄

 XCH_4 is not retrieved in ACOS, but it could be calculated as follows: $XCH4 = \frac{ch4_column_idp}{\Sigma retrieved_dry_air_column_layer_thickness} \times 10^{9} \text{ [ppb]}.$

Therefore, results show not only XCO_2 of ACOS but also XCH_4 .

Fig. 1: Definition of atmospheric model data for calculating XCO₂ or XCH₄

3. Results

3.1 Latitudinal average of seasonal amplitude and growth rate

<u>3.2 XCO₂ and XCH₄ time series variation (30 deg N)</u>

4. Conclusion

Acknowledgements

GOSAT project is a joint effort of the Japan Aerospace Exploration Agency (JAXA), the National Institute for Environmental Studies (NIES), and the Ministry of the Environment (MOE), Japan. ACOS data were produced by the ACOS/OCO-2 project at the Jet Propulsion Laboratory, California Institute of Technology, and obtained from the JPL website, co2.jp.nasa.gov. This study is processed by JSPS KAKENHI Grant Number JP 16J02111.

References

Wunch et al., 2011, Atmos. Chem. Phys. Discuss., 11, 20899-20946, 2011b. O'Dell et al., 2012, Atmos. Chem. Phys. Discuss., 4, 6097-6158. Crisp et al., 2012, Atmos. Meas. Tech., 5, 687-707. Yoshida et al., 2013, Atmos. Meas. Tech., 6, 17-30. Peters et al., 2007, PNAS, 104, 48, 18925-18930. Lindqvist et al., 2015, Atmos. Chem. Phys., 15, 13023-13040.